

# A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

## **Accepted Article**

**Title:** On-Demand Synthesis of H2O2 by Water Oxidation for Sustainable Resource Production and Organic Pollutant Degradation

Authors: Lejing Li, Zhuofeng Hu, and Jimmy C. Yu

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.202008031

Link to VoR: https://doi.org/10.1002/anie.202008031

## WILEY-VCH

**RESEARCH ARTICLE** 

#### WILEY-VCH

## On-Demand Synthesis of H<sub>2</sub>O<sub>2</sub> by Water Oxidation for Sustainable Resource Production and Organic Pollutant Degradation

Lejing Li,<sup>[a]</sup> Zhuofeng Hu,<sup>\*[b]</sup> and Jimmy C. Yu<sup>\*[a]</sup>

[a] Prof. Jimmy C. Yu, Lejing Li Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China E-mail: jimyu@cuhk.edu.hk
[b] Prof. Zhuofeng Hu School of Environmental Science and Engineering Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University Guangzhou 510275, China E-mail: huzhf8@mail.sysu.edu.cn

Supporting information for this article is given via a link at the end of the document.

Abstract: H<sub>2</sub>O<sub>2</sub> is a versatile and environmentally friendly chemical involved in water treatment, such as advanced oxidation processes. Anthraquinone oxidation is widely used for large-scale production of  $H_2O_2$ , which requires significant energy input and periodic replacement of the carrier molecule.  $H_2O_2$  production method should be customized considering the specific usage scenario. Electrochemical synthesis of  $H_2O_2$  can be adopted as alternatives to traditional method, which avoids the concentration, transportation and storage processes. Herein, we identified Bi<sub>2</sub>WO<sub>6</sub>:Mo as a low-cost and high-selectivity choice from a series of Bi based oxide electrodes for H<sub>2</sub>O<sub>2</sub> generation via 2-electron water oxidation reaction. It can continuously provide H<sub>2</sub>O<sub>2</sub> for in situ degradation of persistent pollutants in aqueous. Simultaneously, clean energy of H<sub>2</sub> can be produced at the cathode. This kind of water splitting producing sustainable resources of  $H_2O_2$  and  $H_2$  presents an advance in environmental treatment and energy science.

#### Introduction

Worldwide  $H_2O_2$  production is approximately 3 million tons per year. 60% is used for bleaching in the pulp, paper and textile industry. Anthraquinone oxidation (AO) has been considered as the mainstream production method for  $H_2O_2$  since it was firstly introduced in the 1940s.<sup>[1]</sup> It involves sequential hydrogenation and oxidation steps of the anthraquinone,  $H_2O_2$  extraction and treatment of the working solution.<sup>[1-2]</sup> However, this method has three main drawbacks: 1) the regeneration of anthraquinone solution and hydrogenation of Pd catalysts make AO an energydemanding and resource-consuming process; 2) it requires large infrastructures and impurity removal processes; 3) the concentration process is required to reduce transportation costs. The storage and transportation of concentrated  $H_2O_2$  also encounter security issues.

Various production methods should be developed to meet the use of  $H_2O_2$  in different occasions. For example, for the advanced oxidation processes (AOPs), onsite preparation of  $H_2O_2$  is much more attractive than transporting concentrated  $H_2O_2$ . AOPs only require the concentration of  $H_2O_2$  to be about 1–10 wt.%, which can be achieved by onsite production.<sup>[3]</sup> Electrochemical synthesis is considered as a promising route for the onsite production of  $H_2O_2$ . Portable electrochemical devices can generate  $H_2O_2$  avoiding the cost of plant building and the transportation of concentrated  $H_2O_2$ , which is suitable for water purification in remote areas. The widely studied way for the electrochemical generation of  $H_2O_2$  is two-electron oxygen reduction reaction (ORR, Eq. 1).<sup>[4]</sup>

In our opinion, electrochemical two-electron water oxidation (Eq. 2) process provides a straightforward route for H<sub>2</sub>O<sub>2</sub> production.  $2H_2O \rightarrow H_2O_2 + 2(H^+ + e^-) E^0 = +1.76 V vs. RHE$ Ea. 2 This electrochemical reaction offers an economical and practical way for  $H_2O_2$  generation. It only requires water as the reactant. Therefore, it can avoid the gas bubbling process, which lowers the production cost. Compared with oxygen reduction that requires cathode materials, electrochemical two-electron water oxidation is on the base of anode materials. Most of anode materials used for oxidative production are metal oxides, which are much cheaper than cathode materials of noble metal catalysts. More importantly, metal oxides are often proved to be stable within a large potential window. This is of great significance to environmental remediation because it often requires the electrode to operate for a long time.<sup>[6]</sup> Therefore, two-electron water oxidation is a promising strategy for environmental remediation.

The two-electron oxidation reaction of water has been examined over some metal oxides <sup>[4f, 7]</sup>. For example, BiVO<sub>4</sub> has been identified as a suitable compound for H<sub>2</sub>O<sub>2</sub> generation.<sup>[8]</sup> BiVO<sub>4</sub> can achieve a Faraday efficiency (FE) above 70% at around 3.1 V vs. RHE.<sup>[4g, 9]</sup> However, the BiVO<sub>4</sub> suffered from high overpotential (~ 400 mV) and poor durability due to the dissolution of VO<sub>4</sub><sup>3-</sup> anions, which renders it not suitable for AOPs that need to last for a certain period.<sup>[9]</sup> Therefore, catalyst design should meet the requirements for both aspects: the selectivity towards

## **RESEARCH ARTICLE**



Figure 1 a) Scheme diagram for the preparation process for five Bi-based oxide electrodes. b) XRD pattern of the as-prepared FTO/Bi<sub>2</sub>WO<sub>6</sub>:Mo electrode(pink pattern) as well as the pattern of FTO and the standard diffraction of Bi<sub>2</sub>WO<sub>6</sub> for comparison. c) and d) Top-view SEM images of hierarchical flower-like structures of Bi<sub>2</sub>WO<sub>6</sub>:Mo. e) TEM image, f) HRTEM image and g) SAED for Bi<sub>2</sub>WO<sub>6</sub>:Mo nanosheet.

#### $H_2O_2$ generation and the stability.

In this contribution, from a series of Bi based oxide electrodes, we discover that  $Bi_2WO_6$  was a satisfying electrode for 2-electron water ocidation reaction in terms of the FE, overpotential and durability. Then, the current density was enhanced by Mo-doping and enlarging the surface area. This FTO/Bi<sub>2</sub>WO<sub>6</sub>:Mo electrode achieves a peak FE of around 79% at 3.2 V vs. RHE, and can keep a current density of 10 mA cm<sup>-2</sup> for at least 6 hours. Clean energy H<sub>2</sub> was generated at the cathode with high current efficiency. This work also provides a new strategy for *in situ* AOPs on the base of H<sub>2</sub>O<sub>2</sub> produced by via electrochemical water oxidation. Persistent pollutants of norfloxacin (NFX) and methyl blue (MB) can be effectively removed in the electrolytic cell as continuous H<sub>2</sub>O<sub>2</sub> generated from Bi<sub>2</sub>WO<sub>6</sub>:Mo anode.

#### **Results and Discussion**

Firstly, a series of Bi-based oxide electrodes were prepared (details can be found in Supporting Information). The schematic

diagram of the preparation was shown in Figure 1a, which started from the bismuth metal electrode. We then investigated the activity trend of five electrodes towards oxidative  $H_2O_2$  generation. From the current-voltage curves (*J-V* curves, Figure S1a), the current density of water oxidation reaction increases in the sequence of FTO/Bi<sub>2</sub>O<sub>3</sub>, FTO/Bi<sub>2</sub>WO<sub>6</sub>, FTO/BiVO<sub>4</sub>, FTO/Bi<sub>2</sub>MoO<sub>6</sub>, FTO/BiFeO3. We identified that OER is the dominant reaction over the surface of FTO/BiFeO3 since the current rose below the thermodynamic potential 1.76 V vs. RHE for 2-electron oxidation of  $H_2O.^{[4e,\ 5]}$  The FE and  $H_2O_2$  yield of these electrodes were quantified and compared after operation at 2.6 V vs. RHE for several minutes (Figure S1b): only FTO/Bi<sub>2</sub>O<sub>3</sub>, FTO/Bi<sub>2</sub>WO<sub>6</sub>, FTO/BiVO<sub>4</sub> show preference toward H<sub>2</sub>O<sub>2</sub> formation. Overall, considering the low production rate of FTO/Bi2O3 and the instability of FTO/BiVO<sub>4</sub> (I-T curve shown in Figure S2) in this alkaline condition, Bi<sub>2</sub>WO<sub>6</sub> achieves the best  $H_2O_2$ electrosynthesis in terms of selectivity, H<sub>2</sub>O<sub>2</sub> yield and stability among all the Bi-based ternary oxides. Next, morphology optimization and Mo-doping were adopted to further increase the current density of Bi<sub>2</sub>WO<sub>6</sub>. Bi<sub>2</sub>WO<sub>6</sub>:5%Mo nanosheet with large

## **RESEARCH ARTICLE**



**Figure 2**. a) Current density versus potential curves for electrodes FTO/Bi<sub>2</sub>WO<sub>6</sub> and FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo. b) FE measurements collected at various constant applied potentials for FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo. c) Stability test of *J*-*T* curves under different biases. d) Accumulated H<sub>2</sub>O<sub>2</sub> concentration at 2.4 V vs. RHE. e) *In situ* Raman spectra recorded during the potentiostatic current-time tests at the potential from 2.0 V to 2.6 V vs. RHE. f) The FE of H<sub>2</sub> evolution at cathode at different cell voltage.

surface area was converted from WO3:5%Mo plate-like array (Figure S3). The XRD result (Figure 1a) reveals that the asprepared FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo is in accordance with the orthorhombic bismuth tungstate (PDF#73 2020). This also indicates the conversion of Bi2WO6:5% from WO3:5% has been achieved by the second hydrothermal treatment. From SEM images presented in Figures 1b, c and Figure S4, both Bi<sub>2</sub>WO<sub>6</sub> and Bi2WO6:5%Mo appears with hierarchical flower-like structures by self-assembly nanosheets with a thickness about 10 ~ 20 nm. The average diameter of the nanoflowers is determined to be 1-2 µm. Then exposed facet of Bi<sub>2</sub>WO<sub>6</sub>:5%Mo nanosheets was further determined by TEM technique (Figures 1d-f). A part of the well-dispersed nanosheet is displayed in Figure 1d, and the high-resolution TEM (HRTEM) image (Figure 1e) reveals two sets of lattice fringes with an interplanar spacing of 0.274 and 0.276 nm, which corresponding to the (020) and (200) planes, respectively. The selected area electron diffraction (SAED, Figure 1f) pattern confirms the orthorhombic structure with (001) oriented growth. Other diffraction spots are also indexed to corresponding planes indicated. The surface chemical composition and valence state were characterized by XPS and shown in Figure S5. From the XPS spectrum of Mo (inset of Figure S5a), the energy difference between  $4f_{5/2}$  and  $4f_{7/2}$  is about 3.2 eV, implying the chemical state of doped Mo is +6.<sup>[10]</sup>

The current-voltage (*J*-V) curves were recorded to evaluate the electrocatalytic performance of pure  $Bi_2WO_6$ , Mo doped  $Bi_2WO_6$  and bare FTO (Figure 2a).  $Bi_2WO_6$  shows a lower onset potential and a higher current density than FTO. The current density is further increased after Mo-doping and reaches 0.2 mA cm<sup>-2</sup> at 2.0 V vs. RHE. The substitution of W by Mo induces slight modification of the crystal structure and d electronic configuration, which affects the charge transfer property.<sup>[11]</sup> The charge transfer

## **RESEARCH ARTICLE**

resistance of electrodes with and without Mo-doping were evaluated according to electrochemical impedance spectroscopy (EIS) shown in Figure S6. The diameter of the semicircle in Nyquist plots becomes much smaller after Mo-doping, indicating a higher charge transfer rate, which contributes to higher current density.

The  $H_2O_2$  production reaction must compete with the four-electron oxidation reaction (oxygen evolution, Eq. 3) and the one-electron oxidation reaction (•OH, hydroxyl radical generation, Eq. 4).

 $2H_2O \rightarrow O_2 + 4(H^+ + e^-)$  E<sup>o</sup> = +1.23 V vs. RHE Eq. 3  $H_2O \rightarrow \cdot OH + (H^+ + e^-)$   $E^\circ = +2.38 \text{ V vs. RHE}$ Eq. 4 Our electrode can achieve a high selectivity and stability toward H<sub>2</sub>O<sub>2</sub> generation. Then faradaic efficiency of FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo towards H<sub>2</sub>O<sub>2</sub> generation is further quantified as a function of potentials. Figure 2b shows that the 2-electron-WOR is the predominant reaction in the bias window of 2.6 ~ 3.4 V vs. RHE in KHCO<sub>3</sub> electrolyte, and the peak of FE reaches 79% at 3.2 V vs. RHE over Bi2WO6:5%Mo surface. The FE for both FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo and bare FTO electrode shows a similar trend: increasing firstly to the maximum and then decreasing over the tested range. Also, the H<sub>2</sub>O<sub>2</sub> generation rate as a function of bias was tested (purple curve in Figure 2b), and it achieves the maximum about 300 µmol h<sup>-1</sup> cm<sup>-2</sup> at 3.4 V vs. RHE.

The effect of electrolyte on the selectivity of water oxidation was also investigated in other electrolytes (1 M KH<sub>2</sub>PO<sub>4</sub>, 1 M K<sub>2</sub>HPO<sub>4</sub> and 1 M K<sub>2</sub>CO<sub>3</sub>). We found Bi<sub>2</sub>WO<sub>6</sub>:Mo achieves the highest H<sub>2</sub>O<sub>2</sub> generation in KHCO<sub>3</sub> (Figure S7), and higher concentration of KHCO<sub>3</sub> facilitates both the current density and FE (Figure S8). The role of HCO<sub>3</sub><sup>2-</sup> has been discussed previously.<sup>[7a, 12]</sup> It is proposed that adsorbed HCO<sub>3</sub><sup>2-</sup> can be firstly oxidized to percarbonate intermediates (HCO<sub>4</sub><sup>-</sup> or C<sub>2</sub>O<sub>6</sub><sup>2-</sup>), which can further hydrolyzed in water to give H<sub>2</sub>O<sub>2</sub>.

The electrochemical stability is vitally important for H<sub>2</sub>O<sub>2</sub> production materials, especially for those used in degradation context for long-term service. A current-time (1-T) curve of FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo was tested up to 6 hours under different bias (Figure 2c). This electrode is quite stable at 2.4 V vs. RHE, while current densities only undergo slight decrease when bias increased to 2.8 V and even 3.4 V vs. RHE. To further quantify the H<sub>2</sub>O<sub>2</sub> generation capacity of FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo, onsite H<sub>2</sub>O<sub>2</sub> concentration was measured under 2.4 V vs. RHE in 40 mL electrolyte over 6 h as shown in Figure 2d. The accumulated concentration reaches around 25 ppm in 6 hours. Additionally, the J-V curve recorded after the stability test is very close to the previous one (Figure S9), indicating robust durability for FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo during H<sub>2</sub>O<sub>2</sub> production. Additionally, Raman spectra were collected during the potentiostatic current-time experiments at different biases (2.0 V ~ 2.6 V vs. RHE) and shown in Figure 2e. Based on previous researches, Raman bands at 790 cm<sup>-1</sup> and 829 cm<sup>-1</sup> were associated with the antisymmetric and symmetric Ag modes of terminal O-W-O,[13] band at ~700 cm<sup>-1</sup> was associated with the W-O stretching modes for equatorial oxygens in WO<sub>6</sub> octahedra,<sup>[14]</sup> bands at around 302 cm<sup>-1</sup> was ascribed to the bending vibration of WO<sub>6</sub> as well as the stretching and bending vibration of BiO<sub>6</sub> polyhedra<sup>[15]</sup>. All Raman bands remain unchanged positions during the electrochemical test regardless of applied bias, indicating a stable structure characteristic of Bi<sub>2</sub>WO<sub>6</sub>:5%Mo in H<sub>2</sub>O<sub>2</sub> generation.

While  $H_2O_2$  was produced at the anode, a clean fuel  $H_2$  was formed at the cathode simultaneously. As shown in Figure 2f, the FE of  $H_2$  evolution at cathode exceeds 90% or even up to 100%

when the cell voltage above 2.3 V. Thus, clean energy of  $H_2$  was produced simultaneously at the cathode. Therefore, this electrochemical system for water splitting can provide valuable chemical of  $H_2O_2$  and  $H_2$  simultaneously.

Then we try to understand mechanism for the high selectivity of water oxidation reaction over the surface of Bi2WO6:Mo. As reported before, a  $\Delta G_{OH^*}$  between 1.6 and 2.4 eV is favorable to  $H_2O_2$  production.<sup>[4g]</sup> A small  $\Delta G_{OH^*}$  often leads to weak OH\* bonding energy and O<sub>2</sub> evolution is more likely to happen.<sup>[9, 16]</sup> ·OH formation is more likely to occur on catalysts with strong OH\* bonding free energy (  $\Delta G_{OH^*}$ ). By using density function calculation, we construct  $Bi_2WO_6$  and Mo-doped  $Bi_2WO_6$  as shown in a, b and c of Figure 3. In the model of Mo-doped Bi<sub>2</sub>WO<sub>6</sub>, the OH intermediate is located near the Mo or W sites for investigation (Figure 3b and c). They are denoted as  $Bi_2W(Mo)O_6:Mo$  and  $Bi_2W(W)O_6:Mo$ . The  $\Delta G_{OH^*}$  is calculated to 1.62 eV for Bi<sub>2</sub>W(W)O<sub>6</sub>, 1.41 eV for Bi<sub>2</sub>W(Mo)O<sub>6</sub>:Mo and 1.93 eV for  $Bi_2W(W)O_6$ :Mo. The  $\Delta G_{OH^*}$  for  $Bi_2W(W)O_6$  and  $Bi_2W(W)O_6$ :Mo are in the favorable range for  $H_2O_2$  evolution,<sup>[4g, 17]</sup> which is beneficial to the  $H_2O_2$  evolution. However, compared with  $Bi_2W(Mo)O_6:Mo$  with  $\Delta G_{OH^*}$  of 1.41 eV,  $Bi_2W(W)O_6:Mo$  shows a better  $\Delta G_{OH^*}$  of 1.93 eV. The  $\Delta G_{OH^*}$  of OH\* locates in the middle of the H<sub>2</sub>O<sub>2</sub> evolution range when the OH\* is situated at the W sites. This indicates that the W atoms in the Mo-doped  $Bi_2W(Mo)O_6$  should be the reaction center.



Figure 3. Structure of OH<sup>\*</sup> on a)  $Bi_2WO_6$ , b) Mo- $Bi_2W(Mo)O_6$  and c) Mo- $Bi_2W(W)O_6$ . Blue atoms are Bi, red are O, orange W and green is Mo. d) Energy diagram for  $H_2O_2$  evolution on Mo-doped  $Bi_2WO_6$ .

At 0 V on the surface of Bi<sub>2</sub>W(W)O<sub>6</sub>:Mo, the theoretical equilibrium potential for  $H_2O_2$  is 1.76 V vs. RHE. As a two-electron reaction process, the free energy for  $H_2O_2$  evolution situates at 3.52 eV.<sup>[16]</sup> At the equilibrium potential of 1.76 V vs. RHE, the first step for the formation of OH\* is uphill, and the second step is downhill. Hence, the first step of forming the OH\* intermediate is a rate limiting step. Consequently, at the equilibrium potential, the  $H_2O_2$  evolution is not spontaneous. When the applied bias increase to 2.2 V (red line in Figure 3d), as used in our experiments, the downhill in free energy is more obvious. This is consistent with our experiments that  $H_2O_2$  is generated apparently at this bias.

The application of onsite produced  $H_2O_2$  can be used for water remediation, disinfection, and pulp bleaching. In this work, we propose to use the onsite generated  $H_2O_2$  to degrade persistent pollutants of NFX (25 ppm) and dye of MB (25 ppm). NFX is an antibiotic that belongs to the class of fluoroquinolone antibiotics, and 75% of NFX is excreted from the human body and induces the accumulation of antibiotics in aquatic ecosystems.<sup>[18]</sup> Continuously accumulated NFX has been proved to interfere with bacterial DNA replication and thereby leading to bacterial genotoxicity.<sup>[19]</sup> Whether the pharmaceutical group of NFX can be

## **RESEARCH ARTICLE**



**Figure 4**. a) Comparison of NFX removal performance of FTO and FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo. b) NFX removal comparison of FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo at different biases. c) TOC removal over time using FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo as the working electrode at 3.0 V vs. RHE. d) The accumulative  $H_2O_2$  concentration in the degradation system with and without the existence of NFX. e) Accumulative ·OH generated in the onsite  $H_2O_2$  production system. f) Effect of IPA scavenger on NFX degradation performance using FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo as the working electrode.

attacked must be considered in assessing the efficiency of the degradation pathway.

During the NFX removal test, the soaked area of the working electrode was 2 cm<sup>2</sup>, and a carbon rod was used as the counter electrode. We first tested the NFX degradation efficiency in this onsite  $H_2O_2$  generation system. High performance liquid chromatography (HPLC) was used to test the residual NFX and other oxidation derivatives. Figure 4a shows the variation of residual NFX (appeared at ~10 min in the Chromatogram) as a function of time for the substrate FTO and electrode FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo at 2.4 V vs. RHE. It shows a much faster degradation rate for FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo compared with the FTO substrate. With the continuous generation of  $H_2O_2$ , the NFX concentration decreased rapidly and it was no longer detected after 80 minutes for FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo. Meanwhile, the MB

decolorization test was conducted and shown in Figures S10a and b. Obvious color removal was observed with time when 2.4 V vs. RHE bias was applied to FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo electrode. MB polluted electrolyte becomes colorless after 2.5 h. Then bias dependent NFX degradation performance was also investigated as shown in Figure 4b. The faster NFX removal rate observed at higher potential should be closely related to the higher accumulated H<sub>2</sub>O<sub>2</sub> concentration.From the HPLC chromatogram (Figure S11), the new appeared peaks in the total ion current indicate the newly formed intermediates transformed from NFX, and these results demonstrate that the NFX molecule was degraded into smaller molecules. These small molecules can be further degraded to CO<sub>2</sub> and water, as the final total organic carbon (TOC) removal reaches up to ~88% after 4 h of electrolysis of FTO/Bi<sub>2</sub>WO<sub>6</sub>:5%Mo at 3.0 V vs. RHE (Figure 4c).

## **RESEARCH ARTICLE**



Figure 5. The proposed degradation pathway for NFX in the onsite H<sub>2</sub>O<sub>2</sub> synthetic system.

Subsequently, the H<sub>2</sub>O<sub>2</sub> concentration in the onsite degradation system was quantified with and without the addition of 25 ppm NFX (Figure 4d). The accumulative concentration of H<sub>2</sub>O<sub>2</sub> increases as a function of time regardless of whether NFX is added. It reveals that almost half of the generated H<sub>2</sub>O<sub>2</sub> was consumed by the degradation process of NFX. Moreover, the formation of OH in the degradation system generated by Bi<sub>2</sub>WO<sub>6</sub>:Mo was confirmed by the fluorescence method (Fiure S12, ESI†). Figure 4e shows that the amount of accumulative ·OH increases linearly. 2-propanol (IPA) was chosen as scavenger to studies the contribution of ·OH for degradation. Figure 4f shows the NFX removal efficiency was significantly affected by IPA, suggesting OH is crucial for the degradation of NFX. The FTO/Bi<sub>2</sub>WO<sub>6</sub>:Mo electrode continuously supplies H<sub>2</sub>O<sub>2</sub> to degrade NFX molecules, resulting in NFX degradation and mineralization in this onsite H<sub>2</sub>O<sub>2</sub> generation system.

Using the liquid chromatography-mass spectrometry (LC-MS) technique, the mass spectra and structural formulas of 6 intermediate molecules (IA, IB, IC, ID, IE, IF) in this system were analyzed in Figure S13. The structure of NFX consists of a fluorine atom, a piperazine ring and the basic pharmacophore quinolone group. The destruction of the quinolone group is the key step to prevent the spread of antibiotic-resistance gene. Then combining the LC-MS result and structural property of NFX, we analyzed the structure of intermediates and proposed the degradation pathways. As shown in Figure 5, the degradation mainly occurs through two paths: guinolone group transformation and piperazine ring cleavage. In pathway I, the guinolone was opened at the unsaturated bond by hemolytic reaction, producing m/z=352 through addition reaction. Followed by decarboxylation. decarbonylation and hydroxylation reactions, the m/z=352 is further oxidized to m/z=296. In pathway II, the piperazine ring is firstly attacked at the tertiary amine (site II) and causing a ringopening reaction. Then, two methylenes are lost and intermediate m/z=294 is generated. Subsequently, intermediate m/z=294 is further oxidized via the loss of functional group -NH-CH2-CH2 to produce intermediate m/z=251. Finally the m/z=233 is produced by defluorination.

#### Conclusion

In conclusion, we identified  $Bi_2WO_6$  as a suitable electrode for  $H_2O_2$  production through a 2-electron water oxidation route. The

H<sub>2</sub>O<sub>2</sub> generation rate was further optimized by Mo-doping and enlarged specific surface area. The FE of electrode FTO/ Bi<sub>2</sub>WO<sub>6</sub>:Mo reaches peak 79% at 3.2 V vs. RHE, and it also shows good durability at least in 6 h. As revealed by DFT calculation, the  $\Delta G_{OH^*}$  value for both Bi<sub>2</sub>WO<sub>6</sub> and Bi<sub>2</sub>WO<sub>6</sub>:Mo is favorable for a 2electron water oxidation reaction, and W atoms should be the reaction center. As H<sub>2</sub> evolution occurs at the cothode, this electrolytic cell achieves a superior current efficiency with highvalue-added chemicals produced at both electrodes. Then the degradation performance of the onsite generated H<sub>2</sub>O<sub>2</sub> was evaluated using NFX and MB as model pollutants. It gives satisfying results in terms of removal rate and mineralization ratio of NFX. Subsequently, the degradation intermediates were identified by using the LC-MS technique and the degradation routes were also analyzed based on the structure information on the intermediates. This on-demand production approach allows maximum utilization of H<sub>2</sub>O<sub>2</sub> in a system.

#### Acknowledgements

This work was supported by the Research Grants Council of Hong Kong Special Administrative Region (project no 14304019), the Hong Kong PhD Fellowship Scheme (PF17-10186). This work was also supported by the Natural Science Foundation of Guangdong Province, China (2019A1515012143), the National Natural Science Foundation of China (Grant No. 51902357), the Guangdong Basic and Applied Basic Research Foundation (2019B1515120058), the Start-up Funds for High-Level Talents of Sun Yat-sen University (38000-18841209) and the Fundamental Research Funds for the Central Universities (38000-31610622). The theoretical calculation is supported by National supercomputer center in GuangZhou and National supercomputing center in Shenzhen (Shenzhen cloud computing center).

**Keywords:** electrocatalysis, hydrogen peroxide, water oxidation, Bi<sub>2</sub>WO<sub>6</sub>:Mo, organic pollutant degradation

- J. M. Campos-Martin, G. Blanco-Brieva, J. L. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962-6984.
   a) C. Samanta, Appl. Catal., A: Gen. 2008, 350, 133-149;
  - b) Y. Jiang, P. Ni, C. Chen, Y. Lu, P. Yang, B. Kong, A. Fisher, X. Wang, *Adv. Energy Mater.* 2018, *8*, 1801909; c)

### **RESEARCH ARTICLE**

H. Li, B. Zheng, Z. Pan, B. Zong, M. Qiao, *Front. Chem. Sci. Eng.* **2017**, *12*, 124-131.

- [3] R. J. Lewis, G. J. Hutchings, *ChemCatChem* **2019**, *11*, 298-308.
- [4] a) Y. Mu, Z. Ai, L. Zhang, *Environ. Sci Technol.* 2017, *51*, 8101-8109; b) E. Jung, H. Shin, B. H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, W. Hooch Antink, S. Park, K. S. Lee, S. P. Cho, J. S. Yoo, Y. E. Sung, T. Hyeon, *Nat. Mater.* 2020, *19*, 436–442; c) Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T. F. Jaramillo, J. K. Nørskov, Y. Cui, *Nat. Catal.* 2018, *1*, 156-162; d) J. Zhang, H. Zhang, M. J. Cheng, Q. Lu, *Small* 2019, 1902845; e) V. Viswanathan, H. A. Hansen, J. K. Norskov, *J. Phys. Chem. Lett.* 2015, *6*, 4224-4228; f) S. Siahrostami, G. L. Li, V. Viswanathan, J. K. Norskov, *J. Phys. Chem. Lett.* 2017, *8*, 1157-1160; g) X. J. Shi, S. Siahrostami, G. L. Li, Y. R. Zhang, P. Chakthranont, F. Studt, T. F. Jaramillo, X. L. Zheng, J. K. Norskov, *Nat. Commun.* 2017, *8*, 701; h) Y. Zheng, Z. Yu, H. Ou, A. M. Asiri, Y. Chen, X. Wang, *Adv. Funct. Mater.* 2018, *28*, 1705407
- [5] S. C. Perry, D. Pangotra, L. Vieira, L.-I. Csepei, V. Sieber, L. Wang, C. Ponce de León, F. C. Walsh, *Nat. Rev. Chem.* 2019, 3, 442-458.
- [6] X. Li, J. Xie, C. Jiang, J. Yu, P. Zhang, *Front. Environ. Sci. Eng.* **2018**, *12*, 14.
- [7] a) K. Fuku, K. Sayama, Chem. Commun. 2016, 52, 5406-5409; b) K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, ACS Energy Lett. 2016, 1, 913-919; c) K. Fuku, Y. Miyase, Y. Miseki, T. Gunji, K. Sayama, Chemistryselect 2016, 1, 5721-5726.
- [8] T. H. Jeon, H. Kim, H.-i. Kim, W. Choi, *Energy Environ. Sci.* **2020**.
- [9] J. H. Baek, T. Gill, H. Abroshan, S. Park, X. Shi, J. K. Norskov, H. S. Jung, S. Siahrostami, X. Zheng, ACS Energy Lett. 2019, 4, 720-728.
- [10] J.-G. Choi, L. T. Thompson, Appl. Surf. Sci. 1996, 93, 143-149.
- a) L. Zhang, Y. Man, Y. Zhu, ACS Catal. 2011, 1, 841-848;
   b) A. Etogo, R. Liu, J. Ren, L. Qi, C. Zheng, J. Ning, Y. Zhong, Y. Hu, J. Mater. Chem. A 2016, 4, 13242-13250.
- a) D. E. Richardson, H. Yao, K. M. Frank, D. A. Bennett, J. Am. Chem. Soc. 2000, 122, 1729-1739; b) R. E. Dinnebier, S. Vensky, P. W. Stephens, M. Jansen, Angew. Chem. Int. Ed. 2002, 41, 1922-1924; c) E. V. Bakhmutova-Albert, H. Yao, D. E. Denevan, D. E. Richardson, Inorg. Chem. 2010, 49, 11287-11296; d) K. Fuku, Y. Miyase, Y. Miseki, T. Funaki, T. Gunji, K. Sayama, Chem. Asian J. 2017, 12, 1111-1119.
- [13] H. Fu, L. Zhang, W. Yao, Y. Zhu, Appl. Catal., B: Environ. 2006, 66, 100-110.
- [14] S. Obregón, G. Colón, Appl. Catal., B: Environ. 2013, 140-141, 299-305.
- [15] Y. Zhou, E. Antonova, Y. Lin, J.-D. Grunwaldt, W. Bensch, G. R. Patzke, *Eur. J. Inorg. Chem.* **2012**, 2012, 783-789.
- [16] S. Kelly, X. Shi, S. Back, L. Vallez, S. Y. Park, S. Siahrostami, X. Zheng, J. K. Norskov, ACS Catal. 2019, 9, 4593-4599.
- [17] A. Kulkarni, S. Siahrostami, A. Patel, J. K. Norskov, Chem. Rev. 2018, 118, 2302-2312.
- [18] M. M. Haque, M. Muneer, J. Hazard. Mater. 2007, 145, 51-57.
- a) L.-H. Yang, G.-G. Ying, H.-C. Su, J. L. Stauber, M. S. Adams, M. T. Binet, *Environ. Toxicol. Chem* 2008, *27*, 1201–1208; b) J. Chen, M. Jin, Z. G. Qiu, C. Guo, Z. L. Chen, Z. Q. Shen, X. W. Wang, J. W. Li, *Environ. Sc.i Technol.* 2012, *46*, 13448-13454; c) M. Chen, W. Chu, *Chem. Eng. J.* 2016, *296*, 310-318.

### 7

## **RESEARCH ARTICLE**

#### **Entry for the Table of Contents**



 $H_2O_2$  is synthesized by direct electrochemical oxidation of water on the surface of  $Bi_2WO_6$ : Mo anode, which provides a straightforward route for the onsite need of  $H_2O_2$ , such as advanced oxidation processes. Combined with the superior  $H_2$  evolution efficiency at the cathode, this electrolytic cell enables sustainable resources produced at both electrodes.