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Abstract—Treatment of an unsaturated 2,3-epoxy alcohol with SnBr4 leads to a stereoselective formation of a cyclopropane ring,
and an �-ketol unit as part of a subsequent ring expansion. © 2002 Elsevier Science Ltd. All rights reserved.

The reaction of a 2,3-epoxy alcohol with a �-nucle-
ophile is a powerful means of creating a new car-
bon�carbon bond, frequently with high stereocontrol.1

A common mode is for the �-nucleophile to attack the
epoxide, held in a chelation-controlled conformation by
a Lewis acid, often a tin(IV) reagent. The size of ring
formed depends on the structure of the 2,3-epoxy alco-
hol, and the nature and alignment of the �-nucleophile,

amongst other factors. Recently, we reported that such
cyclizations could result in seven-membered rings, by
the presentation of the epoxide terminus to the �-nucle-
ophile.2,3 We now disclose a new outcome of the
intramolecular attack of an alkene unit upon a 2,3-
epoxy alcohol that leads to a stereoselective formation
of a cyclopropane ring, followed by a ring expansion of
the semi-pinacol type (Scheme 1).

Scheme 1. Formation of a cyclopropane ring followed by a semi-pinacol ring expansion.
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Reaction of cis-jasmone with dimethylcopperlithium in
diethyl ether, generated from methyllithium (2.0 equiv.)
and CuI (1.0 equiv.) at 0°C, and BF3·OEt2 (1.78 equiv.)
at −78°C with subsequent warming to 20°C over 4 h
afforded the gem-dimethyl ketone 1 in 63% yield.4

Addition of vinylmagnesium bromide (1.3 equiv.) in
THF to 1 in THF at −78°C with subsequent warming
to 20°C over 20 h afforded 2 as the major diastereoiso-
mer (15:1; total yield 98%). Reaction of the epimeric
mixture of 2 with tert-butyl hydroperoxide5 (1.4 equiv.,
70% aqueous solution, CAUTION) and VO(acac)2 (0.5
mol%) in benzene at reflux for 24 h gave the 2,3-epoxy
alcohol 3 as the major diastereoisomer (6:1, total yield
74%). Treatment of this epimeric mixture 3 with SnBr4

(2.0 mol. equiv.) in dichloromethane at 0°C for 1 h
afforded, after column chromatography, the cyclo-
propyl �-ketol 7 (65%), isolated as a single diastereoiso-
mer.6 The structure of 7 was confirmed by X-ray
crystallography (Fig. 1) on a single crystal of the p-bro-
mobenzenesulfonate derivative 8, mp 96°C7 (obtained
in 75% yield by reaction of 7 with p-bromobenzenesul-
fonyl chloride in pyridine at 0°C).

The transformation of 3 into 7 demonstrates that a
2,3-epoxy alcohol can undergo the formalism of cyclo-
propanation of an alkene; we are aware of one other
formation of a cyclopropane ring from a 2,3-epoxy
alcohol.8 Consistent with Sharpless’ observations8 and
our previous work on cyclizations to give seven-mem-
bered rings,1–3 an indirect route seems likely, probably
via a chelation-controlled conversion of 4 into a seven-
membered ring intermediate such as 5 that subsequently
undergoes collapse, with formation of the cyclopropane
ring.9 Ring expansions of 1-hydroxycyclopentanecar-
boxaldehyde systems to �-ketols under Brønsted–
Lowry or Lewis acidic conditions are known in both

steroidal10–12 and non-steroidal13–15 cases. The observed
migration often proceeds through a chair transition
state,13,16 and can involve migration of a group that is
either the more substituted13 or the less substituted14 at
the �-position. Migration involving the less substituted
(methylene) �-carbon atom of 6 can proceed through a
chair transition state, leading to the �-ketol 7, after
hydrolytic work-up. A more detailed study of such
processes and the scope of related reactions is
warranted.
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