

Tetrahedron Letters 44 (2003) 141-143

TETRAHEDRON LETTERS

A sequential stereocontrolled cyclopropane ring formation and semi-pinacol rearrangement

Charles M. Marson,^{a,*} Catriona A. Oare,^a Jane McGregor,^a Timothy Walsgrove,^b Trevor J. Grinter^b and Harry Adams^c

^aDepartment of Chemistry, University of Sheffield, Sheffield S3 7HF, UK

^bGlaxo SmithKline, Chemical Development, Old Powder Mills, nr. Leigh, Tonbridge, Kent TN11 9AN, UK ^cDepartment of Chemistry, University of Sheffield, Sheffield S3 7HF, UK

Received 23 July 2002; revised 21 October 2002; accepted 1 November 2002

Abstract—Treatment of an unsaturated 2,3-epoxy alcohol with SnBr_4 leads to a stereoselective formation of a cyclopropane ring, and an α -ketol unit as part of a subsequent ring expansion. © 2002 Elsevier Science Ltd. All rights reserved.

The reaction of a 2,3-epoxy alcohol with a π -nucleophile is a powerful means of creating a new carbon-carbon bond, frequently with high stereocontrol.¹ A common mode is for the π -nucleophile to attack the epoxide, held in a chelation-controlled conformation by a Lewis acid, often a tin(IV) reagent. The size of ring formed depends on the structure of the 2,3-epoxy alcohol, and the nature and alignment of the π -nucleophile, amongst other factors. Recently, we reported that such cyclizations could result in seven-membered rings, by the presentation of the epoxide terminus to the π -nucle-ophile.^{2,3} We now disclose a new outcome of the intramolecular attack of an alkene unit upon a 2,3-epoxy alcohol that leads to a stereoselective formation of a cyclopropane ring, followed by a ring expansion of the semi-pinacol type (Scheme 1).

Scheme 1. Formation of a cyclopropane ring followed by a semi-pinacol ring expansion.

0040-4039/03/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02511-X

^{*} Corresponding author. Present address: Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, UK.

Reaction of cis-jasmone with dimethylcopperlithium in diethyl ether, generated from methyllithium (2.0 equiv.) and CuI (1.0 equiv.) at 0°C, and BF₃·OEt₂ (1.78 equiv.) at -78°C with subsequent warming to 20°C over 4 h afforded the gem-dimethyl ketone 1 in 63% yield.⁴ Addition of vinylmagnesium bromide (1.3 equiv.) in THF to 1 in THF at -78°C with subsequent warming to 20°C over 20 h afforded 2 as the major diastereoisomer (15:1; total yield 98%). Reaction of the epimeric mixture of 2 with *tert*-butyl hydroperoxide⁵ (1.4 equiv., 70% aqueous solution, CAUTION) and VO $(acac)_2$ (0.5 mol%) in benzene at reflux for 24 h gave the 2,3-epoxy alcohol 3 as the major diastereoisomer (6:1, total yield 74%). Treatment of this epimeric mixture 3 with $SnBr_4$ (2.0 mol. equiv.) in dichloromethane at 0°C for 1 h afforded, after column chromatography, the cyclopropyl α -ketol 7 (65%), isolated as a single diastereoisomer.⁶ The structure of 7 was confirmed by X-ray crystallography (Fig. 1) on a single crystal of the p-bromobenzenesulfonate derivative 8, mp $96^{\circ}C^{7}$ (obtained in 75% yield by reaction of 7 with *p*-bromobenzenesulfonyl chloride in pyridine at 0°C).

The transformation of **3** into **7** demonstrates that a 2,3-epoxy alcohol can undergo the formalism of cyclopropanation of an alkene; we are aware of one other formation of a cyclopropane ring from a 2,3-epoxy alcohol.⁸ Consistent with Sharpless' observations⁸ and our previous work on cyclizations to give seven-membered rings,^{1–3} an indirect route seems likely, probably via a chelation-controlled conversion of **4** into a sevenmembered ring intermediate such as **5** that subsequently undergoes collapse, with formation of the cyclopropane ring.⁹ Ring expansions of 1-hydroxycyclopentanecarboxaldehyde systems to α -ketols under Brønsted– Lowry or Lewis acidic conditions are known in both

Figure 1. ORTEP representation of 8.

steroidal^{10–12} and non-steroidal^{13–15} cases. The observed migration often proceeds through a chair transition state,^{13,16} and can involve migration of a group that is either the more substituted¹³ or the less substituted¹⁴ at the α -position. Migration involving the less substituted (methylene) α -carbon atom of **6** can proceed through a chair transition state, leading to the α -ketol **7**, after hydrolytic work-up. A more detailed study of such processes and the scope of related reactions is warranted.

Acknowledgements

Financial support from Glaxo SmithKline, Tonbridge and the Engineering and Physical Sciences Research Council (CASE award to C.A.O. and studentship to J.M.) is gratefully acknowledged.

References

- 1. Marson, C. M. Tetrahedron 2000, 56, 8779.
- (a) Marson, C. M.; Benzies, D. W. M.; Hobson, A. D.; Adams, H.; Bailey, N. A. J. Chem. Soc., Chem. Commun. 1990, 1516; (b) Marson, C. M.; Benzies, D. W. M.; Hobson, A. D. Tetrahedron 1991, 47, 5491.
- (a) Marson, C. M.; Khan, A.; McGregor, J.; Grinter, T. J. *Tetrahedron Lett.* **1995**, *36*, 7145; (b) Marson, C. M.; McGregor, J.; Khan, A.; Grinter, T. J. J. Org. Chem. **1998**, *63*, 7833.
- (a) Yamamoto, Y.; Maruyama, K. J. Am. Chem. Soc. 1978, 100, 3240; (b) Smith, A. B., III; Jerris, P. J. J. Am. Chem. Soc. 1981, 103, 194.
- Hill, J. G.; Rossiter, B. E.; Sharpless, K. B. J. Org. Chem. 1983, 48, 3607.
- 6. Spectral data for 7: IR: λ_{max} 3435 (OH), 1710 (C=O) cm⁻¹; ¹H NMR $\delta_{\rm H}$ (250 MHz, CDCl₃) 4.20 (1H, t, J=3.5, 11.0 Hz, CHOH), 3.68 (1H, d, J=3.5 Hz, CHOH), 2.30 (1H, m, C(CH₃)₂CHC=O), 2.10–0.80 (8H, m, O=CCHCH₂, CH(OH)(CH₂)₂, CH₂CH₃), 1.18 (3H, s, C(CH₃)CH₃), 1.00 (3H, t, J=7.5 Hz, CH₂CH₃), 0.71 (3H, s, CCH₃(CH₃)), 0.70–0.50 (2H, cyclopropyl-CH), 0.25 (2H, m, cyclopropyl-CH₂); ¹³C NMR $\delta_{\rm C}$ (63 MHz, CDCl₃) 212.5 (s), 75.1 (d), 59.3 (d), 40.9 (s), 38.0 (t), 33.0 (t), 29.7 (d), 22.2 (t), 21.6 (t), 20.3 (d), 17.8 (q), 15.2 (q), 14.6 (q), 10.9 (t); EI (*m*/*z*, %) 224 (5, M⁺), 209 (40), 127 (40), 109 (30), 95 (30), 81 (35), 60 (40), 55 (90), 41 (100). HRMS found 224.1783, C₁₄H₂₄O₂ requires 224.1776.
- X-Ray data for 8 have been deposited at the Cambridge Crystallographic Data Centre, deposition number 195063.
- Morgans, D. J., Jr.; Sharpless, K. B.; Traynor, S. G. J. Am. Chem. Soc. 1981, 103, 462.
- 9. Models suggest that a colinear alignment of the partial epoxide C–O bond and the *p*-orbital from the alkenic carbon atom, at the requisite distance for carbon–carbon bond formation, is more readily achievable in a transition state that leads to the seven-membered ring than in one that results in a six-membered ring.
- 10. Miller, T. C. J. Org. Chem. 1969, 34, 3829.

- 11. Bull, J. R.; Steer, L. M. Tetrahedron 1990, 46, 5389.
- 12. Schor, L.; Gros, E. G.; Seldes, A. M. J. Chem. Soc., Perkin Trans. 1 1992, 453.
- 13. Benjamin, L. J.; Adamson, G.; Mander, L. N. *Hetero-cycles* **1999**, *50*, 365.
- 14. Benjamin, L. J.; Mander, L. N.; Willis, A. C. Tetrahedron Lett. 1996, 37, 8937.
- 15. Joshi, A. P.; Nayak, U. R.; Dev, S. Tetrahedron 1976, 32, 1423.
- 16. McKinney, M. A.; Patel, P. P. J. Org. Chem. 1973, 38, 4059.