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Libraries of spiro[cyclopropane-1,30-indolin]-20-ones were synthesized and evaluated for their biological
activity against five different human cancer cell lines HT-29 (colon cancer), DU-145 (prostate cancer),
Hela (cervical cancer), A-549 (Lung cancer), and MCF-7 (breast cancer). Many compounds of the series
exhibited promising anticancer activity (IC50 <20 lM) against the studied cell lines. Based on the screen-
ing results, a structure activity relationship (SAR) of the pharmacophore was proposed. Among the series
compound 6b and 6u showed significant activity against human prostate cancer cell line, DU-145. Flow
cytometric analysis showed that these two compounds arrested the cell cycle in the G0/G1 phase leading
to caspase-3 dependent apoptotic cell death. Further, measurement of mitochondrial membrane poten-
tial and Annexin V-FITC assay also suggested that 6b and 6u induced cell death by apoptosis.

� 2015 Elsevier Ltd. All rights reserved.
Cancer is one of the most serious clinical problems in the world
with its increasing incidence every year. Despite avoiding risk fac-
tors such as tobacco, overweight and obesity, and preventive man-
agements such as dietary, medication and vaccination, the disease
still affects millions of patients worldwide. Apart from surgery and
radiation treatments, chemotherapy has been proven very useful
in cancer therapy.1 Most of the anticancer drugs generally act on
metabolically active or rapidly proliferating cells, and suffer from
poor selectivity between cancer and normal cells. The high toxicity
and poor tolerance of the current anticancer drugs have led to the
quest for novel agents with high efficiency, low toxicity, and min-
imum undesirable side effects. Therefore, new molecular libraries
are currently being investigated as newer anticancer agents.2

Spirooxindole represents an important class of heterocyclic
motif with promising biological and pharmacological relevance.
In recent years, numerous spirooxindoles were reported as promis-
ing anticancer agents (Fig. 1). For instance, spiro(oxindole-3,30-thi-
azolidine)-derivative I has been found as potential anticancer
agents acting through modulation of p53 activity.3 Spiro[indole-
pyridothiazine] II was reported as potent antiproliferative agents.4

Recently, spirooxindole-pyrrolidine III5 and isoxazolidine spiro-
cyclic oxindole IV6 were found as promising anticancer agents.
Moreover 4-thiazolidinone-, pyrazoline-, and isatin-based conju-
gates type V have also been found as potential antitumor agents.7

Recently we investigated the reactions of diazo-compounds with
electron deficient alkenes to yield pyrazoles and cyclopropanes.8

In order to fully explore the scope of a new synthetic strategy,
understanding its mechanistic aspect is very important. The pre-
sent study describes synthesis of spiro[cyclopropane-1,30-in-
dolin]-20-one derivatives VI using catalyst-free EDA strategy,
their anticancer activity and the mechanistic aspects of the
reaction.

The overall strategy for the synthesis of spiro[cyclopropane-
1,30-indolin]-20-ones is shown in Scheme 1. Substituted isatin 1
was converted to (E)-ethyl 2-(2-oxoindolin-3-ylidene)acetate 3
by treating it with (ethoxycarbonylmethylene)-triphenylphospho-
rane. 3-Methyleneindolin-2-one derivatives 5 were synthesized
from isatin 1 and acetophenone 2 in a two step procedure depicted
in Scheme 1. Next 3/5 were refluxed with EDA in THF for 24 h to
yield diastereomerically pure spiro[cyclopropane-1,30-indolin]-20-
ones 4/6. The carbonyl groups of 6 were reduced to alcohol 7 by
treating them with sodium borohydride in ethanol. All the synthe-
sized compounds were characterized by Mass/HRMS, IR, 1H and 13C
NMR spectroscopy.

Stereoselective catalyst-free cyclopropanation of electron defi-
cient alkenes using EDA were proposed to follow an ionic mecha-
nism involving Michael initiated ring closure (MIRC).8a,b
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Figure 1. Chemical structures and anticancer activities of spiroindolines I–IV, oxindole conjugates V and spiro[cyclopropane-1,30-indolin]-20-ones VI.
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Scheme 1. Schematic illustration for the synthesis of spiro[cyclopropane-1,30-indolin]-20-one derivatives.
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Table 1
Cytotoxic effects of compounds 6a–y, 4a–f, 7c, 7y and 8b on various cancer cell lines

Entry Compound IC50 (lM) a

HT-29b DU-145c Helad A-549e MCF-7f HEK-293g

1 6a 23.72 15.84 19.95 12.88 18.62 NT
2 6b 3.89 2.08 7.50 5.12 3.98 64.56
3 6c 14.69 17.37 26.30 9.77 19.09 NT
4 6d 17.96 17.17 20.04 12.58 31.06 NT
5 6e 25.11 19.84 41.31 19.05 22.07 NT
6 6f 7.24 6.36 7.76 4.791 9.77 NT
7 6g 8.51 15.84 32.82 17.7 50.11 NT
8 6h 25.06 21.90 39.81 24.14 37.54 NT
9 6i 79.43 >100 >100 32.44 30.82 NT
10 6j >100 >100 >100 >100 90.2 NT
11 6k 9.92 8.31 12.97 7.07 20.31 NT
12 6l 9.54 5.01 9.12 6.421 9.33 NT
13 6m 5.01 5.24 7.76 6.16 4.89 NT
14 6n 2.95 2.88 10.65 3.59 4.26 NT
15 6o 16.10 7.94 19.49 7.24 13.18 NT
16 6p >100 >100 >100 98.47 75.85 NT
17 6q 23.95 7.24 33.47 5.49 24.70 NT
18 6r 19.74 18.93 51.22 26.08 37.15 NT
19 6s 8.51 6.30 12.58 6.556 12.58 NT
20 6t 13.19 15.03 15.36 5.88 18.19 NT
21 6u 1.87 1.86 16.09 4.56 3.63 79.43
22 6v 33.71 31.65 45.08 79.40 41.61 NT
23 6w 79.43 36.86 >100 25.00 29.28 NT
24 6x 8.47 8.12 62.13 15.84 12.24 NT
25 6y 42.65 31.62 68.88 30.50 >100 NT
26 4a 22.88 19.89 25.1 29.0 24.04 NT
27 4b 30.90 50.73 62.8 >100 >100 NT
28 4c 36.60 24.32 84.2 78.2 36.75 NT
29 4d 18.94 18.61 61.3 >100 57.54 NT
30 4e 50.11 38.01 32.9 >100 71.58 NT
31 4f 26.91 39.80 32.2 74.2 32.13 NT
32 7c 2.29 1.94 5.78 27.54 4.78 NT
33 7y 23.44 27.77 28.84 21.10 >100 NT
34 8b 2.75 1.69 7.24 4.16 2.95 NT
35 Doxorubicin 0.93 1.94 1.51 1.58 0.63 NT

The bold value signifies the potent cytotoxic effect against the corresponding cell lines.
NT = Not tested.

a 50% Inhibitory concentration after 48 h of drug treatment and the values are average of three individual experiments.
b Colon cancer.
c Prostate cancer.
d Cervical cancer.
e Lung cancer.
f Breast cancer.
g Normal cell line.
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However, further experimental results (depicted in Scheme 2)
put the MIRC mechanism in doubt and suggested a concerted
1,3-dipolar cycloaddition/ring contraction sequence with
retention of configuration for the same. All the synthesized 3-
methyleneindolin-2-ones 5 had E-configuration across the C-C
double bond. For our study (E)-5b was taken as a model
substrate as it easily gets converted to (Z)-5b upon treatment
with anhydrous AlCl3.9 Next (Z)-5b was refluxed with EDA in
THF for 24 h leading to the formation of a new product 8b
(Scheme 2). The structure of 8b was confirmed by its characteristic
NOEs. Briefly, the presence of NOE cross peak between H17–H2 and
H2–H10 indicated trans-orientation of the phenyl residue of isatin
and benzoyl group. Furthermore, the presence of NOE cross peak
H2-H10 along with coupling constant (J) of 8.3 Hz for H1-H2 indi-
cated trans-orientation of the cyclopropane ring hydrogen atoms.
The formation of 6b from (E)-5b and 8b from (Z)-5b clearly indi-
cated that the stereochemistry of (E)-5b and (Z)-5b were retained
in the final product. In the lights of these experiments, formation of
6b and 8b can be explained by a plausible mechanism based on a
Sample Sub G1 % G0/G1 %

A: Control (DU-145) 9.12 79.81

B:Nocodazole (1.5 µM) 9.25 57.63

C: 6b (1.5 µM) 7.77 84.93

D: 6b (3 µM) 16.58 70.57

E: 6u (1.5 µM) 8.80 85.57

F: 6u (3 µM) 26.17 64.01

Figure 3. Cell cycle analysis of 6b and 6u on DU-145 cells. (A) Control cells (DU-145), (
(3 lM).

Please cite this article in press as: Reddy, C. N.; et al. Bioorg. Med. Chem
1,3-dipolar cycloaddition/ring contraction sequence with retention
of configuration as depicted in Scheme 3. Here we assume that the
reaction proceeds through interaction of highest occupied molecu-
lar orbital (HOMO) of EDA and lowest unoccupied molecular orbi-
tal (LUMO) of the alkene. As depicted in Scheme 3, path A and C are
not favoured due to steric crowding between ethoxycarbonyl and
aroyl group (path A), and ethoxycarbonyl and indoline residue
(path C), and agree well with the non-observation of the cis-pro-
duct 6b0. In the same way, the proposed mechanism depicted in
Scheme 3 can be used to explain the observed stereoselectivity
of the compounds 4a–f, 6a–y and 8b.

All the compounds (6a–y, 4a–f, 7c, 7y and 8b) were tested for
their anticancer activity in a panel of five human cancer cell lines
HT-29 (colon cancer), DU-145 (prostate cancer), Hela (cervical can-
cer), A-549 (Lung cancer) and MCF-7 (breast cancer). In order to
screen the anticancer activity, MTT assay10 was used for accessing
cell viability. The values obtained were compared to the standard
drug doxorubicin. The screening results are shown in Table 1 and
expressed as IC50 values. The screening results suggested that the
compounds 6b, 6m, 6n, 6u, 7c, and 8b showed potential cytotoxic
activity (IC50 <5 lM) against the studied cell lines. Compounds of
series 6 bearing H, Cl and Br atoms at 5-position of isatin residue
(R group) showed superior anticancer activity. It was also observed
that compounds having free-NH group exhibited better cytotoxic
activity than those with N-Me group. The spiro[cyclopropane-
1,30-indolin]-20-ones with bis-ethoxycarbonyl group on cyclo-
propane ring 4a–f did not show good anticancer activity. The com-
pounds 7c and 7y showed better anticancer activity than their
corresponding precursors (6c and 6y). It is plausibly due to
increased bioavailability of alcohols compared to those with corre-
sponding ketones. Compound 8b exhibited superior anticancer
S % G2/M %

1.74 6.51

5.61 26.59

2.11 4.03

2.27 8.93

1.35 3.40

2.10 3.16

B) Nocodazole (1.5 lM), (C) 6b (1.5 lM), (D) 6b (3 lM), (E) 6u (1.5 lM) and (F) 6u
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Figure 4. Drops in membrane potential (DWm) were assessed by JC-1 staining of DU-145 cells treated with compounds 6b and 6u and samples were then subjected to flow
cytometry analysis on a FACScan (Becton Dickinson). (A) Control cells (DU-145), (B) Nocodazole (1.5 lM), (C) 6b (1.5 lM), (D) 6b (3 lM), (E) 6u (1.5 lM) and (F) 6u (3 lM).
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activity to its isomer 6b. Based on these observations, a SAR of
spiro[cyclopropane-1,30-indolin]-20-ones was proposed as depicted
in Figure 2.

In order to study the possible mechanism of action for these
compounds, 6b and 6u were chosen as model substrates and DU-
145 as a model cell line for subsequent experiments.

Cell cycle analysis: Many anticancer compounds exert their
growth inhibitory effect either by arresting the cell cycle at a par-
ticular checkpoint of cell cycle or by induction of apoptosis or a
combined effect of both cycle block and apoptosis.11,12 In vitro
screening results revealed that compounds 6b and 6u showed sig-
nificant activity against human prostate cancer cell line, DU-145.
Please cite this article in press as: Reddy, C. N.; et al. Bioorg. Med. Chem
Therefore, it was considered of interest to understand whether this
inhibition of cell growth was on account of cell cycle arrest. In this
study DU-145 cells were treated with these compounds at concen-
trations of 1.5 and 3 lM for 48 h. The data obtained clearly indi-
cated that this compounds arrested the cell cycle at G0/G1 phase
at 1.5 lM. Interestingly, when the concentration was increased
from 1.5 lM to 3 lM it was observed that the percentage of cells
in G0/G1 phase was decreased and accumulation of cells in subG1
phase increased, which indicates the onset of apoptosis13 (Fig. 3).

Measurement of mitochondrial membrane potential (DWm): The
maintenance of mitochondrial membrane potential ((DWm) is sig-
nificant for mitochondrial integrity and bio-energetic function.14
. Lett. (2015), http://dx.doi.org/10.1016/j.bmcl.2015.08.056
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Sample UL % UR % LL% LR %

A: Control 3.56 3.83 87.88 4.73

B: Nocodazole (1.5 µM) 3.92 5.35 81.21 9.52

C: 6b (1.5 µM) 0.62 10.74 78.52 10.12

D: 6b (3 µM) 4.19 17.66 56.01 22.15

E: 6u (1.5 µM) 3.41 11.50 66.31 18.78

F: 6u (3 µM) 2.74 17.00 57.28 22.98

Figure 5. Annexin V-FITC staining. (A) Control cells (DU-145), (B) Nocodazole (1.5 lM), (C) 6b (1.5 lM), (D) 6b (3 lM), (E) 6u (1.5 lM) and (F) 6u (3 lM).

Figure 6. Effect of compounds 6b and 6u on caspase-3 activity: values indicated are the mean ± SD of two different experiments performed in triplicates; *P <0.005 compared
to control.
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Mitochondrial changes, including loss of mitochondrial membrane
potential (DWm), are key events that take place during drug-in-
duced apoptosis. Mitochondrial injury by 6b and 6u was evaluated
by detecting drops in mitochondrial membrane potential (DWm).
In this study we have investigated the involvement of mitochon-
dria in the induction of apoptosis by 6b and 6u. After 48 h of drug
treatment with these compounds at 1.5 and 3 lM concentrations,
it was observed that reduced mitochondrial membrane potential
(DWm) of DU-145 cells, assessed by JC-1 staining (Fig. 4).

Annexin V-FITC for apoptosis: The apoptotic effect of 6b and 6u
was further evaluated by Annexin V FITC/PI (AV/PI) dual staining
Please cite this article in press as: Reddy, C. N.; et al. Bioorg. Med. Chem
assay15 to examine the occurrence of phosphatidylserine external-
ization and also to understand whether it is due to physiological
apoptosis or nonspecific necrosis. In this study DU-145 cells were
treated with compounds 6b and 6u for 48 h at 1.5 and 3 lM con-
centrations to examine the apoptotic effect. It was observed that
these compounds showed significant apoptosis against DU-145
cells as shown in Figure 5.

Caspase-3 activity: Activation of caspases plays a vital role for
the initiation and execution of the apoptotic process.16 Among
the caspases, caspase-3 is one of the key effector caspase that
cleave multiple proteins in cells and lead to apoptotic cell
. Lett. (2015), http://dx.doi.org/10.1016/j.bmcl.2015.08.056
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death.17,18 In this context, DU-145 cells were treated with com-
pounds 6b and 6u at 1.5 and 3 lM concentration for 48 h. Results
indicate that there was nearly 2 to 3-fold induction in caspase-3
levels compared to the control (Fig. 6).

In summary, we report the synthesis and anticancer activity of a
series of spiro[cyclopropane-1,30-indolin]-20-ones against five
human cancer cell lines, namely HT-29 (colon), DU-145 (prostate),
Hela (cervical), A549 (lung) and MCF-7 (breast). The experimental
results suggested the 1,3-dipolar cycloaddition/ring contraction
mechanism for the diastereoselective cyclopropanation of 3-
methyleneindolin-2-ones. Compound 6b and 6u showed signifi-
cant anticancer activity against human prostate cancer cell line,
DU-145. Detailed biological studies like, cell cycle analysis showed
that these compounds arrest the cell cycle at G0/G1 phase and
induced cell death by apoptosis. It was further confirmed by mito-
chondrial membrane potential, Annexin V-FITC analysis and Cas-
pase-3 activity.
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