Note

Preparation of 1-(azidoaryl)amido- and 1-(azidoaryl)thio-1-deoxy-D-fructose analogs

JAMES C. GOODWIN

Agriculture Research Service, U.S. Department of Agriculture, Seed Biosynthesis Research Unit, Northern Regional Research Center, 1815 N. University St., Peoria, IL 61604 (U.S.A.) (Received July 20th, 1988; accepted for publication in revised form, July 1st, 1989)

Increased interest in the mechanism of sugar transporters has led to use of photoreactive cross-linking reagents such as the light-sensitive *N*-hydroxy-succinimide ester of 4-azido-2-hydroxybenzoic acid¹⁻⁵ (2), the *N*-hydroxy-succinimide ester of 4-azidobenzoic acid⁶⁻⁸, and 4-fluoro-3-nitrophenyl azide^{9,10} (3) for introducing photoreactive atoms into some hexoses. Extension of photoaffinity labeling to D-fructose (1) has resulted in the present synthesis of 1-(4-azido-2-hydrobenzamido)-1-deoxy- β -D-fructose (7) and 1-(4-azido-2-nitrophenyl)thio-1-deoxy-D-fructose (11) for use as potential photoprobes to study mechanism for transport of D-fructose (1) in corn endosperm.

Previous reports have described the synthesis of isopropylidene-blocked *N*-fructopyranosylamino acid esters¹¹, and deblocked *N*-fructofuranosyl-¹² and fructo-pyranosylamino acid esters^{12,13-15}.

RESULTS AND DISCUSSION

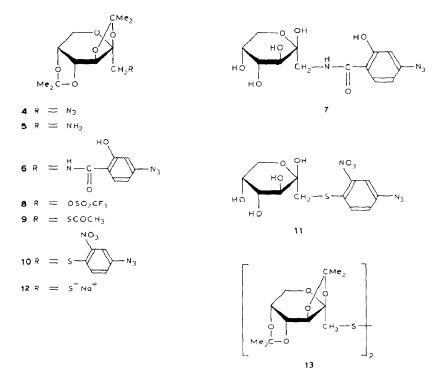
Catalytic reduction of 1-azido-1-deoxy-2,3:4,5-di-O-isopropylidene- β -D-fructopyranose¹⁶ (4) with 5% Pd-C in ethanol gave syrupy 1-amino-1-deoxy-2,3:4,5-di-O-isopropylidene- β -D-fructopyranose (5), whose structure was assigned from its elemental analysis and ¹H-n.m.r. spectral data. A light-sensitive reaction was conducted in low-actinic glassware, whereupon 1-(4-azido-2-hydroxy-benzamido)-1-deoxy-2,3:4,5-di-O-isopropylidene- β -D-fructopyranose (6) was obtained by acylation of 5 with 2 in *N*,*N*-dimethylformamide (DMF) for 48 h at 25°. Compound 6 was isolated by column chromatography in 87% yield. Elemental analysis agreed with the formula C₁₉H₂₄N₄O₇ for 6, which was supported by mass spectrometry by a molecular ion (M⁺ + 1) at *m*/*z* 421. The ¹H-n.m.r. spectral data for 6 were consistent with assigned structure.

Deblocking of 6 was accomplished in 5 h with acidic cation-exchange

TABLE I

Carbon	D-Fructopyranose ring-forms ^b		D-Fructofuranose ring-forms ^c	
	S-Substituted	N-Substituted	S-Substituted	N-Substituted
C-1	40.6	45.8 (65.6) ^d	49.5	44.4 (64.7) ^d
C-2	98.9	98.8 (99.1)	101.2	101.2 (102.8)
C-3	70.6	69.8 (69.3)	78.6	76.9 (77.5)
C-4	70.3	69.7 (71.1)	74.9	74.4 (76.3)
C-5	69.6	69.7 (70.4)	81.5	80.8 (82.1)
C-6	64.4	64.2 (64.6)	62.7	62.4 (63.7)

carbon-13 chemical shifts^a at 75.4 MHz for solutions of 1-S- and 1-N-substituted d-fructose analogs


^aCarbon-13 signals, p.p.m. from Me₄Si. ^bHigh-intensity signals for fructopyranose ring-forms. ^cLow-intensity signals for fructofuranose ring-forms. ^dReported refs. 12, 13, and 14.

resin¹⁶⁻¹⁸ in 40% methanol-water at 48–50° to give 1-(4-azido-2-hydroxybenzamido)-1-deoxy- β -D-fructose (7); it melted with decomposition at 80°, and was strongly reducing toward alkaline 2,6-dichloroindophenol, which is indicative of Amadori rearrangement compounds. Compound 7 was stable for 3-4 weeks at 25°; it may be stored over Drierite for several months at -12° .

The ¹H-n.m.r. spectrum of **7** was complicated by the presence of protons from pyranose and furanose ring-forms^{12-14,19-22} and it was only partially interpreted. ¹³C-N.m.r. spectroscopy showed that compound **7** exists mainly in the β -pyranose ring-form; signals of a small proportion of furanose ring-forms were also observed (Table I).

Chapman and Owen²³ described the reaction of potassium thiolacetate with p-toluene- and methane-sulfonic esters as a method for preparation of thio sugars. Subsequently, Baker²⁴ demonstrated nucleophilic displacement of a p-toluene-sulfonic ester group in 2,3:4,5 di-O-isopropylidene-1-O-p-tolylsulfonyl-D-fructose with sodium ethanethiolate in the synthesis of 1-S-ethyl-1-thio-D-fructose.

As 1-S-substituted analogs are stable at 25° and more resistant to acid hydrolysis than compound 7; this work was extended to the synthesis of a 1-(arylazido)thio-D-fructose analog (11). Nucleophilic displacement of a 1-triflate group from 2,3:4,5-di-O-isopropylidene-1-O-(trifluoromethanesulfonyl)- β -Dfructopyranose¹⁸ (8), by potassium thiolacetate²³ (14) gave 1-S-acetyl-2,3:4,5-di-Oisopropylidene-1-thio- β -D-fructopyranose (9); base hydrolysis with NaOMe gave a sodium thiolate salt¹⁰ 12. A light-sensitive reaction was conducted without isolated 12, by treating 4-fluoro-3-nitrophenyl azide (3) directly with compound 12 at 25°. 1-(4-Azido-2-nitrophenyl)thio-1-deoxy-2,3:4,5-di-O-isopropylidene- β -D-fructopyranose (10) was obtained in 68% yield along with bis(1-deoxy-2,3:4,5-di-O-isopropylidene-D-fructopyranos-1-yl) disulfide (13) in 4.4% yield. Sodium methoxide hydrolyzed the thioacetate to give the free thiol, which readily undergoes oxidative dimerization whereby a disulfide dimer (13) was formed²⁵.

Deacetonation of 10 with 9:1 (v/v) trifluoroacetic acid²⁶ gave 1-(4-azido-2-nitrophenyl)thio-1-deoxy-D-fructose (11) in 62.5% yield.

The ¹H-n.m.r. spectrum for compound **11** was also complicated by signals from other tautomeric ring-forms^{12-14,19-22}; and it was only partially interpreted. The ¹³C spectrum showed that **11** was mainly the β -pyranose tautomer, with a small proportion of furanose tautomers also present (Table I). The ¹³C spectra also demonstrated equilibria between pyranose and furanose ring-forms for compounds **7** and **11** in D₂O solution.

EXPERIMENTAL

General methods. — Commercial D-fructose (1 Fisher Scientific Co. Fair Lawn, NJ), the N-hydroxysuccinimide ester of 4-azido-2-hydroxybenzoic acid (2), 4-fluoro-3-nitrophenyl azide (3, Pierce Chemical Co., Rockford, IL), palladium (5%) on charcoal (Matheson Coleman and Bell, Norwood, OH), trifluoromethanesulfonic anhydride, potassium thiolacetate (Aldrich), Bio-Rd Dowex 50W-X8 (Bio-Rad Laboratories, Richmond, CA), and reagent-grade 1,2-dichloromethane, methanol, acetone, and N,N-dimethylformamide were used.

Reactions were monitored by t.l.c. Purity of the products was established by dry Silica Gel G column chromatography, by t.l.c., and by elemental analyses. T.l.c. was conducted on 0.25-mm EM Reagent Silica Gel G (Brinkman Instrument,

Inc.) with air-dried plates. The spots were detected by spraying with 5% ethanolic H₂SO₄ acid and charring. Dry column chromatography on Silica Gel G was performed with 80% (v/v) hexane-ethyl EtOAc and 3:1 (v/v) hexane-EtOAc for the substituted compounds. T.l.c. and dry column chromatography were performed with 23:2 (v/v) butanone-water azeotrope-abs. EtOH for unsubstituted compounds. Specific rotations were recorded with a Perkin-Elmer Model 241 polarimeter. I.r. spectra were obtained with KBr pellets (3.0 mg.g⁻¹ KBr) or as thin films with a Beckman IR-33 instrument. Mass spectrometry (m.s.) and tandem mass spectrometry (m.s.-m.s.) were performed with a Finnigan 4535/TS Q quadrupole mass spectrometer equipment with a DEP probe. The ¹H- and ¹³C-n.m.r. spectra were recorded in 5-mm tubes with a Bruker WH-300 WB Fourier-transform n.m.r. spectrometer at 300 and 74.5 MHz. Sweep widths of 221 p.p.m. with 8192 datapoints were used to give chemical shifts accurate to within ± 2 Hz (± 0.05 p.p.m.). A memory size (8192 addresses) set the data-acquisition time at 0.46 sec. Proton noise-decoupled, DEPT spectra were obtained to assist in signal assignments. Melting points, measured in capillary tubes, are not corrected. Microchemical analyses were performed by Galbraith Laboratories, Inc.

1-Azido-1-deoxy-2,3:4,5-di-O-isopropylidene- β -D-fructopyranose (4). — Compound 4 (28 g), prepared by the procedure of Card *et al.*¹⁶, was purified by passing through a column of dry silica gel and eluting with 80% hexane–EtOH. Fractions were collected and combined to yield 18.1 g of 4 (88.3%, noncrystalline, solidified); m.p. 56–58.5°, $[\alpha]_D^{25}$ ~88.6° (*c* 1, CHCl₃); reported¹⁶ m.p. 55.5–60°, $[\alpha]_D^{20}$ ~88.9°.

1-Amino-1-deoxy-2,3:4,5-di-O-isopropylidene-β-D-fructopyranose (5). — The azido group or compound **4** (12 g) was reduced in the presence of 5% palladium on carbon catalyst (0.5 g) in abs. EtOH at 25° with an initial hydrogen pressure of 50 lb.in⁻². The catalyst was removed by filtration and solvent was removed under diminished pressure to afford **5** as a noncrystalline mixture (10.3 g). Compound **5** was purified by dry Silica Gel G column chromatography eluting with 80% EtOAc–MeOH; yield 9.98 g (91%); $[\alpha]_D^{25}$ –30.7° (c 1, CHCl₃); ¹H-n.m.r. (CDCl₃): δ 2.94 (d, H-1, J 13.7 Hz). 2.85 (d, H-1', J 13.8 Hz), 4.16 (d, H-3, J 2.5 Hz), 4.57 (dd, H-4, J 2.4, 7.9 Hz), 4.23 (dd, H-5, J 1.4, 7.9 Hz), 3.88 (dd, H-6, J 1.9, 13.9 Hz), 3.75 (dd, H-6', J 7.0, 14.0 Hz), 1.77 (bs, NH), 1.35 (s, 3 H), 1.37 (s, 3 H), and 1.47 (s, 3 H), 1.53 (s, 3 H).

Anal. Calc. for C₁₂H₂₁NO₅: C, 55.60; H, 8.13; N, 5.40. Found: C, 55.40; H, 8.12; N, 5.47.

 $1-(4-Azido-2-hydroxybenzamido)-1-deoxy-2,3:4,5-di-O-isopropylidene-\beta-D-fructopyranose (6). — Compound 5 (0.94 g, 3.6 mmol) was dissolved in DMF (15 mL) and the N-hydroxysuccinimide ester of 4-azido-2-hydroxybenzoic acid (2, 1.0 g, 3.7 mmol) was added. The reaction was allowed to proceed for 48 h at 25° with constant stirring. The DMF was evaporated under diminished pressure, whereupon t.l.c. disclosed unaltered 2 plus compound 6. The syrup (2.7 g) was passed through a column of dry Silica Gel G that was eluted with 2:1 hexane-EtOAc. Fractions$

were collected and combined to yield 1.3 g (87%) of pure, noncrystalline **6**; $[\alpha]_D^{25}$ -13.7° (*c* 0.6, CHCl₃); ¹H-n.m.r. data (chloroform-*d*): δ 3.65 (d, H-1, *J* 4.8 Hz), 3.88 (d, H-1'), 4.58 (d, H-3, *J* 2.6 Hz), 4.61 (d, H-4, *J* 2.6 Hz), 4.32 (d, H-5, *J* 2.6 Hz), 3.74 (dd, H-6, *J* 13.1 Hz), 3.86 (m, H-6'), 6.86 (NH), 1.34 (s, 3 H), 1.38 (s, 3 H), 1.41 (s, 3 H), 1.53 (s, 3 H), 6.61 (ar-d, H-3, *J* 2.2 Hz), 6.45 (ar-d, H-5, *J* 8.5 Hz), and 7.38 (ar-d, H-6, *J* 8.6 Hz); $\nu_{\text{max}}^{\text{film}}$ 3380 (H-bonded OH, broad), 3000–2950 cm⁻¹ (CH₂, CH₃), 2110 (N₃), 1650 (NH-C:O, broad), and 1600 cm⁻¹ (C=C); *m/z* 421 (M⁺ + 1).

Anal. Calc. for C₁₉H₂₄N₄O₇: C, 54.28; H, 5.75; N, 13.33. Found: C, 54.37; H, 5.91; N, 13.43.

1-(4-Azido-2-hydroxybenzamido)-1-deoxy-β-D-fructose (7). — Compound 6 (1 g, 3.1 mmol) was treated with acidic cation-exchange resin (10.0 g) in 40% MeOH-water (25 mL) at 48-50° with continuous stirring for 5 h. Ion-exchange resin was removed by filtration and the filtrate was poured into water and extracted twice with CHCl₃ and twice with anhydrous ether. T.l.c. disclosed one major component with traces of impurities in the aq. extract. The latter was evaporated under vacuum at 35° to 15 mL and then lyophilized to afford 7 as a white solid (0.240 g, 21%); it crystallized from cold water and melted with decomposition at 80° . Unaltered 6 (0.8 g), recovered from the CHCl₃ and ether extractions, was recycled through the hydrolytic process, thus resulting in a 41% overall yield for 7; $\nu_{\text{max}}^{\text{KBr}}$ 3680–3000 centered at 3340 (OH, very broad), 1600 (C=C), 1650 (NH-C=O), and 2110 cm⁻¹ (N₂); ¹H-n.m.r. (D₂O): $\delta < 6.00$ complex (β -pyranose and β -Dfuranose)¹²⁻¹⁴; 6.56 (ar-H-3, NH), 6.49 (d, ar-H-5, J 8.6 Hz), and 7.63 (d, ar-H-6, J 8.6 Hz); 13 C-n.m.r. (CDCl₃): aromatic ring-carbon signals, 159.5 (C-1), 146.1 (C-2), 131.1 (C-3), 111.4 (C-4), 107.6 (C-5), 107.6 (C-6), and 170.1 (C=O) p.p.m.; see also Table I.

Anal. Calc. for $C_{13}H_{16}N_4O_7$: C, 45.88; H, 4.74; N, 16.47. Found: C, 45.66; H, 4.94; N, 16.24.

2,3:4,5-Di-O-isopropylidene-1-O-(trifluoromethanesulfonyl)- β -D-fructopyranose (8). — Compound 8 was prepared by the procedure of Card *et al.*¹⁶ and purified by passing it through a column of dry Silica Gel G that was eluted with 80% (v/v) hexane-EtOAc.

1-S-Acetyl-2,3:4,5-di-O-isopropylidene-1-thio- β -D-fructopyranose (9). — A solution of 8 (21 g, 53.5 mmol) in dry acetone (150 mL) at -15° was added to a suspension of KSAc (14, 7.1 g, 62.3 mmol, slight excess) in dry acetone (150 mL) at -15° . The mixture was kept overnight (20 h) with mechanical stirring at 25°. The potassium triflate and excess KSAc were removed by filtration; whereupon, the solids were washed with CHCl₃; combined filtrates were evaporated under diminished pressure and the residue re-dissolved in CHCl₃ (150 mL); CHCl₃ solution was washed with ≤ 0.1 M HCl and water three times each, and this solution was dried over Na₂SO₄ and evaporated under diminished pressure. T.l.c. disclosed compound 9 and unreacted 1-triflic ester (8) in the CHCl₃ extract; the syrup (27.2 g) was passed through a column of dry Silica Gel G and eluted with 3:1 (v/v) hexane-

EtOAc. Fractions were collected and combined to yield 9.7 g (76%) of pure noncrystalline **9**; however, **9** solidified upon standing; m.p. 49.5–52°; $[\alpha]_D^{25}$ –2.9° (*c* 1, CHCl₃): ¹H-n.m.r. (CDCl₃): δ 3.29 (1/2 AB, H-1, *J* 13.7 Hz), 3.23 (1/2 AB, H-1', *J* 13.8 Hz), 4.10 (m, H-3), 4.46 (q, H-4, *J* 2.4, 2.44 Hz), 4.10 (m, H-5), 3.74 (AB, H-6, *J* 11.2, *J* 1.9, *J* 1.8 Hz), 3.61 (AB, H-6, *J* 12.7 Hz), 2.23 (s, COCH₃), 1.23 (s, 3 H), 1.29 (s, 3 H), 1.38 (s, 3 H), 1.40 (s, 3 H); ν_{max}^{film} 1695, sh at 1715 cm⁻¹ (SCOCH₃ thiol ester); *m/z* 318 (M), 89 (C₇H₅N₄O₂S), 229 (C₁₁H₁₇O₅).

Anal. Calc. for $C_{14}H_{22}O_6S$: C, 52.81; H, 6.96; S, 10.07. Found: C, 53.04; H, 7.16; S, 11.01.

1-(4-Azido-2-nitrophenyl)thio-1-deoxy-2,3:4,5-di-O-isopropylidene-β-Dfructopyranose (10). - Solutions of 9 (3.8 g, 12 mmol) in dry MeOH (10 mL) and a solution of NaOMe (0.72 g, 13.4 mmol) in dry MeOH (10 mL) were combined and kept for 5 min at 25°; without isolation, the sodium thiolate salt 12 was condensed directly with 4-fluoro-3-nitrophenyl azide (3, 2.0 g, 11 mmol). The mixture was kept for 30 min at 25°. The residue was redissolved in DMF (50 mL), after removal of MeOH under nitrogen. This solution was kept in the dark for 3.5 h at 25°, undissolved solids were removed by filtration, and solvent was evaporated under diminished pressure. T.l.c. disclosed compound 10, plus unaltered 3, 9 and bis(1-deoxy-2,3:4,5-di-O-isopropylidene- β -D-fructopyranos-1-yl) disulfide (13). The syrup (6.1 g) was passed through a column of dry Silica Gel G that was eluted with 3:1(v/v) hexane-EtOAc. The mixture (4.4 g) was rechromatographed to yield 3.58 g (68%) of pure, noncrystalline 10, plus 0.3 g (4.4%) of pure noncrystalline **13**; $[\alpha]_{D}^{25} - 83^{\circ}$ (c 1, CHCl₃), ¹H-n.m.r. (CDCl₃): δ 3.53 (1/2 AB, H-1, J 14.3 Hz), 3.23 (1/2 AB, H-1', J 14.3 Hz), 4.35 (d, H-3, J 2.6 Hz), 4.60 (q, H-4, J 2.6, 2.6 Hz), 4.23 (d, H-5), 3.93 (1/2 AB, H-6, J 1.8, 1.9, 11.1 Hz), 3.78 (1/2 AB, H-6', J 12.8 Hz), 1.29 (s, 3 H), 1.32 (s, 3 H), 1.47 (s, 3 H), 1.47 (s, 3 H), 7.16 (ar-q, H-3, J 2.5, 2.6 Hz), 7.75 (ar-m, H-5), and 7.75 (ar-m, H-6); ν_{max}^{film} 2110 (N₃) and 1600 cm⁻¹ (C=C); m/z 438 (M^+) , 209 $(C_7H_5N_4O_2S)$, and 229 $(C_{11}H_{17}O_5)$.

Anal. Calc. for C₁₈H₂₂N₄O₇S: C, 49.31; H, 5.06; N, 12.78; S, 13.63. Found: C, 49.56; H, 5.19; N, 12.52; S, 13.49.

1-(4-Azido-2-nitrophenyl)thio-1-deoxy-D-fructose (11). — Acid hydrolysis of isopropylidene groups were accomplished by the method of Marsh and Goodman²⁶; however, t.l.c. disclosed some degradation products in reaction residue and therefore, **11** was purified by passing it through a column of dry Silica Gel G eluted with 80% (v/v) toluene–abs. EtOH. Fractions were collected and combined, evaporated at 35°, and the residue was redissolved in water (15 mL) and then lyophilized to give a red solid; yield 0.560 g (62.5%); m.p. (dec.) 60°; ¹H-n.m.r. (D₂O): $\delta < 6.00$ (complex)^{12–14}, 7.71 (ar-H-3), 7.53 (ar-H-5), 7.25 (ar-H-6); ¹³C-n.m.r. data (CDCl₃): (aromatic ring-carbon signals) δ 147.3 (C-1), 138.4 (C-2), 130.3 (C-3), 132.3 (C-4), 125.5 (C-5), and 116.6 (C-6) p.p.m.; see also Table I.

Anal. Calc. for C₁₂H₁₄N₄O₇S: C, 40.22; H, 3.94; N, 15.64; S, 8.95. Found: C, 40.33; H, 3.86; N, 15.38; S, 8.88.

Bis(1-deoxy-2,3:4,5-di-O-isopropylidene-D-fructopyranos-1-yl) disulfide (13).

-- Acetic ester group removed by NaOMe to give the free thiol; compound 13 was formed as a by-product in the mixture; $[\alpha]_D^{25} -54.1^\circ$ (*c* 1, CHCl₃); ¹H-n.m.r. (CDCl₃): δ 3.34 (1/2 AB, H-1, *J* 14.0 Hz), 3.09 (1/2 AB, H-1', *J* 13.8 Hz), 4.26 (d, H-3, *J* 2.6 Hz), 4.55 (q, H-4, *J* 2.6, 2.6 Hz), 4.17 (q, H-5, *J* 2.2, 1.2 Hz), 3.82 (1/2 AB, H-6, *J* 12.6, 1.8, 1.9 Hz), 3.67 (1/2 AB, H-6', *J* 11.1 Hz), 1.29 (s, 3 H), 1.38 (s, 3 H, 1.44 (s, 3 H), 1.47 (d, 3 H); *m/z* 550 (M⁺).

Anal. Calc. for C₂₄H₃₈O₁₀S₂: C, 52.35; H, 6.96; S, 11.65. Found: C, 52.42; H, 7.22; S, 11.88.

ACKNOWLEDGMENTS

The author is indebted to Larry W. Tjarks and David Weisleder for ¹H- and ¹³C-n.m.r. spectra, to Ronald D. Plattner and Claude G. Crawford for m.s.-m.s. spectra, and to John P. Friedrich and James H. Johnson for the hydrogenation. Thanks are extended to H. B. Sinclair and T. P. Abbott, for critical evaluation of this manuscript.

REFERENCES

- 1 M. HAGEDRON, R. R. SAUERS, AND A. EICHHOLZ, J. Org. Chem., 43 (1978) 2070-2072.
- 2 S. N. HUSAIN, B. GENTILE, R. R. SAUERS, AND A. ECHHOLZ, Carbohydr. Res., 118 (1983) 57-63.
- 3 M. F. SHANAHAN, B. E. WADZINSKI, J. M. LOWNDES, AND A. E. RUOHO, J. Biol. Chem., 260 (1985) 10897–10900.
- 4 R. E. KOHNKEN AND E. A. BERGER, Biochemistry, 26 (1987) 8727-8735.
- 5 K. G. RIPP, P. V. VIITANEN, W. D. HITZ, AND V. R. FRANCESCHI, *Plant Physiol.*, 88 (1988) 1435-1445.
- 6 R. E. GALARDY, L. C. CRAIG, J. D. JAMIESON, AND M. P. PRINTZ, J. Biol. Chem., 249 (1974) 3510-3518.
- 7 C. C. YIP, C. W. T. YEUNG, AND M. L. MOULE, J. Biol. Chem., 253 (1978) 1743-1745.
- 8 T. H. JI, D. J. KIEHM, AND C. R. MIDDAUGH, J. Biol. Chem., 225 (1980) 2990-2993.
- 9 M. B. PERRY AND L. L. W. HEUNG, Can. J. Biochem., 50 (1972) 510-515.
- 10 T. G. WARNER AND L. A. LEE, Carbohydr. Res., 176 (1988) 211-218.
- 11 D. XENAKIS, N. MOLL, AND B. GROSS, Synthesis, (1983) 541-543.
- 12 H. ROPER, S. ROPER, K. HEYNS, AND B. MEYER, Carbohydr. Res., 116 (1983) 183-195.
- 13 D. J. WALTON, J. D. MCPHERSON, T. HVIDT, AND W. A. SZAREK, Carbohydr. Res., 167 (1987) 123-130.
- 14 H. ROPER, Carbohydr. Res., 164 (1987) 207-227.
- 15 C. P. BARRY AND J. HONEYMAN, J. Chem. Soc., (1952) 4147-4150.
- 16 P. J. CARD, W. D. HITZ, AND K. G. RIPP, J. Am. Chem. Soc., 108 (1986) 158-161.
- 17 W. L. GLEN, G. S. MYERS, AND G. A. GRANT, J. Chem. Soc., (1951) 2568-2572.
- 18 P. J. CARD AND W. D. HITZ, J. Am. Chem. Soc., 106 (1984) 5348-5350.
- 19 K. BOCK AND C. PEDERSEN, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-66.
- 20 D. DODDRELL AND A. ALLERHAND, J. Am. Chem. Soc., 93 (1971) 2779-2781.
- 21 L. QUE, JR., AND G. R. GRAY, Biochemistry, 13 (1974) 146-153.
- 22 J. H. ALTENA, G. A. M. VAN DEN OUWELAND, C. J. TEUNIS, AND S. B. TJAN, *Carbohydr. Res.*, 92 (1981) 37–49.
- 23 J. H. CHAPMAN AND L. N. OWEN, J. Chem. Soc., (1950) 579-585.
- 24 S. B. BAKER, Can. J. Chem., 33 (1955) 1459-1462.
- 25 D. HORTON AND D. H. HUTSON, Adv. Carbohydr. Chem., 18 (1963) 123-199.
- 26 J. P. MARSH, JR. AND L. GOODMAN, J. Org. Chem., 30 (1965) 2491-2492.