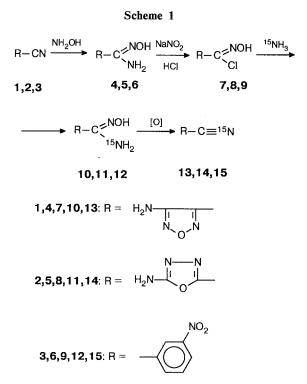
A new method for the synthesis of nitriles enriched with the ¹⁵N isotope

V. N. Yarovenko,* M. M. Krayushkin, O. V. Lysenko, L. M. Kustov, and I. V. Zavarzin

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: +7 (095) 135 5328

A new synthetic method for the preparation of ¹⁵N-labeled nitriles from nonlabeled nitriles is proposed.

Key words: ¹⁵N isotope; nitriles; amidoximes.


Nitriles containing the ¹⁵N isotope are used in biological and medical studies and for studying reaction mechanisms.¹ There exists a method for obtaining labeled nitriles by treating esters with ¹⁵N-containing ammonia followed by dehydration of the amides formed.² This method requires a large excess of the ester or a large consumption of ¹⁵NH₃. Furthermore, this method affords high yields only for nitriles that are readily distilled off from the reaction mixture at the dehydration stage, but is of little use for synthesizing heterocyclic nitriles which generally have high boiling points.

This communication describes a new synthetic method which is not subject to the above drawbacks. Normal nitriles containing no ¹⁵N isotope are used as the starting compounds. The synthesis is performed according to Scheme 1.

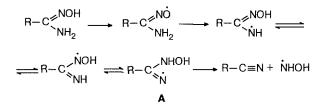
At the first stage, nitriles 1,2,3 are treated with hydroxylamine by the known procedure³ under mild conditions to give amidoximes 4,5,6, which are treated with hydrochloric acid and NaNO₂ (*cf.* Ref. 4) to afford hydroximoyl chlorides 7,8,9. The reaction of compound 7 with ¹⁵NH₃ in ether gave amidoxime 10 in 90.6 % yield. The reaction of compounds 8 and 9 with ¹⁵NH₃ was performed in ethanol to give compounds 11 and 12 in 79–81 % yields. It should be noted that a small excess of ¹⁵NH₃ (1.5–2 mol) was used in all cases.

Only two examples of obtaining nitriles from amidoximes are known, where I_2 (*cf.* Ref. 5) or Pb₃O₄ in glacial acetic acid⁶ were used. We studied the action of I_2 , Pb₃O₄, dibromoisocyanurate (DBI), and potassium permanganate as oxidants.

It was found that no nitriles are formed from amidoximes when they are oxidized with I_2 . The oxidation of amidoxime 10 with DBI was performed in dry acetonitrile at 0-20 °C. When one equiv. of DBI was used, nitrile 13 was formed in 50 % yield, and some amount of the original amidoxime 10 was returned. The use of DBI in greater amounts resulted in side products, while the yield of 13 decreased markedly. Nitrile 13 obtained in this way contained ~100 % of the label.

The oxidation of amidoxime 10 with potassium permanganate was conducted in a two-phase water— CH_2Cl_2 system in the presence of tetrabutylammonium bromide. The yield of nitrile 13 containing ~100 % of the label was 30 % at room temperature.

A higher yield of ¹⁵N-labeled nitrile **13** (75 %) was obtained by treatment of amidoxime **10** with Pb_3O_4 in glacial acetic acid at 70 °C. As in the case of oxidation with DBI or KMnO₄, the reaction resulted in ~100%-labeled nitrile **13**.


Since Pb_3O_4 in acetic acid was the most successful in the oxidation of compound 10, this method was further used to oxidate labeled amidoximes 11 and 12. The reaction was performed at 20 °C to give nitriles 14 and 15 in 59 and 70 % yields, respectively.

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 444--446, March, 1994. 1066-5285/94/4303-0402 \$12.50 © 1994 Plenum Publishing Corporation Thus, the method elaborated by us makes it possible to obtain ¹⁵N-labeled nitriles in high overall yields (60–65 %) using a relatively small excess of ¹⁵NH₃. As was noted above, the resulting nitriles contain ~100 % of the label.

The presence of the label in the nitriles synthesized was determined using mass spectrometry. The mass spectra of the compounds obtained by us contain the following molecular ion signals: (m/z): 111 [M]⁺ (13), 111 [M]⁺ (14), and 149 [M]⁺ (15), respectively.

Probably, the oxidation of amidoximes with Pb_3O_4 in acetic acid has a radical nature⁷ and follows Scheme 2.

Scheme 2

The ESR spectrum of the reaction mixture obtained by oxidating nonlabeled compound 5 by the action of Pb₃O₄ in acetic acid contains a characteristic signal, *viz.*, an anisotropic triplet with g = 2.0100 and $A_{\parallel}^{N} =$ 12 Oe due to splitting at the ¹⁴N nuclei with the nuclear spin I = 1. Evidently, this signal can be attributed to radical **A**, the spin density of which is localized on the nitrogen atom not bonded with hydrogen atoms.

Experimental

IR spectra were recorded in KBr pellets on a UR-20 spectrophotometer. ¹H NMR spectra were obtained on a Tesla B-467 spectrometer, and mass spectra were obtained on a Varian MAT CH-6 spectrometer with direct insertion of samples into the source. ESR spectra were recorded at 300 and 77 K on an ERS-220 spectrometer ($\lambda = 3.2$ cm).

Synthesis of hydroximoyl chlorides

3-Amino-1,2,5-oxadiazole-4-carbohydroximoyl chloride (7) and *m*-nitrobenzhydroximoyl chloride (9) were obtained by the known procedures.^{4,8}

2-Amino-1,3,4-oxadiazole-5-carbohydroximoyl chloride (8). 10 % Hydrochloric acid (20 mL) was added dropwise to a stirred suspension of amidoxime **5** (0.6 g, 4.2 mmol) until complete dissolution of the latter, then NaNO₂ (0.44 g, 6.3 mmol) was added in small portions at 0 °C. The mixture was stirred for 30 min. The precipitate formed was filtered off and washed with water and acetone to give 0.53 g (78 %) of compound **8**, m.p. 236 °C (dec.). Found (%): C, 21.87; H, 1.99; Cl, 21.83; N, 34.66. C₃H₃ClN₄O₂. Calculated (%): C, 22.15; H, 1.85; Cl, 21.85; N, 34.46. ¹H NMR [(CD₃)₂SO], &: 7.56 (s, 2 H, NH₂); 13.68 (s, 1 H, NOH). MS, *m/z*: 162, 164 [M]⁺.

Synthesis of ¹⁵N-labeled amidoximes

3-Amino-1,2,5-oxadiazole-4-carbamidoxime (10). A solution of hydroximoyl chloride 7 (1 g, 6 mmol) in dry ether (200 mL) was saturated with ¹⁵N-labeled ammonia (0.2 g, 12 mmol; label content 95.4 %). The mixture was kept at room temperature for one day, washed with water, and dried with MgSO₄. The solvent was removed, and the residue was crystallized from ethanol to give 0.8 g (90.6 %) of compound **10**, m.p. 196–199 °C (*cf.* Ref. 9: m.p. 196–199 °C). MS, m/z: 144 [M]⁺.

2-Amino-1,3,4-oxadiazole-5-carbamidoxime (11). Labeled ammonia (0.046 g, 2.7 mmol) was passed through a solution of hydroximoyl chloride **8** (0.3 g, 1.8 mmol) in ethanol (20 mL). The reaction mixture was concentrated to \sim 5 mL. The precipitate formed was filtered off and washed with water and acetone to give 0.19 g (79 %) of product **11**, m.p. 220 °C (dec.) (*cf.* Ref. 10: m.p. 220 °C(dec.)). MS, *m/z*: 144 [M]⁺.

m-Nitrobenzamidoxime (12). Labeled ammonia (0.031 g, 1.8 mmol) was passed through a solution of hydroximoyl chloride 9 (0.2 g, 0.9 mmol) in ethanol (10 mL). The mixture was kept for 1 h at room temperature and concentrated to \sim 3 mL. The precipitate formed was filtered off and crystallized from ethanol to give 0.147 g (81 %) of compound 12, m.p. 174 °C (cf. Ref. 3: m.p. 174 °C). MS, m/z; 182 [M]⁺.

Synthesis of ¹⁵N-labeled nitriles

3-Amino-1,2,5-oxadiazole-4-carbo(¹⁵N)nitrile (13).

a. Oxidation of amidoxime 10 with DBI. DBI (0.29 g, 0.7 mmol) was added at 0 °C to a stirred solution of amidoxime 10 (0.1 g, 0.7 mmol) in dry acetonitrile (3 mL). The mixture was kept for one day at room temperature. The acetonitrile was distilled off, and the residue was extracted with ether, washed with dilute sodium bisulfite and water, and dried with MgSO₄. The solvent was removed, and the residue was purified by TLC (silica gel, ethyl acetate—hexane, 1:2) to give 0.04 g (50 %) of compound 13, m.p. 83–84 °C (cf. Ref. 6: m.p. 83–84 °C). MS, m/z: 111 [M]⁺.

b. Oxidation of amidoxime 10 with potassium permanganate. A solution of amidoxime 10 (0.1 g, 0.7 mmol) in CH_2Cl_2 (5 mL), KMnO₄ (0.5 g), and tetrabutylammonium bromide (0.1 g) in water (5 mL) was stirred for 10 h at room temperature. The organic layer was separated, the aqueous phase was extracted with methylene dichloride, and the combined extract was dried with MgSO₄. The solvent was removed, and the residue was purified by TLC (silica gel, ethyl acetate—hexane, 1:2) to give 0.024 g (30 %) of compound 13, m.p. 83-84 °C. MS, m/z: 111 [M]⁺.

c. Oxidation of amidoxime 10 with Pb₃O₄ in acetic acid. Red lead (17.8 g) was added in 5–8 g portions at ≤ 25 °C for 10 min to a vigorously stirred solution of amidoxime 10 (11.44 g, 0.08 mol) in glacial acetic acid (50 mL). Stirring was continued at 60–70 °C until complete dissolution of the red lead (~1.5 h). The reaction mixture was poured into water (300 mL), and the product was extracted with ether. The extract was washed with 10 % NaHCO₃ and dried with MgSO₄, then the solvent was distilled off, and the residue was crystallized from ethanol to give 6.6 g (75 %) of compound 13, m.p. 83-84 °C. MS, m/z: 111 [M]⁺.

2-Amino-1,3,4-oxadiazole-5-carbo(¹⁵N)**nitrile** (14). Red lead (0.47 g) was added portionwise at ≤ 25 °C to a vigorously stirred solution of ¹⁵N-labeled amidoxime 11 (0.3 g, 2 mmol) in 30 mL of glacial acetic acid. The mixture was stirred for

2.5 h and then poured into water (~100 mL). The product was extracted with ethyl acetate, and the extract was washed with 10 % NaHCO₃, dried with MgSO₄, and concentrated to give 0.136 g (59 %) **14**, m.p. 189–190 °C (cf. Ref. 10: m.p. 189–190 °C). MS, m/z: 111 [M]⁺.

m-Nitrobenzo(¹⁵N)**nitrile**(15). Red lead (0.24 g) was added portionwise at ≤ 25 °C to a vigorously stirred solution of ¹⁵N-labeled amidoxime **12** (0.2 g, 1 mmol) in acetic acid (10 mL). The mixture was stirred for 1.5 h and poured into water (~30 mL). The product was extracted with ether; the extract was washed with 10 % NaHCO₃, dried with MgSO₄, and concentrated to give 0.114 g (70 %) **15**, m.p. 118 °C (*cf.* Ref. 11: m.p. 118 °C). MS, m/z: 149 [M]⁺.

References

1. J. L. Hicks, R. W. Sheencan, and J. D. Harfman, J. Label. Compound Radiopharm., 1991, 29, 415.

- V. N. Yarovenko, V. K. Taralashvili, I. V. Zavarzin, and M. M. Krayushkin, *Tetrahedron*, 1990, 46, 3941.
- 3. F. Eloy and R. Lenaers, Chem. Rev., 1962, 62, 155.
- 4. M. Kocevar, L. Polanc, and M. Sollner, Synth. Comm., 1988, 18, 1427.
- 5. F. Eloy and R. Lenaers, Chem. Rev., 1962, 62, 167.
- 6. V. Andrianov and A. Eremeev, Khim. Geterotsikl. Soedin., 1994, in press [Chem. Heterocycl. Compd. (Engl. Transl.)].
- 7. N. Ooi and D. Wilson, J. Chem. Soc., Perkin Trans. 2, 1980, 1792.
- 8. A. Werner, Ber., 1894, 27, 2847.
- 9. T. Ichikawa, T. Kato, and T. Takenishi, J. Heterocycl. Chem., 1965, 2, 253.
- F. M. Stoyanovich, E. P. Zakharov, O. V. Lysenko, V. N. Yarovenko, and M. M. Krayushkin, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1991, 243 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1991, 40, 225 (Engl. Transl.)].
- 11. B. M. Bogoslovskii, Zh. Obshch. Khim., 1938, 8, 1784 (in Russian).

Received August 25, 1993