Inorganica Chimica Acta 364 (2010) 185-194

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Comparative structural coordination chemistry of two tricyclic bisamidines

Jingwei Li^a, Daniel W. Widlicka^a, Kerry Fichter^a, David P. Reed^a, Gary R. Weisman^{a,*}, Edward H. Wong^{a,**}, Antonio DiPasquale^b, Katie J. Heroux^b, James A. Golen^c, Arnold L. Rheingold^b

^a Department of Chemistry, University of New Hampshire, Durham, NH 03824, USA

^b Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA

^c Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA

ARTICLE INFO

Article history: Available online 13 August 2010

Dedicated to Professor Arnold L. Rheingold on the occasion of his 70th birthday.

Keywords: Tricyclic bisamidine Metal complexes Crystal structures

ABSTRACT

The tricyclic bisamidines **L1** and **L2** are designed to be preconstrained so as to present synperiplanar donor sites for metal coordination. Their very different bite angles of 35° and 70° result from the incorporation of two five-membered instead of six-membered rings in their respective backbones. Distinct coordination preferences in a variety of metal complexes have now been confirmed by X-ray structural studies. While **L1** afforded monodentate, symmetrical and unsymmetrical chelating as well as bimetallic bridging modes in its complexes, **L2** has been found exclusively in a bidentate chelating mode.

© 2010 Elsevier B.V. All rights reserved.

Inorganica Chimica Acta

1. Introduction

Unsaturated bidentate nitrogen-based ligands are important chelators in metal coordination chemistry providing many complexes of interest for their catalytic, bioinorganic, photochemical, and photophysical applications. These are epitomized by 2,2bipyridyl [1-4] and related ligands like phenathroline [5,6], biimidazoles [7,8] and bioxazolines [9-11]. We have reported a bisamidine L1 with synperiplanar donor sites enforced by its tricyclic backbone constraints. Due to its relatively small idealized bite angle of 35° [12–14], it has been found to adopt monodentate, symmetrical and unsymmetrical chelating as well as bridging coordination modes in its metal complexes (Fig. 1) [12]. We now describe new Pd(II), Zn(II), Ag(I), and Hg(II) complexes of this ligand whose structures further confirm this versatility in metal binding. Since the tricyclic nature of L1 allows significant tuning of its ideal bite angle through variations in ring sizes, we have prepared a new bisamidine, L2, featuring three six-membered rings in its backbone (Fig. 1) whose lone pairs are expected to be considerably more convergent (idealized bite angle 70°) [14]. We have prepared and determined structures of five of these metal complexes to confirm its predilection for the chelation coordination mode.

2. Experimental

2.1. General

Bisamidine **L1** was prepared as described by Reed and Weisman [15]. *N*,*N*'-bis-(3-aminopropyl)-1,2-ethylenediamine was purchased from Sigma–Aldrich Chemical Co. Dithiooxamide was obtained from Fluka Chemical Co. All other reagents and solvents were also obtained from commercial sources and used without further purification. Deuterated solvents were obtained from Cambridge Isotope Laboratories and stored over 3 Å molecular sieves.

All ¹H and ¹³C{¹H} NMR spectra were acquired on either a Varian *Mercury* 400 MHz spectrometer operating at 399.75 and 100.51 MHz respectively or on a Varian ^{Unity}INOVA 500 MHz spectrometer operating at 500 and 125.67 MHz respectively. IR spectra were recorded using KBr pellets on a Nicolet MX-1 FT spectrophotometer. ESI-MS was performed on a Thermofinnigan LCQ Mass Spectrometer coupled to a Picoview electrospray source. FAB-MS was performed on the JEOL JMS-AX505HA Mass Spectrometer at the University of Notre Dame. Electronic spectra were measured using a Cary 219 spectrophotometer. Elemental analysis was performed at Atlantic Microlab Inc., Norcross, GA.

All reactions were performed in standard Schlenk glassware under a nitrogen atmosphere. Recrystallizations were conducted in closed containers without special precautions to exclude either air or moisture. Bulk solvent removal was by rotary evaporation under reduced pressure and trace solvent removal from solids was by vacuum pump evacuation.

^{*} Corresponding author. Tel.: +1 603 862 1550; fax: +1 603 862 4278.

^{**} Corresponding author. Tel.: +1 603 862 1550; fax: +1 603 862 4278.

E-mail addresses: gary.weisman@unh.edu (G.R. Weisman), ehw@cisunix.unh. edu (E.H. Wong).

^{0020-1693/\$ -} see front matter \circledcirc 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.ica.2010.08.015

Fig. 1. (a) Tricyclic bisamidine L1 and L2; (b) L1 coordination modes; and (c) Ideal bite angles for L1 and L2.

Idealized bite angles for ligands L1 and L2 were calculated using the molecular mechanics program MM2 in CHEM3D.

Caution! Perchlorate salts of metal complexes containing organic ligands in organic solvents are potentially explosive. Although no problems were encountered by us, cautious handling of only small amounts of these compounds should be the rule.

2.2. Experimental

2.2.1. 2,3,4,6,7,9,10,11-Octahydro-pyrazino[1,2-a:4,3-a']dipyrimidine (**L2**)

A 250 mL three-necked round-bottomed flask equipped with a reflux condenser with N₂ inlet tube, a fritted gas dispersion tube (initially closed) and a pressure-equalizing addition funnel was charged with dithiooxamide (2.00 g, 16.6 mmol) suspended in absolute EtOH (30 mL). A solution of N,N'-bis-(3-aminopropyl)-1,2-ethylenediamine (2.90 g, 16.6 mmol) in absolute EtOH (20 mL) was added by syringe. The nitrogen manifold exit line was routed through two scrubbing towers charged with 30% aqueous NaOH solution in order to trap the gases evolved. The reaction mixture was heated at 80 $^\circ C$ for 2 h. The reaction mixture was then cooled to room temperature and EtOH (30 mL) was added in order to immerse the fritted gas dispersion tube. Residual gaseous byproducts were purged from the solution by entrainment with nitrogen for 24 h. Solvent was then removed by rotary evaporation leaving a thick dark-red liquid, which was dissolved in CHCl₃ (100 mL) and filtered through glass wool. CHCl₃ was removed by rotary evaporation and toluene (100 mL) was added followed by heating. The near-boiling mixture was filtered through glass wool. The toluene extracts were azeotropically distilled over a Dean-Stark trap for 2 days. Evaporation of the resulting bright dark-yellow solution under reduced pressure afforded a yellow solid (1.74 g, 55% yield). ¹H NMR (CDCl₃, 399.75 MHz): δ 1.85 (~p, 4H, $J_{app} = -6$ Hz, N-CH₂-CH₂-CH₂-N=), 3.21 (-t, 4H, $J_{app} = -6$ Hz, N- $\begin{array}{l} CH_2-CH_2-CH_2-N=), \ 3.22 \ (s, \ 4H, \ N-CH_2-CH_2-N), \ 3.54 \ (\sim t, \ 4H, \ J_{app}=\sim 6 \ Hz, \ N-CH_2-CH_2-CH_2-N=); \ ^{13}C\{^1H\} \ NMR \ (CDCl_3, \ NMR) \end{array}$ 100.51 MHz, ref. center line of CDCl₃ set at 77.3 ppm) δ 21.52, 45.00, 47.66, 48.06, 148.04; $^1\mathrm{H}$ NMR (CD_3CN, 399.75 MHz): δ 1.73–1.78 (m, 4H), 3.18–3.20 (m, 4H), 3.18 (s, 4H), 3.35 (~t, 4H); ¹³C{¹H} NMR (CD₃CN, 100.51 MHz, ref. center line of CD₃CN set at 117.62) δ 21.53, 44.38, 47.45, 47.63, 148.03; IR (KBr): 1601 cm^{-1} (N=C-C=N);UV-Vis (CH_3CN) : 248 nm $(\varepsilon = 7500 \text{ M}^{-1} \text{ cm}^{-1})$; Anal. Calc. for $C_{10}H_{16}N_4 (H_2O)_{0.8}$; C, 58.12; H, 8.58; N, 27.11. Found: C, 58.18; H, 8.66; N, 26.79%. (This material was of sufficient purity for metal complexations. Purification by sublimation twice (130 °C/~20 mTorr) afforded a lighter yellow product. Recrystallization from hexane or heptane followed by sublimation gave a pure white product.)

A crude mixture obtained prior to the use of the toluene azeotropic distillation procedure was shown by NMR and MS analysis to be a mixture of **L2** and **A**. Spectra for **A**: ¹H NMR (CDCl₃, 360.15 MHz, TMS): δ 1.8 (br, s, 2H, NH₂), 1.72 (m, 2H, NCH₂CH₂CH₂N=, J = 6.7 Hz), 1.85 (p, 2H, NCH₂CH₂CH₂NH₂), 2.72 (t, 2H, CH₂NH₂, J = 6.6 Hz), 3.21–3.28 (m, 2H), 3.47–3.60 (m, 8H). ¹³C{¹H} NMR (CDCl₃, 90.56 MHz, ref. central line of CDCl₃ at δ 77.23) δ 21.23 (NCH₂CH₂CH₂N=), 30.79 (NCH₂CH₂CH₂NH₂), 39.05, 45.06, 45.10, 45.16, 46.92, 47.44, 147.80, 152.72. MS (EI): m/z 211.3 (M+1).

2.2.2. 1,4-Bis-(3-aminopropyl)-2,3-piperazinedione (B)

A crude mixture of **L2** and **A** was dissolved in D₂O. NMR analysis was consistent with the formation of **B**. ¹H NMR (D₂O, 360.15 MHz, ref. CH₃CN set at 2.05 ppm) δ 1.74 (p, 4H), 2.62 (t, 4H), 3.49 (t), 3.65 (s, 4H); ¹³C{¹H} NMR (D₂O, 90.56 MHz, ref. center peak of CH₃CN set at 1.7 ppm) δ 29.85, 38.65, 44.83, 46.04, 159.20. This NMR sample was concentrated by rotary evaporation. EtOH (2 mL) was added the sample was again rotary evaporated to ensure the removal of residual D₂O. NMR of this sample in CDCl₃ was consistent with a mixture of **A** and **B**, indicating partial dehydration.

2.2.3. 1,4-Bis-(2-aminoethyl)-2,3-piperazinedione (C)

L1 was dissolved in H₂O and left for 14 h. The solution was concentrated by rotary evaporation, the residue was dissolved in CHCl₃, and the solution was dried over Na₂SO₄. Concentration of the filtrate after the removal of the drying agent afforded a white waxy solid: m.p.: 111–112 °C; ¹H NMR (CDCl₃, 360.15 MHz) δ 1.27 (br s, 4H, NH₂), 2.95 (t, 4H, *J* = 6.3 Hz, CH₂CH₂NH₂), 3.54 (t, 4H, *J* = 6.3 Hz, CH₂CH₂NH₂), 3.64 (s, 4H, NCH₂CH₂N); ¹³C NMR (CDCl₃, 90.56 MHz, ref. central line of CDCl₃ set at 77.23 ppm) δ 39.92, 45.60, 50.76, 158.02; IR (KBr) 3387.7 (NH asym.), 3317 (NH sym.), 1667 cm⁻¹; MS (CI, isobutane) *m*/*z* 183.2 (M-18+1) [16].

2.2.4. $[Pd(L2)_2](BF_4)_2$, complex 1

An amount of Pd(CH₃CN)₄(BF₄)₂ (250 mg, 0.563 mmol) was dissolved in CH₃CN (5 mL). Addition of 4.4 mL (222 mg, 0.5 mmol) CH₃CN of this solution by syringe to **L2** (194 mg, 1.01 mmol) in a flask resulted in a yellow solution. The reaction mixture was stirred at room-temperature for 4 h. The solution was then transferred to test tubes for crystallization by slow Et₂O diffusion. Yellow needles (236 mg, 71% yield) of complex **1** were harvested. ¹H NMR (CD₃CN, 399.75 MHz): δ 1.95 (m, 4H), 3.39 (t, 4H), 3.40 (t, 4H), 3.45 (s, 4H); ¹³C{¹H} NMR (CD₃CN, 100.51 MHz, ref. CD₃CN set at 117.6 ppm): δ 20.1, 46.3, 46.8, 48.7, 155.0; IR (KBr): 1612 cm⁻¹ (N=C-C=N); ESI-MS: 557.1 amu {[Pd(**L2**)₂(BF₄)]⁺}; *Anal.* Calc. for Pd(C₁₀H₁₆N₄)₂(BF₄)₂: (H₂O)_{1.5}: C, 34.74; H, 5.10; N, 16.20. Found: C, 34.78; H, 4.84; N, 16.30%.

2.2.5. [Pd₂(**L1**)₄]Br₄, complex 2

An amount of Pd(PhCN)₂Br₂ (114 mg, 0.241 mmol) and 2.20 equivalents of **L1** (90.8 mg, 0.553 mmol) were dissolved in 7 mL DMSO to give an orange solution. After stirring for 30 min, diethyl ether was slowly diffused in to give a yellow solid (134 mg, 23% yield). ¹H NMR (CD₃OD, 499.775 MHz): δ 3.66 (s, 4H), 3.89–3.94 (AA'XX', 4H), 4.19–4.24 (AA'XX', 4H); ¹³C{¹H} NMR (CD₃OD, 125.67 MHz, ref. CD₃CN set at 117.6 ppm): δ 42.52, 49.47, 54.47, 153.63; IR (KBr): 1605, 1533 cm⁻¹ (N=C-C=N); UV–Vis (DMSO): 315 nm (ε = 50,200 M⁻¹ cm⁻¹); ESI-MS: 1106.5 amu {[Pd₂(L1)₄]Br₃]⁺}; Anal. Calc. for Pd₂(C₈H₁₂N₄)₂Br₄·(H₂O)₄: C, 30.47; H, 4.48; N, 17.77; Br, 25.34. Found: C, 30.05; H, 4.55; N, 17.71; Br, 24.99%.

2.2.6. Zn(L1)₃(NO₃)₂, complex 3

An amount of $Zn(NO_3)_2$ ·6H₂O (34.1 mg, 0.114 mmol) and a slight excess of three equivalents of **L1** (59.0 mg, 0.360 mmol) were dissolved in acetonitrile (5 mL) with stirring. The clear solution was subjected to ether diffusion. Clear rhombic crystals (54.6 mg, 0.0801 mmol, 70%) of **3** grew after 3 days. ¹H NMR (CD₃CN): δ 3.41 (s, 4H), 3.55–3.73 (AA'XX', 4H), 3.75–3.93 (AA'XX', 4H); ¹³C{¹H} NMR (CD₃CN, ref. CD₃CN set at 117.6 ppm): δ 44.93, 53.02, 53.61, 156.64; IR (KBr): 1641, 1628, 1582, 1547 cm⁻¹ (N=C-C=N); Anal. Calc. for $Zn(C_8H_{12}N_4)_3(NO_3)_2$: C, 42.27; H, 5.32; N, 28.75. Found: C, 42.09; H, 5.37; N, 28.97%.

2.2.7. Zn(L2)₃(ClO₄)₂, complex 4

Addition of an amount of $Zn(ClO_4)_2$ · GH_2O (38.6 mg, 0.104 mmol) to a solution of **L2** (61.2 mg, 0.318 mmol) in CH₃CN (20 mL) formed a colorless solution. After stirring for 2 h, this solution was transferred to vials for crystallization by diethyl ether diffusion. X-ray quality colorless crystals of **4** were harvested over several days (44 mg, 50% yield). ¹H NMR (CD₃CN, 399.75 MHz): δ 1.70–1.85 (2m, 3 × 4H), 3.02–3.60 (m, 3 × 12H); ¹³C{¹H} NMR (CD₃CN, 100.53 MHz, ref. CD₃CN set at 117.7 ppm) δ 20.4, 42.5, 46.6, 47.3, 147.3; IR (KBr): 1614 cm⁻¹ (N=C-C=N); *Anal.* Calc. for Zn(C₁₀H₁₆N₄)₃(ClO₄)₂: C, 42.84; H, 5.75; N, 19.78; Cl, 8.43. Found: C, 42.61; H, 5.81; N, 19.71; Cl, 8.64%.

2.2.8. [Hg(L2)₂](HgCl₄), complex 5

Addition of an amount of HgCl₂ (95.3 mg, 0.351 mmol) to a solution of **L2** (71.1 mg, 0.370 mmol) in MeOH (15 mL) resulted

in the precipitation of a white solid. After filtration, the product was washed with additional MeOH and dried under reduced pressure to give a white powder. Clear, colorless cubic crystals were harvested after Et₂O diffusion into a DMF solution of this powder over several days (112 mg, 65% yield). ¹H NMR (CD₃CN, 399.75 MHz): δ 1.93 (m, 4H), 3.37 (t, 4H), 3.42 (s, 4H), 3.51 (t, 4H); ¹³C{¹H} NMR (CD₃CN, 100.52 MHz, ref. CD₃CN set at 117.6 ppm) δ 20.1, 44.9, 46.6, 47.4, 148.0; MS (EI): 429.3 amu {[Hg(**L2**)Cl]⁺}; IR (KBr): 1608 cm⁻¹ (N=C-C=N); *Anal.* Calc. for Hg(C₁₀H₁₆N₄)Cl₂: C, 25.90; H, 3.48; N, 12.08; Cl, 15.29. Found: C, 25.99; H, 3.50; N, 11.93; Cl, 15.10%.

2.2.9. [Hg(**L1**)Cl₂]₂, complex **6**

An amount of HgCl₂ (38.4 mg, 0.103 mmol) was dissolved in 5 mL methanol. Upon addition of a methanol solution of **L1** (84.5 mg, 0.515 mmol in 5 mL) a white precipitate formed. After filtration, this solid was washed with methanol and dried under reduced pressure to give product as a white powder (34.5 mg, 86% yield). This was recrystallized from DMSO by ether diffusion to give clear cubic crystals. ¹H NMR ((CD₃)₂SO): δ 3.73–3.80 (*A*4′XX′, 4H), 3.55–3.70 (*A*4′XX′, 4H), 3.41 (s, 4H); ¹³C{¹H} NMR ((CD₃)₂SO, ref. center line of (CD₃)₂SO set at 39.51 ppm) δ 43.4, 51.7, 52.7, 154.7; IR (KBr): 1624, 1543 cm⁻¹ (N=C-C=N); *Anal.* Calc. for Hg(C₈H₁₂N₄)Cl₂: C, 22.05; H, 2.78; N, 12.86. Found: C, 22.22; H, 2.72; N, 12.67%.

2.2.10. [Cu(**L2**)₃](ClO₄)₂, complex **7**

Addition of an amount of $\text{Cu}(\text{ClO}_4)_2$ ·(H₂O)₆ (37.2 mg, 0.101 mmol) to a solution of **L2** (58.3 mg, 0.303 mmol) in MeCN (5 mL) resulted in the formation of a light blue solution. After stirring for 1 h, the solution was transferred to small vials for crystallization by diethyl ether diffusion. Clear, green X-ray quality crystals were harvested after several days. A total mass of 51.0 mg (60% yield) of the crystals were collected. IR (KBr pellet): 1615 cm⁻¹ (N=C-C=N); *Anal.* Calc. for Cu(C₁₀H₁₆N₄)₃(ClO₄)₂·(H₂O): C, 42.03; H, 5.88; N, 19.61; Cl, 8.27. Found: C, 42.05; H, 5.83; N, 19.35; Cl, 8.18%.

2.2.11. [Cu(L2)₂](ClO₄)₂, complex 8

An amount of Cu(ClO₄)₂·(H₂O)₆ (58.2 mg, 0.157 mmol) and two equivalents of **L2** (59.6 mg, 0.310 mmol) were combined in a flask. A blue precipitate formed immediately when EtOH (5 mL) was added into the flask. The product was collected by filtration and washed with additional MeOH, dried under reduced pressure to give a blue powder (65.7 mg, 66% yield). Clear, dark blue needle crystals were harvested after Et₂O diffusion into a CH₃CN solution of this powder over several days. IR (KBr): 1623 cm⁻¹ (N=C-C=N); *Anal.* Calc. for Cu(C₁₀H₁₆N₄)₂(ClO₄)₂: C, 37.13; H, 4.99; N, 17.32; Cl, 10.96. Found: C, 37.61; H, 5.00; N, 17.45%.

2.2.12. [Ag(L2)₂](BF₄), complex 9

Addition of AgBF₄ (28.9 mg, 0.148 mmol) to a solution of **L2** (62.1 mg, 0.323 mmol) in MeCN (6 mL) generated a light yellow solution. This MeCN solution was transferred to test tubes for recrystallization by ether diffusion. Light yellow crystals (38.9 mg, 45% yield) were harvested from the solution after several days in the dark. ¹H NMR (CD₃CN, 399.75 MHz, ref. center line of CD₂HCN set at 1.96 ppm): δ 1.85 (m, 4H), 3.30 (t, 4H), 3.32 (s, 4H), 3.46 (t, 4H); ¹³C{¹H} NMR (CD₃CN, 100.52 MHz, ref. CD₃CN set at 117.6 ppm) δ 20.7, 46.95, 46.98, 47.6, 148.4; IR (KBr): 1626, 1596 cm⁻¹ (N=C-C=N); *Anal.* Calc. for Ag(C₁₀H₁₆N₄)₂(BF₄): C, 41.47; H, 5.57; N, 19.35. Found: C, 41.58; H, 5.64; N, 19.28%.

2.2.13. [Ag(L2)₂](BPh₄), complex 10

Addition of a solution of $AgBF_4$ (48.8 mg, 0.251 mmol) in EtOH (2 mL) to a solution of **L2** (99.2 mg, 0.516 mmol) in EtOH (3 mL)

produced a cloudy light yellow solution. After stirring for 3 h in the dark, a solution of NaBPh₄ (88.1 mg, 0.257 mmol) in EtOH was added to exchange the counter anion BF_4^- . Immediately, a white precipitate was formed. The white precipitate was filtered off and washed with additional EtOH, followed by drying under vacuum in the dark to give a white powder (144 mg, 71% yield). Clear,

colorless cubic crystals were harvested after Et₂O diffusion into a DMF solution of this white powder in the dark over several days. ¹H NMR (CD₃)₂SO, 399.75 MHz): δ 1.75 (m, 4H), 3.25 (t, 4H), 3.29 (s, 4H), 3.37 (t, 4H), 6.78 (t, 4H), 6.92 (s, 4H), 7.17 (m, 4H); ¹³C{¹H} NMR ((CD₃)₂SO, 100.52 MHz, ref. center line of (CD₃)₂SO set at 40.2 ppm) δ 20.8, 46.7, 47.0, 47.6, 122.3, 126.0, 136.0,

 Table 1

 Crystal data for the new metal complexes of L1 and L2. For full details, see the Supplementary material.

	$Pd_{2}L1_{4}Br_{4}(2)$	$ZnL1_3(NO_3)_2(3)$	$ZnL2_3(ClO_4)_2$ (4)
Chemical formula	$C_{36}H_{54}Br_4N_{18}Pd_2$	C24H36N14O6Zn	C ₃₀ H ₄₈ C ₁₂ N ₁₂ O ₈ Zn
Molecular weight	1271.41	682.04	841.07
Space group	P2(1)/n	Pbcn	P2(1)/n
Color	yellow	colorless	colorless
a (A)	11.7786(7)	17.5946(8)	9.7049(7)
b (A)	17.2310(10)	9.1257(4)	37.191(3)
c (A)	23.4789(14)	18.3195(8)	9.8276(7)
α (°)	90.00	90.00	90.00
p()	90.00	90.00	90.00
V (Å3)	4660 7(5)	2941 4(2)	3540.8(5)
Z	4	4	4
D_{calc} (g/cm ³)	1.812	1.549	1.578
T (K)	173(2)	173(2)	100(2)
μ (Mo K $lpha$) (mm ⁻¹)	4.250	0.901	0.913
Unique data, R _{int}	9761	3454	8222
Parameters/restraints	543/0	204/0	478/0
$R_1 (I > 2\sigma(I))$	0.0493	0.0418	0.0391
R_1 (all data)	0.0795	0.0493	0.0441
WR_2 (all data)	0.1168	0.1458	0.1032
	$Hg_{2}L1_{2}Cl_{4}\left(6\right)$	$HgL2_{2}HgCl_{4}(5)$	$CuL2_3(ClO_4)_2(7)$
Chemical formula	$C_{16}H_{24}C_{14}Hg_2N_8$	$C_{20}H_{32}Cl_4Hg_2N_8$	C30H48Cl2CuN12O8
Molecular weight	871.41	927.52	839.24
Space group	ΡĪ	P2(1)/n	P2(1)/n
Color	colorless	colorless	blue
a (A)	8.6045(2)	16.995(3)	9.5258(11)
b(A)	8.6444(2)	9.5747(14)	37.083(4)
(A)	0.0147(2) 108/0530(10)	17.331(3) 00.00	10.0098(12)
β(°)	96 805(2)	113 641(2)	95 262(2)
ν (°)	109.4500(10)	90.00	90.00
$V(Å^3)$	567.77(2)	2613.2(7)	3521.0(7)
Ζ	1	4	4
D _{calc} (g/cm ³)	2.549	2.358	1.583
T (K)	173(2)	100(2)	100(2)
μ (Mo K α) (mm ⁻¹)	13.996	12.172	0.841
Unique data, R _{int}	2671	5928	8205
Parameters/restraints $P_{i}(I > 2 - (I))$	137/0	307/0	488/4
$R_1 (I \ge 20(I))$ $R_2 (all data)$	0.0257	0.0292	0.0400
wR_2 (all data)	0.0549	0.0685	0.1212
	$C_{\rm H}$ III $(C O_{\rm I})$ (8)	A_{α} J D D (10)	A_{α} I1 (PDb) (12)
Chaminal formula	$\operatorname{Cull}_2(\operatorname{ClO}_4)_2(0)$		
Molecular weight	L40H68CI4CU2N16U18	C ₄₄ H ₅₂ AgBIN ₈ 811.62	C ₇₂ H ₇₆ Ag ₂ B ₂ N ₁₂ 1346 81
Space group	$P_{2}(1)/n$	011.02 D1	D1
Color	blue	r I colorless	r i colorless
a (Å)	13 6639(15)	10 1692(16)	10 418(3)
h(Å)	8 7736(10)	11 3691(17)	21 453(6)
c (Å)	21.757(2)	17.836(3)	28.921(8)
α (°)	90.00	71.899(2)	108.846(4)
β (°)	94.121(2)	82.114(3)	91.832(5)
γ (°)	90.00	88.589(3)	95.322(5)
$V(Å^3)$	2601.6(5)	1941.2(5)	6078(3)
Z	2	2	4
D_{calc} (g/cm ²)	1.698	1.389	1.4/2
$I(\mathbf{K})$	100(2)	100(2)	100(2)
$\mu(MOK\alpha)(IIIII ^{-})$	6031	8705	27084
Parameters/restraints	361/0	487/0	1585/0
$R_1 (I > 2\sigma(I))$	0.0377	0.0534	0.0471
R_1 (all data)	0.0439	0.0664	0.0664
$wR_{\rm e}$ (all data)	0.1078	0.1296	0.1170

148.3; IR (KBr): 1602 cm^{-1} (N=C-C=N); Anal. Calc. for $Ag(C_{10}H_{16}N_4)_2(BC_{24}H_{20})[Ag(BC_{24}H_{20})]_{0.9}$: C, 65.88; H, 5.90; N, 9.37. Found: C, 65.59; H, 5.82; N, 9.14%.

2.2.14. [Ag₂(**L1**)₄](BF₄)₂, complex **11**

Addition of an amount of AgBF₄ (156 mg, 0.800 mmol) to a solution of **L1** (268 mg, 1.63 mmol) in MeCN (20 mL) generated a light yellow solution. The reaction mixture was stirred overnight. After centrifugation, the MeCN supernatant was transferred to test tubes for recrystallization in the dark by ether diffusion. Colorless cubic crystals (308 mg, 74% yield) were harvested from the solution after several days. ¹H NMR (CD₃CN, 399.75 MHz, ref. center line of CD₂HCN set at 1.96 ppm): δ 3.37 (s, 4H), 3.53–3.58 (t, 4H), 3.79–3.85 (t, 4H); ¹³C{¹H} NMR (CD₃CN, 100.52 MHz, ref. CD₃CN set at 117.6 ppm) δ 44.21, 51.98, 53.90, 156.19; IR (KBr): 1630 cm⁻¹ (N=C-C=N); *Anal.* Calc. for Ag(C₈H₁₂N₄)₂BF₄: C, 36.74; H, 4.62; N, 21.42. Found: C, 36.58; H, 4.83; N, 21.16%.

2.2.15. [Ag₂(**L1**)₃](BPh₄)₂, complex **12**

Addition of an amount of AgBF₄ (151 mg, 0.778 mmol) to a solution of L1 (274 mg, 1.67 mmol) in MeCN (40 mL) yielded a colorless solution with a brown precipitate. After stirring for 6 h in the dark, one equivalent of NaBPh₄ (267.0 mg, 0.780 mmol) was added to exchange the counteranion. Then the solution was stirred for 2 h in the dark. After filtering the insoluble brown solid off, the filtrate was concentrated to 20 mL. Then 100 mL of ethanol was added to produce a white precipitate. This white precipitate was collected and washed with additional EtOH, then dried under vacuum overnight to give a white solid (435 mg, 74% yield). Clear, colorless crystals were harvested after Et₂O diffusion into CH₃CN solution of this white solid in the dark over several days. ¹H NMR (CD₃CN, 399.75 MHz, ref. center line of CD₂HCN set at 1.96 ppm): δ 3.38 $(s, 3 \times 4H), 3.57 (t, 3 \times 4H), 3.84 (t, 3 \times 4H), 6.87 (t, 8H), 7.02 (t$ 16H), 7.29 (m, 16H); ¹³C{¹H} NMR (CD₃CN, 100.52 MHz, ref. CD₃CN set at 117.6 ppm) δ 44.0, 51.8, 54.0, 122.1, 125.9, 136.0, 156.1; IR 1621 cm^{-1} (N=C-C=N);Anal. (KBr): Calc. for Ag₂(C₈H₁₂N₄)₃(BC₂₄H₂₀)₂: C, 64.21; H, 5.69; N, 12.48. Found: C, 64.21; H, 5.58; N, 12.50%.

2.3. X-ray crystallography

A summary of data collection and refinement results are presented in Table 1. Further details can be found in the CIF files deposited with CCDC. Software employed for structure determination include: APEX2 Version 2.2/SHELXTL (Bruker AXS Inc., 2007), AINT Version 7.34a (Bruker AXS Inc., 2007), SADABS Version 2007/2 (Sheldrick, Bruker AXS Inc.), XPREP Version 2005/2 (Sheldrick, Bruker AXS Inc.). The Bruker suite of programs APEX2/SHEL-XTL, SAINT, SADABS, XPREP may be obtained from Bruker AXS Inc., 5467 East Cheryl Parkway, Madison WI 53711. XS Version 2008/1 and XL Version 2008/1 [17].

X-ray crystal structure figures were prepared using Crystal-Maker 8.2 for Mac (CrystalMaker Software Ltd., Centre for Innovation and Enterprise, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire, OX5 1PF, UK; http://www.crystalmaker.com) Hydrogens, counterions and solvents have been removed for clarity. For all heavy atoms, 50% thermal ellipsoids are shown.

3. Results and discussion

3.1. Synthesis

The bisamidine **L2** was prepared in a similar procedure as **L1** by the reaction of dithiooxamide and *N*,*N*'-bis-(3-aminopropyl)-1,2-

ethylenediamine (Scheme 1) [15]. It the case of **L2**, it was found that post-reaction azeotropic distillation with toluene was necessary in order to avoid contamination of the product by hydrolysis products (*vide infra*). The resulting solid had a yellow coloration due to traces of residual dithiooxamide. Although this was sufficiently pure for complexation studies by virtue of elemental and spectral analyses, it can be further purified by recrystallization from hexane or heptane followed by sublimation to give white crystalline **L2**.

Our initial attempts to synthesize L2 by the above dithiooxamide method were frustrated by the presence of an unexpected byproduct. NMR and mass spectra were consistent with contamination of L2 by mixed amide-amidine A (Scheme 2), the result of apparent partial hydrolysis of L2. This hypothesis was confirmed by a series of NMR-scale experiments. When the L2/A mixture was dissolved in D₂O, proton and carbon NMR spectra showed the formation of fully hydrolyzed diamino-oxamide **B**. Attempted isolation of **B** by azeotropic removal of water with EtOH gave a mixture of **A** and **B**, showing that the hydrolysis is readily reversible (Scheme 2). With this observation in hand, the L2/A mixture was azeotropically distilled with toluene over a Dean-Stark trap, giving L2 and thus leading to the modified procedure for the synthesis of L2 noted above. The fact that this hydrolysis problem had to be overcome was a little surprising since no hydrolysis of L1 had been observed in the past and no special precautions had been taken during its synthesis. As a control experiment, a small

Scheme 2. Hydrolysis studies of L1 and L2.

Pd(MeCN) ₄ (BF ₄) ₂ + 2 L2	 MeCN	-	$[Pd(L2)_2](BF_4)_2$ (complex 1)
2 Pd(PhCN) ₂ Br ₂ + 4 L1	 DMSO	->	$[Pd_2(L1)_4]Br_4$ (complex 2)
Zn(NO ₃) ₂ + 3 L1	 MeCN	-	$[Zn(L1)_3](NO_3)_2$ (complex 3)
Zn(ClO ₄) ₂ + 3 L 2	 MeCN	->	$[Zn(L2)_3](CIO_4)_2$ (complex 4)
2 HgCl ₂ + 2 L2	 MeOH	->	[Hg(L2) ₂](HgCl ₄) (complex 5)
2 HgCl ₂ + 2 L1	 MeOH	->	[Hg(L1)Cl ₂] ₂ (complex 6)
Cu(ClO ₄) ₂ + 3 L2	 MeCN	-	$[Cu(L2)_3](ClO_4)_2$ (complex 7)
Cu(ClO ₄) ₂ + 2 L2	 EtOH	->	$[Cu(L2)_2](ClO_4)_2$ (complex 8)
AgBF ₄ + 2 L2	 MeCN	->	$[Ag(L2)_2]BF_4$ (complex 9)
AgBF ₄ + 2 L2	 EtOH NaBPh ₄	-	[Ag(L2) ₂]BPh ₄ (complex 10)
2 AgBF ₄ + 4 L1	 MeCN		$[Ag_2(L1)_4](BF_4)_2$ (complex 11)
2 AgBF ₄ + 3 L1	 MeCN NaBPh ₄	->	[Ag ₂ (L1) ₃](BPh ₄) ₂ (complex 12)

Scheme 3. Preparation of the metal complexes of L1 and L2.

sample of **L1** was dissolved in D_2O . In a matter of hours, **L1** was completely converted to diamino-oxamide **C** (NMR; kinetics have not been carried out). It was possible in this case to isolate the fully hydrolyzed product, **C**, and it was subsequently shown that it could be dehydrated back to **L1** using azeotropic distillation with toluene (Scheme 2). Qualitatively, **L2** is more sensitive towards hydrolysis than **L1**. While it is not clear whether this is a kinetic or a thermodynamic effect, both sequential hydrolyses appear to be completely reversible.

All described metal complexes were readily prepared in good yields by room-temperature reactions between **L1** and **L2** and the respective metal precursor in appropriate solvents such as ace-tonitrile, DMSO, methanol, or ethanol (Scheme 3). Resulting crude products were typically recrystallized by diethyl ether diffusion into a sample solution.

In contrast to the facile synthesis of the bimetallic cuprous $[Cu_2(L1)_3](BF_4)_2$ complex from $[Cu(CH_3CN)_4]BF_4$ [12], attempts to prepare Cu(I) complexes of L2 were unsuccessful as the initially beige-colored solids were readily oxidized to Cu(II) products during purification procedures. The inability of L2 to bridge cuprous centers and its stable chelation of Cu(II) likely contribute to this oxidation propensity.

3.2. Spectral characterization

A solid-state FT-IR spectrum of bisamidine **L1** displays strong symmetric and asymmetric N=C-C=N stretches at 1631 and 1616 cm⁻¹ respectively [13,14].

The solid-state FT-IR spectrum of new bisamidine ligand **L2** shows a broad and strong N=C-C=N band at 1601 cm⁻¹ and its electronic spectrum exhibits an intense π - π * band at 248 nm (ε 7500 M⁻¹ cm⁻¹). The proton NMR spectrum of ligand **L2** features two apparent triplets (N-CH₂-CH₂-CH₂-N= : AA' and MM' of

AA'MM'XX' where the J_{AM} type long-range couplings are small), one apparent pentet (N–CH₂–CH₂–CH₂–N= : XX' of AA'MM'XX' where the J_{AM} long-range couplings are small), and a singlet (N– CH₂–CH₂–N). Its ¹³C{¹H} NMR spectrum also suggests a $C_{2\nu}$ timeaveraged geometry with only four upfield signals between δ 21.5 and 48.1 and the amidine resonance at δ 148.0.

All characterized complexes of **L1** and **L2** exhibit strong N=C-C=N stretches between 1525 and 1670 cm⁻¹ in their IR spectra. However, both symmetric and asymmetric stretches are clearly resolved in only two of these compounds.

3.2.1. Palladium complexes 1 and 2

A proton NMR spectrum of the $[Pd(L2)_2](BF_4)_2$ complex 1 in CD_3CN suggests retention of the averaged bisamidine $C_{2\nu}$ symmetry albeit with downfield chemical shifts. The amidine ${}^{13}C{}^{1}H$ NMR signal is also shifted downfield by 8.5 ppm from the free ligand value. Its monomeric nature in methanol solution was confirmed by an ESI-MS study which revealed a parent peak at 577.1 amu consistent with the $[Pd(L2)_2](BF_4)^+$ species. By contrast, the dimeric nature of complex 2, [Pd₂(L1)₄]Br₄, in methanol was supported by its ESI-MS spectrum which featured a parent peak at 1106.5 amu for the $[Pd_2(L1)_4]Br_3^+$ solution species. This is also in agreement with its solid-state (vide infra) structure which has approximate D_4 symmetry with an average twist angle of around 35° for the four bridging bisamidines. Interestingly, proton NMR spectra of the $[Pd_2(L1)_4]Br_4$ complex 2 in either d₆-DMSO or d₄methanol displayed only a singlet and two apparent triplets. This is indicative of an averaged bisamidine $C_{2\nu}$ symmetry due to a facile dynamic process. Although significant broadening of these signals was observed in d4-methanol, no decoalescence was observed down to -90 °C. Since no bisamidine exchange was found between free ligand and this complex, this fluxional process most likely in-

Table 2	
Selected bond data for the new metal complexes of L1 and L2. For full structural details, see Supplementary material.	

Complex	Metal–N distance (Å)	Coordinated chelate amidine N-metal- N bite angle (°)	Coordinated amidine C=N (imino) distance (Å)	Coordinated amidine C–N (amino) distance (Å)	Coordinated amidine C–N (amino)–C angle sum (°)	Bisamidine N=C-C=N torsion angle (°)
$Pd_2Ll_4Br_4(2)$ $ZnLl_3(NO_3)_2(3)$	2.006(avg) 1.976 (η^1)	92 52	1.304(avg) 1.295 1.297	1.334(avg) 1.337 1.225	358.7(avg) 357.6 255.2(avg)	7.0–20.6 3.6
$ZnL2_3(ClO_4)_2$ (4) [HgL1Cl ₂] ₂ (6)	2.079 (η) 2.151(avg) 2.129 2.946	83.53 75.7(avg)	1.287 1.290(avg) 1.299 1.280	1.335 1.352(avg) 1.330 1.374	355.2(avg) 357.4(avg) 356.8 344.9	4.8 2.9–19.2 8.8
$[Hg L2_2] Hg Cl_4 (5) Cu L2_3 (ClO_4)_2 (7)$	2.251(avg) 2.324(ax) 2.027(eq)	73.4(avg) 73.3-79.4	1.294(avg) 1.290(avg)	1.340(avg) 1.351(avg)	358.2(avg) 358.2(avg)	-1.2-12.3 5.6-20.9
$\begin{array}{c} CuL2_2(ClO_4)_2 \ (\textbf{8}) \\ AgL2_2BPh_4 \ (\textbf{10}) \\ Ag_2Ll_3(BPh_4)_2 \\ (\textbf{12}) \end{array}$	1.965(avg) 2.299(avg) 2.104–2.209 (μ ²)	82.99(avg) 71.5(avg)	1.300(avg) 1.288(avg) 1.295(avg)	1.337(avg) 1.357(avg) 1.359(avg)	358.7(avg) 357.9(avg) 351.8(avg)	13.7(avg) 8.7–20.9 0.7
	2.171–2.622 (η^2) 2.095–2.109 2.725–2.820 (unsymmetrical- η^2)	74.0	1.284(avg) 1.28(avg) 1.30(avg)	1.363(avg) 1.36(avg) 1.38(avg)	350.2(avg) 351(avg) 350(avg)	4.3 6.9(avg)

(avg) = average value; (ax) = axial; (eq) = equatorial; (η^1) = monodentate; (η^2) = chelating; (μ^2) = bimetallic bridging.

volves the intramolecular synchronized twisting of all bridging ligands about its Pd–Pd axis to attain an averaged D_{4h} symmetry.

3.2.2. Zinc complexes 3 and 4

Since the solid-state structure of $Zn(L1)_3(NO_3)_2$, **3**, features one chelating and two monodentate ligands while its proton and C-13 NMR spectra revealed a single set of ligand signals indicative of $C_{2\nu}$ symmetry, a facile dynamic process must be occurring in solution to average all three bisamidines. Interestingly, complex **4** $Zn(L2)_3(CIO_4)_2$ displays two sets of unequal upfield bisamidine β -CH₂ multiplets (1.4:1 ratio) in its room-temperature proton NMR spectrum. Variable-temperature studies between -40 and +70 °C in CD₃CN revealed a 1.3:1 ratio at -40° that increased with temperature till near coalescence at +70 °C (see Supplementary material spectra 1 and 2). One plausible explanation of this behavior may be the presence of a 2:1 as well as 3:1 complex in solution with the former increasingly favored by a higher temperature. Further studies are needed to confirm this hypothesis.

3.2.3. Mercury complexes 5 and 6

The Hg(**L2**)₂(HgCl₄) complex **5** displayed solution spectral behavior consistent with a symmetrical bisamidine environment. Absence of ¹³C–¹⁹⁹Hg satellites in its C-13 NMR spectrum is consistent with facile ligand exchange. Although the X-ray structure of the dimeric complex **6**, [Hg(**L1**)Cl₂]₂, displayed an unsymmetrically-chelating ligand, its simple solution NMR spectra, again with absence of ¹³C–¹⁹⁹Hg satellites, indicated fast ligand exchange.

3.2.4. Silver complexes 9-12

Like both the mercuric complexes, silver(I) complexes **9–12**; Ag(**L2**)₂BF₄, Ag(**L2**)₂BPh₄, Ag₂(**L1**)₄(BF₄)₂, and Ag₂(**L1**)₃(BPh₄)₂ all display a single set of bisamidine proton signals indicative of averaged $C_{2\nu}$ ligand geometry and facile exchange with any added free ligand. Consistent with this rapid exchange, no ¹³C–^{107,109}Ag satellites were observed. As described in the next section, in the solidstate complexes **10** and **12**, Ag(**L2**)₂BPh₄ and Ag₂(**L1**)₃(BPh₄)₂, were found to have very different coordination modes.

3.3. X-ray structural studies

Crystal structure data for the nine new complexes are summarized in Table 1. Relevant bond lengths and angles are collected in Table 2. Full details of the structural determinations and bond data can be found in the Supplementary material.

While both L1 and L2 are preconstrained so as to present a limited range of synperiplanar N=C-C=N torsion angles centered about zero (Table 2), new ligand L2 is more conformationally flexible because of the distal six-membered rings. Two basic types of conformations are observed in the chelated L2 ligands of the structures reported herein. In one type, the central methylene of each -CH₂-CH₂-CH₂- distal ring "flap" is distorted in the same direction away from the mean plane of the bisamidine unit of the ligand (denoted SYN for the purpose of further discussion). Symmetry is C_1 rather than C_s in this case. In the second type, the two flaps are distorted in opposite directions relative to the mean plane (denoted ANTI) and the ligand has approximate C_2 symmetry. There is no apparent correlation between the type of conformation and the magnitude of the observed N=C-C=N torsion angles in the coordination complexes. Both SYN and ANTI are observed to have torsion angles ranging up to approximately 20°. In one case (vide infra), disorder between these two conformational types is observed. It is likely that the energy difference between such conformations is small, and possible that the preference is determined by packing.

3.3.1. The [Pd₂(L1)₄]Br₄ complex 2

In this dimeric structure approximating D_4 symmetry, the two palladium centers are held at a distance of 2.741(6) Å by four bridging bisamidines which exhibit a twist angle of about 35° down the Pd-Pd axis (Fig. 2). All Pd-N distances are very similar, ranging only from 1.998 to 2.014 Å. An essentially square-planar PdN₄ coordination sphere is found around each metal center. The lengthened average C=N bond length of 1.30 Å (compared to the uncoordinated diimino C=N distance of 1.27–1.28 Å, vide infra) is consistent with strong Pd–N bonding due to amidine conjugation. The diffience (N=C-C=N) dihedral angles are splaved out from 7° to 21° to accommodate metal bridging. A dipalladium complex bridged by two bioxazolines has been structurally characterized and here the Pd-Pd separation was found to be substantially longer at 2.894 Å [18]. A formamidinate-bridged palladium(II) dimer of D₄ symmetry has been reported in the literature [19]. Its Pd-Pd separation is substantially shorter at 2.555(1) Å due to its smaller NCN bridging units.

Fig. 2. Structure of [Pd2(L1)₄]Br₄, complex 2. Bromides not shown.

Fig. 3. Structure of Zn(L2)₃(ClO₄)₂, complex 4. Perchlorates not shown.

3.3.2. The $Zn(L1)_3(NO_3)_2$ and $Zn(L2)_3(ClO_4)_2$ complexes 3 and 4

The six-coordinate complex **4**, $Zn(L2)_3(ClO_4)_2$, structure approximates overall D_3 symmetry with a trigonal twist angle of 45° (Fig. 3). An average Zn–N distance of 2.15 Å and bite angle of 75.7° are close to the idealized **L2** metal chelation geometry. The ligand is not severely-distorted from planarity as indicated by an average amino C–N–C angle sum of 357°. An average C=N distance of 1.29 Å and C–N of 1.35 Å are observed. All three of the **L2** ligands in the complex adopt *SYN* conformations with N=C–C=N torsion angles of the same sign ranging from 2.9° to 19.2°. Three structural reports of Zn(II) complexes with three chelating biimidazoles or bioxazolines have appeared [20–22]. All these have very similar N–Zn–N bite angles of 76–79°, Zn–N distances of 2.16–2.26 Å, C=N bond lengths of 1.26–1.33 Å, and N=C–C=N torsion angles of 0.5–8.8°.

Fig. 4. Structure of Zn(L1)₃(NO₃)₂, complex 3. Nitrates omitted.

By contrast, only one bisamidine in complex 3, $Zn(L1)_3(NO_3)_2$, is chelating while the remaining two are essentially monodentate $(Zn(1) \cdots N(3)$ separation is over 3.00 Å), yielding a *pseudo*-tetrahedral Zn(II) coordination sphere (Fig. 4). A C_2 axis passes through the metal and chelating ligand with N–Zn–N bite angle of 83.5(1)°, far from the idealized 35° for the free ligand. The chelating Zn-N distance of 2.079(2) Å is significantly longer than the monodentate Zn–N distance of 1.976(2) Å. Within the monodentate L1, the coordinated C=N is elongated to 1.295(3) Å compared to 1.276(3) Å for the uncoordinated C=N bond, while the N-C bond is significantly shorter (1.337(3) Å) upon coordination compared to the uncoordinated side (1.379(3) Å). The sum of C-N-C bond angles around the bound amidine ring amino nitrogen N(2) (357.6(3)°) is close to planarity compared to a much more pyramidalized $N(4)(344.7(3)^\circ)$ in the uncoordinated amidine. These data are fully consistent with associated amidine polarization upon metal coordination.

3.3.3. The $[Hg(L2)_2]HgCl_4$ and $[Hg(L1)Cl_2]_2$ complexes 5 and 6

The structure of the $[Hg(L1)Cl_2]_2$ complex **6** has inversion symmetry with two bridging chlorides, one terminal chloride, and an unsymmetrically-chelating bisamidine at each five-coordinate mercuric center (Fig. 5). The two disparate Hg–N bond-lengths are 2.129(4) and 2.946(4) Å. As a result, the strongly-bound amidine C=N is slightly lengthened to 1.299(5) Å compared to 1.280(6) Å for the weakly-bound C=N group, while the amidine C–N bond shortens significantly to 1.330(5) Å from 1.374(5) Å. Consistent with increased amidine polarization, this amino N's C–N–C angles sum to a near-planar 356.7(6)°.

The complex **5**, $[Hg(L2)_2]HgCl_4$, structure features a mercury coordination geometry that approximates a trigonal bipyramid

Fig. 5. Structure of [Hg(L1)Cl₂]₂, complex 6.

Fig. 6. Structure of [Hg(L2)₂]HgCl₄, complex 5.

 $(\tau = 0.825)$ [23] with one weak equatorial coordination of the HgCl₄²⁻ dianion through a Cl bridge at 3.045(5) Å (Fig. 6). The axial N(2)–Hg(1)–N(5) angle is 170.3(2)° while equatorial N(1)–Hg(1)–N(6) angle is 120.8(2)°. The chelating bisamidines have bite angles of 73°, close to the idealized value of 75° for **L2**. Hg–N bond distances within the chelate ring, however, are somewhat unsymmetrical with Hg(1)–N(1) significantly longer at 2.329(5) Å compared to Hg(1)–N(2) at 2.151(4) Å, for example. The average C–N–C angle sum at the amino N's is 358.3°. The ligand with the HgCl₄ moiety perched above is *ANTI* with a N=C–C=N torsion angle of –1.2°, while the other is *SYN* with a 12.3° torsion angle.

3.3.4. The $Cu(L2)_3(ClO_4)_2$ and $Cu(L2)_2(ClO_4)_2$ complexes 7 and 8

The 3:1 complex **7** Cu(**L2**)₃(ClO₄)₂ has a similar structure to the previously-reported Cu(**L1**)₃(ClO₄)₂ featuring a tetragonal geometry with Jahn–Teller elongations along the N(5)–Cu(1)–N(12) axis (Fig. 7). One symmetrically and two unsymmetrically-chelating bisamidines are found in each case, though the weaker axial Cu–N bonds are substantially elongated in Cu(**L1**)₃(ClO₄)₂ at 2.81 and

Fig. 8. Structure of Cu(L2)₂(ClO₄)₂, complex 8. Only one perchlorate shown.

2.84 Å, likely due to its smaller idealized bite angle. One of the unsymmetrically-chelating **L2** ligands adopts the *SYN* conformation with a relatively large N=C-C=N torsion angle of 20.1°. The other exhibits two-site torsional disorder in one of the distal sixrings (*SYN* and *ANTI*, indicated by the two half-occupancy carbons C(17)/C(17a) connected through two-tone bonds). The symmetrically chelating **L2** adopts a *SYN* conformation with a N=C-C=N torsion angle of -5.6° .

The monomeric 2:1 complex **8**, $Cu(L2)_2(ClO_4)_2$, features a very distorted square pyramidal Cu(II) ($\tau = 0.27$) with two chelating equatorial ligands and a weak axial perchlorate coordination at 2.817 Å (Fig. 8). Strong Cu–N bonding is indicated by the short average distance of 1.965 Å, lengthened C=N of 1.300 Å and short-ened amino-C of 1.337 Å. One of the ligands adopts the *SYN* and the other the *ANTI* conformation, with similar N=C-C=N torsion angles of 12.1° and 15.2° respectively. This structure contrasts dramatically with the reported dimeric structure of $[Cu(L1)_2]_2(ClO_4)_4$ which has a Cu–Cu distance of 2.775(1) Å supported by four bridging bisamidines [12].

3.3.5. The $Ag(L2)_2BPh_4$ and $Ag_2(L1)_3(BPh_4)_2$ complexes 10 and 12

A severely-distorted tetrahedral silver coordination is revealed in the structure of complex **10**, $Ag(L2)_2BPh_4$, with two chelating bisamidines with N–Ag–N bite angles nearing 72° (Fig. 9). Each li-

Fig. 9. Structure of Ag(L2)₂BPh₄, complex 10. Anion omitted.

Fig. 10. Structure of Ag₂(L1)₃(BPh₄)₂, complex 12. Anions not shown.

gand is flattened with an amine bond angle sum of 358°. The two ligands are conformationally distinct in the complex, one having the SYN and the other the ANTI conformation, with N=C-C=N torsion angles of -8.7° and 20.9° respectively.

By contrast, the two independent $Ag_2(L1)_3(BPh_4)_2$ dimeric units in the X-ray structure of complex **12** both feature three distinct L1 coordination modes: symmetrical bridging, unsymmetrical chelating, as well as unsymmetrical bridging (Fig. 10).

Only one of these units will be discussed. The Ag(1)-Ag(2) distance of 2.8749(6) Å is shorter than that found in metallic silver (2.89 Å) and considerably shorter than their van der Waals sum of 3.44 Å. BIIM-bridged as well as unbridged Ag₂ structures have been reported [20]. Silver-silver separations of 2.83-3.08 Å are observed. Here in $Ag_2(L1)_3(BPh_4)_2$, Ag(2) is five-coordinate while Ag(1) has a T-shaped coordination sphere augmented by a weak interaction with a bridging amidine nitrogen (N(6)). As a result, disparate Ag-N bond lengths are observed; symmetrical bridging Ag-N distances range from 2.104(3) to 2.209(3) Å, and unsymmetrical bridging is indicated by Ag(1)-N(5) at 2.095(3) Å and Ag(2)-N(6) at 2.820(3) Å. However, the approach angle for N(6) to Ag(2)is far from ideal. In fact, this nitrogen is better oriented for a very long chelation to Ag(1) at a 3.086 Å distance. Less exaggerated unsymmetrical chelation is seen in the pair of Ag(2)-N(9) and Ag(2)–N(10) bond lengths of 2.244(3) and 2.551(3) Å.

4. Summary and conclusions

With the characterization of these eleven new complexes including nine X-ray structural studies, the tricyclic bisamidines **L1** and **L2** have been shown to have extensive metal coordination chemistry. To date **L1**, with divergent donor lone pairs, has been found in monodentate, symmetrical and unsymmetrical chelating, as well as symmetrical and unsymmetrical metal-bridging modes in its solid-state structures. These include Mn(II), Fe(II), Ru(II),

Co(II), Pd(II), Cu(I), Cu(II), Ag(I), Zn(II), Cd(II), Hg(II), as well as several lanthanide(III) complexes (La, Eu, Gd, and Lu) [24]. The design of **L2** with two six-membered bisamidine rings in its backbone to provide significantly more convergent lone pairs was intended to favor the chelation mode. Indeed, this has been the only experimentally-observed coordination mode in X-ray structures of its Cu(II), Zn(II), Hg(II), Ag(I), Eu(III) and Gd(III) complexes [14]. These data confirm our premise that tuning of the coordination chemistry of this family of tricyclic bisamidines can be readily attained through ring size variations. Finally, in all complexes studied, coordination of the amidine moiety results in lengthening of its C=N bond, shortening of its C–N bond, and a less pyramidal amine nitrogen, entirely consistent with anticipated coordination-induced polarization of the amidine unit.

Appendix A. Supplementary material

CCDC 777814, 777815, 777816, 777817, 777818, 777819, 777820, 777821 and 777822 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ica.2010.08.015.

References

- [1] A.P. Smith, C.L. Fraser, Compr. Coord. Chem. II 1 (2004) 1.
- [2] B.-H. Ye, M.-L. Tong, X.-M. Chen, Coord. Chem. Rev. 249 (2005) 545.
- [3] O. Maury, H. Le Bozec, Acc. Chem. Res. 38 (2005) 691.
- [4] V. Balzani, G. Bergamini, F. Marchioni, P. Ceroni, Coord. Chem. Rev. 250 (2006) 1254.
- [5] C.R. Luman, F.N. Castellano, Compr. Coord. Chem. II 1 (2004) 25.
- [6] R.D. Hancock, D.L. Melton, J.M. Harrington, F.C. McDonald, R.T. Gephart, L.L. Boone, S.B. Jones, N.E. Dean, J.R. Whitehead, G.M. Cockrell, Coord. Chem. Rev. 251 (2007) 1678.
- [7] M. Tadokoro, K. Nakasuji, Coord. Chem. Rev. 198 (2000) 205.
- [8] J.C. Yoder, J.P. Roth, E.M. Gussenhoven, A.S. Larsen, J.M. Mayer, J. Am. Chem. Soc. 125 (2003) 2629.
- [9] D. Rechavi, M. Lemaire, Chem. Rev. (Washington, DC, US) 102 (2002) 3467.
- [10] S. Dagorne, S. Bellemin-Laponnaz, A. Maisse-Francois, Eur. J. Inorg. Chem. (2007) 913.
- [11] A. Pfaltz, Asymmetric Synth. (2007) 131.
- [12] D.W. Widlicka, E.H. Wong, G.R. Weisman, K.C. Lam, R.D. Sommer, C.D. Incarvito, A.L. Rheingold, Inorg. Chem. Commun. 3 (2000) 648.
- [13] D.W. Widlicka, MS Thesis, Department of Chemistry, University of New Hampshire, Durham, NH, USA, 2002.
- [14] J. Li, MS Thesis, Department of Chemistry, University of New Hampshire, Durham, NH, USA, 2007.
- [15] D.P. Reed, G.R. Weisman, Org. Synth. 78 (2002) 73.
- [16] I. Saikawa, T. Hori, K. Momoi, Y. Kobane, T. Yasuda, M. Miyahara, S. Tai, H. Tsuda, M. Doi, S. Kishimoto, in: Toyama Chemical Co., Ltd., Japan, Patent Application: JP, 1979, p. 10.
- [17] G.M. Sheldrick, Acta Crystallogr., Sect. A A64 (2008) 112.
- [18] A. Scarel, J. Durand, D. Franchi, E. Zangrando, G. Mestroni, C. Carfagna, L. Mosca, R. Seraglia, G. Consiglio, B. Milani, Chem.-Eur. J. 11 (2005) 6014.
- [19] F.A. Cotton, J. Gu, C.A. Murillo, D.J. Timmons, J. Am. Chem. Soc. 120 (1998) 13280.
- [20] R.-L. Sang, L. Xu, Eur. J. Inorg. Chem. (2006) 1260.
- [21] R.Q. Zou, Q. Xu, Acta Crystallogr., Sect. E: Struct. Rep. E61 (2005) m1075.
- [22] G.K. Patra, I. Goldberg, A. Sarkar, S. Chowdhury, D. Datta, Inorg. Chim. Acta 344 (2003) 7.
- [23] A.W. Addison, T.N. Rao, J. Reedijk, J. Van Rijn, G.C. Verschoor, J. Chem. Soc., Dalton Trans. (1984) 1349.
- [24] K.A. Fichter, MS Thesis, Department of Chemistry, University of New Hampshire, Durham, NH, USA, 2004.