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A B S T R A C T

Monoacylglycerol lipase (MAGL) has emerged as an attractive drug target because of its important role in
regulating the endocannabinoid 2-arachidonoylglycerol (2-AG) and its hydrolysis product arachidonic acid (AA)
in the brain. Herein, we report the discovery of a novel series of diazetidinyl diamide compounds 6 and 10 as
potent reversible MAGL inhibitors. In addition to demonstrating potent MAGL inhibitory activity in the enzyme
assay, the thiazole substituted diazetidinyl diamides 6d–l and compounds 10 were also effective at increasing 2-
AG levels in a brain 2-AG accumulation assay in homogenized rat brain. Furthermore, selected compounds have
been shown to achieve good brain penetration after oral administration in an animal study.

Monoacylglycerol lipase (MAGL) is a serine hydrolase that is pri-
marily responsible for degrading 2-arachidonoylglycerol (2-AG) to
arachidonic acid (AA) and glycerol in the brain.1 2-AG is a prominent
endocannabinoid and an agonist for both cannabinoid receptor 1 (CB1)
and cannabinoid receptor 2 (CB2).2 AA, the 2-AG hydrolysis product by
MAGL, is a precursor for proinflammatory eicosanoids that can cause
neuroinflammation and lead to neurodegenerative diseases, such as
Alzheimer’s disease and Parkinson’s disease.3 Inactivation of MAGL has
been shown in animal models to elevate the level of 2-AG and reduce
the level of AA in the brain.4 Consequently, MAGL inhibition poten-
tially brings a dual benefit in treating diseases with an inflammatory
component, first by increasing 2-AG mediated cannabinoid receptor
activation and second by reducing the supply of AA-derived proin-
flammatory eicosanoids.5 Furthermore, MAGL has been implicated in
certain cancer cell growth; therefore, MAGL inhibitors may also be
useful as anti-cancer agents.5,6 As a result, MAGL has gathered in-
creasing attention as an attractive drug target, and a number of MAGL
inhibitors have been reported. The majority of those reported in-
hibitors, however, are irreversible and form a covalent bond with
MAGL;5c,7 and studies have shown that chronic inhibition of MAGL by
an irreversible MAGL inhibitor or genetic deletion of MAGL leads to
desensitization of CB1, which eventually impairs the beneficial 2-AG
mediated effects that are CB1-dependent.4a,4b A potential approach to
alleviate such drawbacks associated with irreversible inhibition of
MAGL is to identify reversible MAGL inhibitors for therapeutic use.5c,8

We have previously reported a potent reversible MAGL inhibitor

(compound 1, Fig. 1).9 Structural optimization based on compound 1 to
improve metabolic stability led to the discovery of a novel series of
diazetidinyl diamides (Fig. 1) as potent reversible inhibitors of MAGL.

The synthesis of diazetidinyl diamide compounds 6 is shown in
Scheme 1. 1-Boc-3-amino-azetidine 2 was reacted with carboxylic acid
(R1CO2H) or acid chloride (R1COCl) under standard amide formation
conditions to give compound 3. Removal of the Boc protecting group
under acidic conditions (CF3CO2H, CH2Cl2) followed by reductive
amination with 1-Boc-3-azetidinone 4 [Na(OAc)3BH, acetic acid, 1,2-
dichloroethane] led to compound 5. The Boc protecting group of 5 was
removed (CF3CO2H, CH2Cl2), and the resulting product was reacted
with a second carboxylic acid (R2CO2H) or acid chloride (R2COCl) to
give the final product diazetidinyl diamide 6.

Representative diazetidinyl diamide compounds 6 are summarized
in Table 1. In vitro MAGL inhibitory activity of the compounds was
measured in an enzyme assay using purified wild-type human MAGL or
mutant human MAGL,10 which is a more soluble form of the wild-type
enzyme with comparable catalytic activity.9 In addition, a brain 2-AG
accumulation assay was established to assess a given compound’s ef-
fectiveness in elevating 2-AG levels in rat brain tissue, a consequence of
MAGL inhibition.11 In this assay, 2-AG levels in homogenized rat brain
incubated with test compound were measured and compared to those
incubated with the vehicle. The activity of the test compound is ex-
pressed as percent brain 2-AG accumulation, which is indicative of a
compound’s effectiveness at inhibiting MAGL in brain. Higher brain 2-
AG accumulation (%) indicates a more effective inhibitor.
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As illustrated by the data in Table 1, thiazole as the R1 group led to
compounds with much higher potency in the MAGL enzyme assay than
the corresponding analogs where the R1 group is phenyl (6d, 6e, 6h vs
6a–c). The 2-thiazole and 4-thiazole R1 groups were not substantially
different (6f, 6g, 6i vs 6j–l). When the R1 group was 2-thiazole, analogs
with fused heteroaromatic R2 groups such as 2-phenyl benzoxazole
(6e), N-phenyl-indole (6g), and benzothiophene (6h, 6i), as well as
analogs with bicyclic aromatic R2 groups such as benzylphenyl (6d) and
3′-CF3-biphenyl (6f) exhibit good potency in the MAGL enzyme assay
(IC50) and in the brain 2-AG accumulation assay (Brain 2-AG Accu-
mulation%).

The crystal structure of compound 6d binding with mutant human
MAGL (hMGL 1-303 K36A, L169S, L176S) was obtained (Fig. 2), which
confirmed noncovalent binding of compound 6d to MAGL.12 Com-
pound 6d occupies the same binding pocket in MAGL as compound 1,
which is located between helices α4, α5, α6 and α7.9 Similar as com-
pound 1, the azetidine-amide carbonyl of compound 6d points into the
oxyanion hole of MAGL and forms a hydrogen bond with the backbone
amide NH of Met123 that is adjacent to the catalytic Ser122. In addi-
tion, the thiazole-amide carbonyl of compound 6d makes a hydrogen
bond to the sidechain guanidine group of Arg57, and there is a π-π
stacking interaction between the thiazole-amide and Tyr194 (Fig. 3).

Because compounds 6a–c (R1 = phenyl) showed weak MAGL in-
hibitory activity and to further explore heterocyclic/heteroaromatic
substitution at R1, the related cyclic amide analogs 10 were synthesized
(Scheme 2) and evaluated. Reductive amination [Na(OAc)3BH, HOAc,
1,2-dichloroethane] of methyl 2-formylbenzoate 7 with 1-Boc-3-amino-
azetidine 2 followed by spontaneous lactam formation gave the cy-
clized amide intermediate 8. Deprotection under acidic conditions
(CF3CO2H, CH2Cl2) removed the azetidine Boc group, and a second
reductive amination with 1-Boc-3-azetidinone 4 [Na(OAc)3BH, acetic
acid, 1,2-dichloroethane] led to compound 9. Removal of the Boc
protecting group of 9 (CF3CO2H, CH2Cl2) followed by an amide for-
mation reaction with carboxylic acid (R2CO2H) or acid chloride
(R2COCl) resulted in the final product diazetidinyl diamide 10.

Results for a selection of compounds 10 are summarized in Table 2.
The data indicate compounds 10 achieve a significant improvement of
MAGL inhibitory activity compared to compounds 6 of which
R1 = phenyl (10a vs 6b). The compounds 10 illustrated in Table 2
demonstrate similar potency to compounds 6 with R1 = 2-thiazole in
Table 1, considering both MAGL enzyme activity and brain 2-AG ac-
cumulation (10a, 10c, 10e vs 6e, 6g, 6i).

To assess their selectivity for MAGL, compounds 6e, 6f and 10e

were tested against fatty acid amide hydrolase (FAAH), and all three
compounds showed no significant inhibitory activity (FAAH
IC50 > 10 μM). Additionally, based on their in vitro potency and ADME
properties, several compounds were selected to be evaluated in a rat
tissue distribution study (10 mg/Kg, po) for their ability to penetrate
the blood–brain barrier (BBB). Blood and brain samples were collected
at the 1 h time point and analyzed. Among the 4 compounds in Table 3,
compound 10f achieved the highest brain concentration (1.20 nmol/g),
while compound 6f showed the highest brain/plasma ratio (0.85).

In summary, a novel series of diazetidinyl diamide compounds were
discovered as potent reversible MAGL inhibitors. The thiazole

Fig. 1. Design of diazetidinyl diamides as re-
versible MAGL inhibitors.

Scheme 1. a) R1CO2H, HATU, Et3N, CH2C12; or R1COC1, Et3N, CH2C12; b)
TFA, CH2C12; c) 4, Na(OAc)3BH, HOAc, 1,2-dichloroethane; d) R2CO2H, HATU,
Et3N, CH2C12; or R2COC1, Et3N, CH2C12.

Table 1
MAGL inhibitory activity and 2-AG accumulation of selected compounds

6.

Cpd R1 R2 MAGL
IC50 (nM)

Brain 2-AG
accumulation (%)
(Cpd conc.)

1 10a N/A
6a 270a N/A

6b 939a N/A

6c 458a N/A

6d 15a 659% (10 μM)

6e 48a 486% (10 μM)
355% (1 μM)

6f 7a 921% (10 μM)
347% (1 μM)

6g 12b 338% (1 μM)

6h 28a 611% (10 μM)

6i < 5a 460% (1 μM)

6j 6a 620% (1 μM)

6k 15a 220% (10 μM)

6l < 5a 477% (1 μM)

a Mutant MAGL.
b Wild-type MAGL; N/A: Data not available.
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substituted compounds 6d–l (R1 = thiazole) exhibited high MAGL in-
hibitory potency. Structural modification of the less potent phenyl
substituted compounds 6a–c (R1 = phenyl) led to a series of cyclic
amide analogs 10 with much more improved MAGL inhibitory activity.
Selected compounds also demonstrated good brain penetration in rat
after an oral dose. Such compounds may serve as tools for future re-
search of MAGL inhibition as a therapeutic approach to treat disorders
including pain, inflammation, and depression.
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