
Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/fluor

Synthesis of polyfluorinated ortho-alkynylanilines

Larisa V. Politanskaya^a, Igor P. Chuikov^a, Ekaterina A. Kolodina^b, Mark S. Shvartsberg^b, Vitalij D. Shteingarts^{a,*}

^a N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue 9, 630090 Novosibirsk, Russian Federation ^b A.A. Kovalsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Institutskaya Str. 3, 630090 Novosibirsk, Russian Federation

ARTICLE INFO

Article history: Received 22 July 2011 Received in revised form 9 September 2011 Accepted 15 September 2011 Available online 29 September 2011

Keywords:

Polyfluorinated *ortho*-iodanilines Polyfluorinated *ortho*-alkynylanilines Terminal alkynes Iodination Sonogashira coupling

1. Introduction

Fluorinated benzoazaheterocycles are molecular cores of many bioactive compounds, including active substances of medicines [1-5] Therefore, fluorine introduction in the benzene moiety of a benzoheterocycle is an important structural modification in the molecular design of bioactive compounds. In this respect compounds of this type with a polyfluorinated benzene ring are of their own importance as accumulation of fluorine atoms can both essentially modify bioactivity and also afford nice opportunities to functionalize the scaffold by nucleophilic substitution of fluorine. However, until recently this area was in its infancy, obviously, because of a small accessibility of one of the versatile precursor types for the diversity of polyfluorobenzo azaheterocycles - anilines containing 3-4 fluorine atoms and a nonsubstituted position ortho to the amino group. This obstacle was recently substantially minimized by developing the selective ortho-defluorination of polyfluoroaniline N-acetyl derivatives [6,7] and dechlorination of polyfluorochloroanilines [8]. In particular, this allowed starting the systematic exploration of quinolines polyfluorinated on the benzene ring [7–11].

The scope of methods for azaheteroannelation can appreciably be extended by incorporating various structural units suitable for heterocyclization in the position *ortho* to the amino group. Among those, the alkynyl groups are especially attractive because can serve

E-mail address: shtein@nioch.nsc.ru (V.D. Shteingarts).

ABSTRACT

A series of polyfluorinated *ortho*-alkynylanilines – the versatile building blocks for diverse polyfluorobenzo azaheterocycles – have been synthesized by the Sonogashira reaction of polyfluorinated *ortho*-iodanilines with terminal alkynes.

© 2011 Elsevier B.V. All rights reserved.

for diverse constructions of both five- and six-membered azaheterocycles. This is of special importance for synthesis of indoles polyfluorinated on the benzene ring, as above achievements in the synthesis of *ortho*-unsubstituted polyfluoroanilines are not sufficient to surmount their scarce accessibility by virtue of difficulty of the Fisher indole assembling on the basis of polyfluorinated anilines [12,13] which originates from the very nature of these building blocks as polyfluoroarenes. As a consequence, though the Fisher indole syntheses from anilines containing up to 2 fluorine atoms are amply presented in literature [14–16], to the best of our knowledge, only two indoles with the perfluorinated benzene ring were prepared till now, both with the substituted pyrrole moiety [17]. 4,5,6,7-Tetrafluoroindole itself was synthesized from hexafluorobenzene via a different multistep course [18], applicability of which for a wide range of similar compounds being at least not obvious.

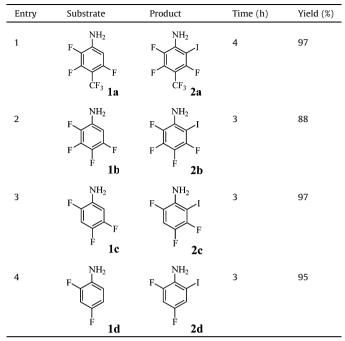
By virtue of aforementioned, the methods draw attention which are based on reactions catalysed by transition metal complexes, the cyclizations of *ortho*-alkynylanilines [19–25] or their N-derivatives [19,20,26–32] seeming most attractive. Such starting materials can be got from the catalytic cross-condensation of *ortho*-haloanilines (preferably, iodoanilines) with terminal alkynes [32,33] and used for synthesis of a vast diversity of benzoazaheterocycles [34,35]. Only few applications of the approach to the polyfluorinated building blocks of this type were reported [25,32–34], apparently, owing to their previous poor accessibility. Fortunately, the above development of a general concise route to the *ortho*-nonsubstituted polyfluoroanilines cancels this restriction, thus rendering the corresponding polyfluorinated *ortho*-haloanilines and, potentially, *ortho*-alkynylanilines, on their ground, quite accessible.

^{*} Corresponding author. Fax: +7 383 3309752.

^{0022-1139/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2011.09.008

In this connection, the purpose of the present work is to examine a possibility to synthesize polyfluorinated *ortho*-alkynylanilines from corresponding *ortho*-haloanilines via the Sonogashira reaction.

2. Results and discussion


2.1. Iodination of polyfluoroanilines

As starting materials we used 2,3,5-trifluoro-4-(trifluoromethyl)aniline **1a** [6], 2,3,4,5-tetrafluoroaniline **1b** [6], 2,4,5trifluoroaniline 1c [11]. 2.4-difluoroaniline 1d [36] and commercial 3.4-difluoroaniline **1e**. To iodinate these amines [37], iodine was preferred to use as more convenient in comparison with iodine chloride which was applied earlier to prepare 2-iodo-4,5difluoroaniline (2e) [32] and 2-iodo-3,4,5,6-tetrafluoroaniline (2b) [38] from amines 1e and 1b, respectively. Although 2-iodo-4,5-difluoroaniline **2e** was smoothly prepared from aniline **1e** by the protocol [39] (I₂-NaHCO₃-H₂O, r.t.), aniline 1d gave no a iodination product with this reagent even at reflux. Therefore, the silver sulfate additive (I2-Ag2SO4-EtOH, reflux) was used in iodination of aniline 1a to obtain 2-iodo-3,5,6-trifluoro-4-(trifluoromethyl)aniline (2a) in 93% yield (Scheme 1). However, probably owing to a high reactivity, this system turned out nonselective in iodination of aniline 1c: even at an incomplete consumption of the starting compound (14% in the resulting mixture) a GC-MS analysis revealed the formation of both isomeric mono-(43% ortho and 8% meta) and diiodinated (32%) products. Proceeding from these results, the combination of iodine and iodic acid in aqueous dioxane was found nicely appropriate for the selective monoiodination of anilines 1a-d to afford anilines 2a, 2b, 2-iodo-3.4.6-trifluoroaniline (2c) and 2-iodo-4.6-difluoroaniline (2d) in 88–97% vields (Scheme 1 and Table 1). The structures of 2ae are unequivocally evidenced from their ¹H and ¹⁹F NMR characteristics which are discussed below.

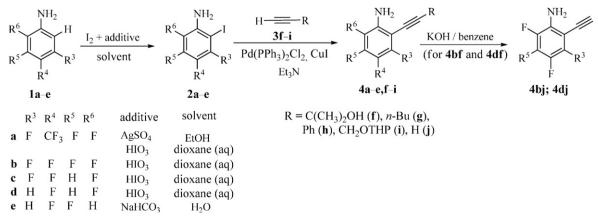

Besides the synthetic value, the above results are of interest to compare the reactivity of the iodination systems and substrates. It seems obvious that, in all the cases, the iodination is electrophilic, so that the respective reagents should be considered as equivalents of the cationic I⁺ synthon (actually, solvated I_3^+) with a reactivity depending on a nature of the counterion and solvent. The relatively high basicity of the I_2 –NaHCO₃–H₂O system causes the strongest I⁺ association with the counterion and the solvent among the iodination systems we used. As a result, its lowest reactivity among the used iodination systems allows to iodinate only aniline **1e** – certainly most reactive of the substrates under study. In turn, the fact that isomeric aniline **1d** failed to be iodinated by this system elucidates clearly the reaction to be crucially retarded by switching

Table 1

Iodination of anilines 1a	$\mathbf{a}-\mathbf{d}$ (I ₂ + HIO ₃ ,	aq. dioxane, 70 °C).
---------------------------	--	----------------------

from an activating electron-donating effect of the fluorine *para* to the reaction site to a deactivating electron-withdrawing effect of the *meta* fluorine. As mentioned above, the I_2 -Ag₂SO₄-EtOH system appeared most active among the iodination systems under application, likely due to strong counterion binding by an Ag⁺ cation, the I⁺ cation thus being relatively weakly associated with I₂ or solvent molecules. The I₂-HIO₃-aq. dioxane system manifests the medium reactivity obviously due to the association of the I⁺ cation with counterion and solvent in this system is weaker compared with the more basic I₂-NaHCO₃-H₂O system and stronger compared with the less basic I₂-Ag₂SO₄-EtOH system. The high reactivity and, consequently, low selectivity of the I₂-Ag₂SO₄-alcohol system is probably responsible for the comparably low and unnaturally substituent-dependent yields of the selective ortho iodination products obtained from 4-X-anilines (X = H 46%, Me 41%, Cl 73%, NO₂ 75%) by using the I₂-Ag₂SO₄-1,2-ethanediol system [40]. In turn, the high selectivity of the I₂–HIO₃ system is in line with numerous examples of the selective iodination of substituted phenols [41,42] and 5- or 6-amino-1,4-naphthoquinones [43] at the positions ortho or para to the OH and NH₂ group, accordingly.

L.V. Politanskaya, I	.P. Chuikov	/Journal o	f Fluorine	Chemistry	135 (2012) 97-107
----------------------	-------------	------------	------------	-----------	-------------------

Table 2
Synthesis of alkynylanilines 4a–e,f–i .

Entry	Substrate	Alkyne	Product	Time (h)	Yield (%)
1	2a	н— <u></u> (он 3f	F F F	3	73
2	2a	н— <u>—</u>	F F F F F F F F F F	3	78
3	2a	н	CF ₃ 4ag	3	81
4	2a	н-=о́ 3i	CF_3 4ah O F F O O O O O O O O O O	3	76
5	2b	3f	$F \qquad F \qquad$	3	89
6	2b	3g	$F \qquad F \qquad 4bf$ $F \qquad F \qquad$	3	80
7	2b	3h	F 4bg	3	82
8	2b	3i	$F \xrightarrow{H_2} O$	3	85
9	2c	3f	F F 4bi	3	90
10	2c	3g	F = 4cf $F = F$ $F = F$	3	80
11	2c	3h	F 4cg	3	91
			F 4ch		

Table 2 (Continued)

Entry	Substrate	Alkyne	Product	Time (h)	Yield (%
12	2c	3i	NH ₂ F	3	83
13	2d	3f	F 4ci	3	72
14	2d	3g	F 4df	3	73
15	2d	3h	F 4dg	3	77
16	2d	3i	$F \qquad 4dh$ $F \qquad 0$ $F \qquad 0$	3	70
17	2e	3f	F 4di	3	74
18	2e	3g	F 4ef	3	95
19	2e	3h	F 4eg	3	92
20	2e	3i	F 4eh	3	73
			F 4ei		

Summing up, we demonstrate a high efficiency of the I_2 –HIO₃ system in the selective iodination of polyfluorinated 2-H-anilines affording respective polyfluorinated 2-iodoanilines which are believed to be valuable versatile starting materials to synthesize a wide diversity of *ortho* functionalized polyfluoroanilines.

2.2. Polyfluorinated 2-iodoanilines in the Sonogashira coupling

In development of the latter possibility, all the *ortho*-iodoanilines **2a–e** were subjected to cross-coupling with terminal alkynes **3f–i** in Et₃N with Pd(PPh₃)₂Cl₂ (4 mol.%) and Cul (9 mol.%) as catalysts

(Scheme 1). According to ¹⁹F NMR and GC–MS analyses, conversion of all the starting compounds to the *ortho*-alkynylanilines **4a–e,f–i** was complete, and the corresponding diynes derived by alkynes homo-coupling (cf. [44]) were present in the product mixtures. The target compounds **4** were isolated by TLC (Table 2).

Though the principal goal of the work has been achieved by the synthesis of alkynylanilines **4a–e,f–i**, the evaluation of substituent effects in the Sonogashira coupling is of interest. 2-Bromo-4,6-difluoroaniline, 2-bromo-4-nitro-6-chloroaniline and 2-bromo-5-(trifluoromethyl)aniline were reported to react with ethynyl-trimethylsilane in the presence of Pd(PPh₃)₂Cl₂, CuI and Et₃N in

Table 3

¹H and ¹⁹F NMR chemical shifts (ppm) and coupling constants (Hz) for anilines **2a-e** and **5** (CDCl₃). NH₂

Шa

p³ **p**⁴ **p**⁵ **p**⁶

R^{6} Hlg R^{5} R^{4} R^{3}	a, 5 F b F c F d H	R ⁴ R ³ R ⁶ CF ₃ F F F F F F H F F H F F F H	Hlg 2a–e I 5 Br						
Compound	NH ₂		R ³		R^4		R^5		R^6
2a	4.93	(s)		2 (qd, 1F) ₃ =21.6 5=9.8	-56.4 (do $J_{CF3,F}3$, $J_{CF3,F}5 \approx 2$		-141.6 $J_{\rm F}5,_{\rm CF3},$ $J_{\rm F}5,_{\rm F}6 \approx$		-161.0 (dd, 1F $J_{\rm F}6_{\rm F}5 = 19.4$ $J_{\rm F}6_{\rm F}3 = 9.9$
2b	4.13	(s)			-171.0 (c $J_F4,_F3 = 22$ $J_F4,_F5 = 20$ $J_F4,_F6 = 5$.	3.7).7	-157.6 $J_{\rm F}5_{\rm F}6,$ $J_{\rm F}5_{\rm F}4 \approx$ $J_{\rm F}5_{\rm F}3 = 3$		-159.1 (ddd, 1) $J_F6_F5 = 19.9$ $J_F6_F3 = 7.9$ $J_F6_F4 = 5.4$
2c	4.08	(s, 2H)	J _F 3, _F 4	.6 (ddd, 1F) 4=23.4 5=11.5 5=7.2	-148.0 (c) $J_F4,_F3 = 23$ $J_F4,_F5 = 9$ $J_F4,_F6 = 2$.	3.5 7	6.96 (do $J_{\rm H}5,_{\rm F}4,$ $J_{\rm H}5,_{\rm F}6 \approx$ $J_{\rm H}5,_{\rm F}3 =$	10	-134.2 (ddd, 1) $J_{F}6,_{F}3, J_{F}6,_{H}5 \approx J_{F}6,_{F}4 = 2.5$
2d	3.96	(s, 2H)	J _H 3, _F ₄	5=2.7	–125.5 (d J _F 4, _H 3, J _F 4		6.74 (do $J_{\rm H}5_{\rm F}6 =$ $J_{\rm H}5_{\rm F}4 =$ $J_{\rm H}5_{\rm H}3 =$	10.9 8.3	-126.9 (dd, 1F $J_{\rm F}6_{\rm H}5 = 10.9$ $J_{\rm F}6_{\rm H}3 \approx 2$
2e	4.00	(s, 2H)	J _H 3, _F ₄	(dd, 1H) 4=9.5 5=8.4	-150.6 (c) $J_F4_{,F}5 = 21$ $J_F4_{,H}3 = 9$ $J_F4_{,H}6 = 7$	1.0 5	–137.7 J _F 5, _F 4=2 J _F 5, _H 6= J _F 5, _H 3=	11.8	6.54 (dd, 1H) $J_{\rm F}6_{\rm F}5 = 11.8$ $J_{\rm H}6_{\rm F}4 \approx 7$
5	4.77	(s)		.2 (qd, 1F) ₃ =21.5 5=9.7	–56.4 (do J _{CF3,F} 3, J _C	l, 3F) _{F3,F} 5≈21.5	–139.6 Ј _F 5, _{СF3} , Ј	(dq, 1F) I _F 5, _F 6≈21.5	-161.7 (dd, 1F $J_{\rm F}6_{\rm F}5 = 20.0$ $J_{\rm F}6_{\rm F}3 = 9.7$

DMF at 50 °C for 8 h [25]. We found out that 2-bromo-3,5,6trifluoro-4-(trifluoromethyl)aniline (5) (synthesized by bromination of 1a) remained intact after exposing with alkyne 3f, Pd(PPh₃)₂Cl₂, CuI and Et₃N in DMF at 90 °C for 7 h (¹⁹F NMR data). Matching this result with the above literature data, one may infer that the simultaneous fluorine implacement in the 3- and 5positions and fluorine substitution by a trifluoromethyl group in the 4-position retard the Sonogashira coupling crucially. However, basing on the current notion of the mechanism of this reaction [45], the increased electron withdrawing substitution should benefit the reaction. Thus, it turns out that only an electrondonating effect of the F⁵ atom is responsible for the retardation, but a special study is necessary for the firm conclusion.

Being potential precursors for corresponding indoles with unsubstituted heterocyclic moiety, polyfluorinated 2-ethynylanilines are of principal importance, to obtain which anilines **4a-e**,**f** are likely appropriate starting materials. In this connection, anilines **4bf** and **4df** were shown to smoothly afford 2-ethynyltetrafluoroaniline (4bi) and known [25] 2-ethynyl-4.6-difluoroaniline (4dj) in the 71 and 78% isolated yields, accordingly, upon interaction with KOH in boiling benzene (the conditions are similar to those used for preparation of 2-ethynylanthraquinone [46]) (Scheme 1).

2.3. Spectral data

The structures of all compounds obtained for the first time are obvious enough from their synthesis and corroborated by their ¹⁹F, ¹H and ¹³C NMR and IR characteristics. The ¹⁹F and ¹H NMR spectral data of polyfluorinated 2-haloanilines are presented in Table 3. The observed ¹⁹F NMR chemical shifts and spin coupling constants are fully consistent with their structures and typical for polyfluorinated benzene derivatives [47]. For example, in the ¹⁹F NMR spectrum of aniline 2b observed are four signals of equal intensity, shifted to low field by $\Delta \delta_{\rm F}$ 23.0, 3.0, 1.6 and 4.3 ppm, from the similar signals of the starting aniline **1b** ($\delta_{\rm F}$ –142.5 (F³), -174.0 (F⁴), -159.2 (F⁵) and -163.5 (F⁶) ppm), respectively. These $\Delta \delta_{\rm F}$ values are characteristic for all pairs of anilines **1a**–**e**–**2a**–**e**, being in good conformity with those between pentafluorobenzene and iodopentafluorobenzene [48]. Besides, the $F^3 \Delta \delta_F$ value between anilines 2a and 5 (-15.0 ppm) is close to the ortho-F $\Delta \delta_{\rm F}$ value (-13.4 ppm) between iodo- and bromo-pentafluorobenzene [48] (the negative $\Delta \delta_{\rm F}$ values correspond to a high-field shift).

The ¹⁹F and ¹H NMR spectral data of polyfluorinated 2ethynylanilines are presented in Table 4. Four equally intensive signals observable in a ¹⁹F NMR spectrum of aniline **4bg** are shifted from their counterparts of aniline 2b by -17.7 for ortho, -0.5 and -1.6 for meta and 1.9 ppm for para positions to the site of iodine atom replacement by an alkynyl radical. These $\Delta \delta_{
m F}$ values are typical for all pairs of the respective ortho-iodo- and -alkynylanilines and correspond to those between iodo- and ethynylpentafluorobenzene [48], the signal spin-coupling structures being virtually identical. Moreover, the ¹⁹F NMR spectra of **4e,f-i** coincide practically with that of 4,5-difluoro-2-[2-(trimethylsilyl)ethynyl]aniline [34].

The ¹³C NMR spectral data of polyfluorinated 2-halo- and 2alkynylanilines are given in Table 5. The signals are assigned with taking into account the ¹³C NMR data reported for pentafluorophenylethynylbenzene and its halogen derivatives [49], keeping in mind that absolute J_{C-F} values change in a sequence ${}^{1}J_{C+F} \gg {}^{2}J_{C+F} > {}^{3}J_{C+F} > {}^{4}J_{C+F}$ [50]. The ${}^{13}C$ NMR characteristics of anilines **4d,f-i** and **4e,f-i** are reasonably close with those of 2ethynyl-4,6-difluoroaniline [25] and 2-[2-(trimethylsilyl)ethynyl]-4,5-difluoroaniline [34]. Besides, the assignments of carbons of the C-F fragments are confirmed by comparing the respective ${}^{1}J_{C,F}$ values with those observed in satellite signals of the corresponding fluorine resonances in the ¹⁹F NMR spectra. To assign ethynyl

Table 4

$\begin{array}{c} \text{NH}_2\\ \text{S}\\ \text{S}\\ \text{R}^4\\ \text{4a-e,f-j} \end{array}$	R R b c d e	shifts (ppm) and couplir R ³ R ⁴ R ⁵ R ⁶ F CF ₃ F F f F F F F g F F H F h H F H F i H F F H j	R C(CH ₃) ₂ OH n-Bu			
Compound	$\rm NH_2$	R ³	R ⁴	R ⁵	R ⁶	Others
l af	4.84 (s, 2H)	-114.5 (dq, 1F) $J_F3_{,CF3} = 21.6$ $J_F3_{,F}6 = 11.2$	-56.4 (dd, 3F) $J_{CF3,F}3$, $J_{CF3,F}5 \approx 21$	-137.5 (dq, 1F) $J_{\rm F}5_{,\rm CF3}, J_{\rm F}5_{,\rm F}6 \approx 21$	-164.9 (dd, 1F) $J_{\rm F}6_{\rm F}5 = 20.2$ $J_{\rm F}6_{\rm F}3 = 11.2$	1.63 (s, 6H, CH ₃) 2.52 (s, 1H, OH)
4ag	4.74 (s, 2H)	-115.5 (dq, 1F) $J_F3_{,CF3} = 21.5$ $J_F3_{,F}6 = 11.2$	-56.4 (dd, 3F) $J_{CF3,F}3$, $J_{CF3,F}5 \approx 21$	−139.0 (dq, 1F) J _F 5, _{CF3} , J _F 5, _F 6≈21	-165.3 (dd, 1F) $J_{\rm F}6_{\rm F}5 = 20.3$ $J_{\rm F}6_{\rm F}3 = 11.2$	0.94 (t, 3H, CH ₃) $J_{H:H}$ = 7.2 1.47 (m, 2H, CH ₂ CH ₃) 1.61 (m, 2H, CH ₂ CH ₂ CH ₃) 2.49 (t, 2H (CH ₂ C(C)) $J_{H:H}$ = 6.8
4ah	3.91 (s, 2H)	-114.3 (dq, 1F) $J_{F}3,_{CF3} = 21.6$ $J_{F}3,_{F}6 = 11.1$	–56.0 (dd, 3F) J _{CF3,F} 3, J _{CF3,F} 5≈21	-138.1 (dq, 1F) $J_{\rm F}5$, _{CF3} , $J_{\rm F}5$, _F 6 \approx 21	-164.7 (dd, 1F) $J_{F}6,F5 = 20.1$ $J_{F}6,F3 = 11.3$	7.18–7.27 (m, 3H, Ph) 7.40–7.45 (m, 2H, Ph)
4ai	4.93 (s, 2H)	-111.3 (dq, 1F) $J_{F3,CF3} = 21.6$ $J_{F3,F6} = 11.3$	–53.4 (dd, 3F) J _{CF3,F} 3, J _{CF3,F} 5≈21	−134.4 (dq, 1F) J _F 5, _{CF3} , J _F 5, _F 6≈21	-162.1 (dd, 1F) $J_{F}6_{F}5 = 20.1$ $J_{F}6_{F}3 = 11.3$	1.54–1.83 (m, 6H, CH ₂ CH ₂ CH ₂) 3.54 (m, 1H, OCH ₂), 3.87 (m, 1H, OCH ₂) 4.53 (s, 2H, CH ₂ C(C) 4.85 (m, 1H, CH)
4bf	4.26 (s, 2H)	-139.3 (ddd, 1F) $J_{F}3,_{F}4 = 22.0$ $J_{F}3,_{F}6 = 9.7$ $J_{F}6,_{F}5 = 3.0$	-174.1 (ddd, 1F) $J_{F}4,_{F}3, J_{F}4,_{F}5 \approx 22$ $J_{F}4,_{F}6 = 5.5$	-157.0 (ddd, 1F) $J_F5,F6, J_F5,F4 \approx 21$ $J_F5,F3 = 3.0$	-163.3 (ddd, 1F) $J_F6_{1F}5 = 20.4$ $J_F6_{1F}3 = 9.7$ $J_F6_{1F}4 = 5.5$	1.63 (s, 6H, CH ₃) 2.52 (s, 1H, OH)
4bg	4.19 (s, 2H)	-137.2 (ddd, 1F) $J_F3_F4 = 22.1$ $J_F3_F6 = 9.5$	-171.5 (ddd, 1F) $J_{\rm F}4,_{\rm F}3, J_{\rm F}4,_{\rm F}5 \approx 22$ $J_{\rm F}4,_{\rm F}6 = 5.6$	−155.7 (ddd, 1F) J _F 5, _F 4, J _F 5, _F 6≈21	-160.7 (ddd, 1F) $J_{\rm F}6_{\rm F}5 = 20.4$ $J_{\rm F}6_{\rm F}3 = 9.5$ $J_{\rm F}6_{\rm F}4 = 5.6$	0.93 (t, 3H, CH ₃) $J_{H:H}$ =7.3 1.46 (m, 2H, CH ₂ CH ₃) 1.60 (m, 2H, CH ₂ CH ₂ CH ₃) 2.49 (t, 2H, CH ₂ C(C) $J_{H:H}$ =6.9
4bh	4.43 (s, 2H)	-138.9 (ddd, 1F) $J_{F}3,_{F}4 = 22.2$ $J_{F}3,_{F}6 = 9.6$ $J_{F}3,_{F}5 = 2.8$	-174.0 (ddd, 1F) $J_F4,F3, J_F4,F5 \approx 22$ $J_F4,F6 = 5.5$	-157.0 (ddd, 1F) $J_F5,F4, J_F5,F6 \approx 21$ $J_F5,F3 = 2.8$	-163.3 (ddd, 1F) $J_F6_{1F}5 = 20.4$ $J_F6_{1F}3 = 9.6$ $J_F6_{1F}4 = 5.5$	7.34–7.39 (m, 3H, Ph) 7.51–7.56 (m, 2H, Ph)
4bi	4.34 (s, 2H)	-139.0 (ddd, 1F) $J_{F}3,_{F}4 = 22.0$ $J_{F}3,_{F}6 = 9.6$ $J_{F}3,_{F}5 = 2.7$	-174.4 (ddd, 1F) $J_{F}4,_{F}3, J_{F}4,_{F}5 \approx 22$ $J_{F}4,_{F}6 = 5.5$	-156.9 (ddd, 1F) $J_{\rm F}5_{\rm F}6$, $J_{\rm F}5_{\rm F}4 \approx 21$ $J_{\rm F}5_{\rm F}3 = 2.7$	-163.5 (ddd, 1F) $J_F6_{1F}5 = 20.3$ $J_F6_{1F}3 = 9.6$ $J_F6_{1F}4 = 5.5$	1.51–1.83 (m, 6H, CH ₂ CH ₂ CH ₂) 3.54 (m, 1H, OCH ₂), 3.86 (m, 1H, OCH ₂) 4.53 (s, 2H, CH ₂ C(C) 4.85 (m, 1H, CH)
4bj	4.32 (s, 2H)	-139.1 (ddd, 1F) $J_{F}3,_{F}4 = 22.0$ $J_{F}3,_{F}6 = 9.6$ $J_{F}3,_{F}5 = 3.1$	-174.2 (ddd, 1F) $J_{F}4,_{F}3, J_{F}4,_{F}5 \approx 22$ $J_{F}4,_{F}6 = 5.5$	-156.3 (ddd, 1F) $J_{\text{F}}5_{\text{F}}6, J_{\text{F}}5_{\text{F}}4 \approx 21$ $J_{\text{F}}5_{\text{F}}3 = 3.1$	-163.3 (ddd, 1F) $J_F6_{1F}5 = 20.0$ $J_F6_{1F}3 = 9.6$ $J_F6_{1F}4 = 5.5$	3.63 (s, 1H, C(CH)
4cf	4.14 (s, 2H)	-141.5 (ddd, 1F) $J_{F}3,_{F}4 = 21.3$ $J_{F}3,_{F}6 = 13.4$ $J_{F}3,_{H}5 = 7.1$	-151.1 (ddd, 1F) $J_F4_F3 = 21.8$ $J_F4_H5 = 10.0$ $J_F4_F6 = 2.2$	6.82 (ddd, 1H) $J_{\rm H}5_{\rm F}4, J_{\rm H}5_{\rm F}6 \approx 10$ $J_{\rm H}5_{\rm F}3 = 7.1$	-138.1 (ddd, 1F) $J_F6_{F}3 = 13.1$ $J_F6_{H}5 = 11.0$ $J_F6_{H}4 = 2.2$	1.62 (s, 6H, CH ₃) 2.74 (s, 1H, OH)
4cg	4.06 (s, 2H)	-142.2 (ddd, 1F) $J_{F}3_{F}4 = 21.3$ $J_{F}3_{F}6 = 13.4$ $J_{F}3_{H}5 = 7.1$	-151.2 (ddd, 1F) $J_F4,_F3 = 21.9$ $J_F4,_F5 = 9.9$ $J_F4,_F6 = 2.5$	6.79 (ddd, 1H) J _H 5, _F 4, J _H 5, _F 6≈10 J _H 5, _F 3 = 7.1	-138.5 (ddd, 1F) $J_{\rm F}6_{\rm F}3 = 13.4$ $J_{\rm F}6_{\rm H}5 = 10.6$ $J_{\rm F}6_{\rm H}4 = 2.5$	0.93 (t, 3H, CH ₃) $J_{H:H}$ =7.3 1.47 (m, 2H, CH ₂ CH ₃) 1.61 (m, 2H, CH ₂ CH ₂ CH ₃) 2.50 (t, 2H, CH ₂ C(C) $J_{H:H}$ =7.0
4ch	4.25 (s, 2H)	-140.7 (ddd, 1F) $J_{F}3,_{F}4 = 21.7$ $J_{F}3,_{F}6 = 13.4$ $J_{F}3,_{H}5 = 7.0$	-150.5 (ddd, 1F) $J_{F}4,_{F}3 = 21.9$ $J_{F}4,_{H}5 = 10.0$ $J_{F}4,_{F}6 = 2.5$	6.92 (ddd, 1H) $J_{\rm H}5_{\rm F}4, J_{\rm H}5_{\rm F}6 \approx 10$ $J_{\rm H}5_{\rm F}3 = 7.0$	-137.7 (ddd, 1F) $J_F6_F3 = 13.4$ $J_F6_H5 = 10.5$ $J_F6_F4 = 2.5$	7.40–7.42 (m, 3H, Ph) 7.58–7.61 (m, 2H, Ph)
4ci	4.19 (s, 2H)	-141.2 (ddd, 1F) $J_{F}3,_{F}4 = 21.2$ $J_{F}3,_{F}6 = 13.4$ $J_{F}3,_{H}5 = 7.1$	-151.2 (ddd, 1F) $J_{F}4,_{F}3 = 21.8$ $J_{F}4,_{H}5 = 10.0$ $J_{F}4,_{F}6 = 2.4$	6.84 (ddd, 1H) $J_{\rm H}5_{\rm F}4, J_{\rm H}5_{\rm F}6 \approx 10$ $J_{\rm H}5_{\rm F}3 = 7.1$	-138.3 (ddd, 1F) $J_F6_F3 = 13.4$ $J_F6_H5 = 10.9$ $J_F6_F4 = 2.4$	1.52–1.88 (m, 6H, CH ₂ CH ₂ CH ₂) 3.55 (m, 1H, OCH ₂), 3.87 (m, 1H, OCH ₂) 4.55 (s, 2H, CH ₂ C(C) 4.87 (m, 1H, CH)
4df	4.07 (s, 2H)	6.68–6.75 (m, 1H)	-126.0 (dd, 1F) $J_{\rm F}4,_{\rm H}3, J_{\rm F}4,_{\rm H}5 \approx 8$	6.68–6.75 (m, 1H)	-131.3 (d, 1F) $J_{\rm F}6_{\rm H}5 \approx 10$	1.59 (s, 6H, CH ₃) 3.08 (s, 1H, OH)

Compound	NH_2	R ³	R ⁴	R ⁵	R ⁶	Others
4dg	4.00 (s, 2H)	6.76 (dm, 1H) J _H 3, _F 4=8.9	–125.5 (dd, 1F) J _F 4, _H 3, J _F 4, _H 5≈9	6.70 (ddd, 1H) $J_{H}5_{H}6 \approx 11$ $J_{H}5_{F}4 \approx 9$ $J_{H}5_{H}3 \approx 3$	−130.7 (d, 1F) J _F 6, _H 5 = 10.8	0.93 (t, 3H, CH ₃) $J_{H,H}$ = 7.3 1.46 (m, 2H, CH ₂ CH ₃) 1.58 (m, 2H, CH ₂ CH ₂ CH ₃) 2.45 (t, 2H, CH ₂ C(C) $J_{H,H}$ = 7.1
4dh	4.18 (s, 2H)	6.93 (dm, 1H) $J_{\rm H}3_{\rm F}4 = 8.8$ $J_{\rm H}3_{\rm F}5 = 2.8$	–126.0 (dd, 1F) J _F 4, _H 3, J _F 4, _H 5≈9	6.81 (ddd, 1H) $J_{H}5_{,H}6 = 11.0$ $J_{H}5_{,F}4 = 8.6$ $J_{H}5_{,H}3 = 2.8$	−131.3 (d, 1F) J _F 6, _H 5 = 10.8	7.38–7.39 (m, 3H, Ph) 7.54–7.57 (m, 2H, Ph)
4di	4.09 (s, 2H)	6.74–6.9 (dm, 1H) J _H 3, _F 4≈8	–126.4 (dd, 1F) J _F 4, _H 3, J _F 4, _H 5≈8	6.74-6.79 (ddd, 1H) $J_{\rm H}5_{,\rm H}6 \approx 11$ $J_{\rm H}5_{,\rm F}4 \approx 9$ $J_{\rm H}5_{,\rm H}3 \approx 3$	−131.5 (d, 1F) J _F 6, _H 5 = 10.7	1.51–1.83 (m, 6H, CH ₂ CH ₂ CH ₂) 3.56 (m, 1H, OCH ₂), 3.86 (m, 1H, OCH ₂) 4.51 (s, 2H, CH ₂ C(C) 4.85 (m, 1H, CH)
4dj	4.15 (s, 2H)	6.75-6.87 (m, 1H)	-126.0 (dd, 1F) $J_F4,H3, J_F4,H5 \approx 9$	6.75-6.87 (m, 1H)	–131.0 (d, 1F) J _F 6, _H 5 = 10.8	3.45 (s, 1H, C(CH)
4ef	4.17 (s, 2H)	7.00 (dd, 1H) $J_{\rm H}3_{\rm F}4 = 10.4$ $J_{\rm H}3_{\rm F}5 = 8.7$	-152.6 (ddd, 1F) $J_F4_{1F}5 = 22.1 J_F4_{1F}3 = 10.4 J_F4_{1F}6 = 7.2 $	-135.6 (ddd, 1F) $J_F5,F4 = 22.1$ $J_F5,H6 = 11.8$ $J_F5,H3 = 8.7$	6.45 (dd, 1H) $J_{\rm H}6_{\rm F}5 = 11.8$ $J_{\rm H}6_{\rm F}4 = 7.2$	1.59 (s, 6H, CH ₃) 2.71 (s, 1H, OH)
4eg	4.10 (s, 2H)	6.99 (dd, 1H) J _H 3, _F 4 = 10.7 J _H 3, _F 5 = 8.7	-153.2 (ddd, 1F) $J_F4,F5 = 22.3$ $J_F4,H3 = 10.7$ $J_F4,H6 = 7.2$	-137.3 (ddd, 1F) $J_{F}5_{F}4 = 22.3$ $J_{F}5_{H}6 = 11.8$ $J_{F}5_{H}3 = 8.7$	6.43 (dd, 1H) $J_{\rm H}6_{\rm F}5$ = 11.8 $J_{\rm H}6_{\rm F}4$ = 7.2	0.92 (t, 3H, CH ₃) $J_{H:H}$ =7.3 1.47 (m, 2H, CH ₂ CH ₃) 1.57 (m, 2H, CH ₂ CH ₂ CH ₃) 2.42 (t, 2H, CH ₂ C(C) $J_{H:H}$ =6.8
4eh	4.30 (s, 2H)	7.21 (dd, 1H) $J_{\rm H}3_{\rm F}4 = 10.5$ $J_{\rm H}3_{\rm F}5 = 8.8$	-152.5 (ddd, 1F) $J_{F}4_{H}5 = 22.1$ $J_{F}4_{H}3 = 10.5$ $J_{F}4_{H}6 = 7.1$	-135.4 (ddd, 1F) $J_{F}5,F4 = 22.1$ $J_{F}5,H6 = 11.8$ $J_{F}5,H3 = 8.8$	6.54 (dd, 1H) $J_{\rm H}6_{\rm F}5 = 11.8$ $J_{\rm H}6_{\rm F}4 = 7.1$	7.40–7.42 (m, 3H, Ph) 7.56–7.59 (m, 2H, Ph)
4ei	4.19 (s, 2H)	7.04 (dd, 1H) $J_{\rm H}3_{\rm F}4 = 10.5$ $J_{\rm H}3_{\rm F}5 = 8.7$	-152.8 (ddd, 1F) $J_F4_{,H}5 = 22.2$ $J_F4_{,H}3 = 10.5$ $J_F4_{,H}6 = 7.0$	-135.3 (ddd, 1F) $J_F5,F4 = 22.2$ $J_F5,H6 = 11.8$ $J_F5,H3 = 8.7$	6.43 (dd, 1H) $J_{\rm H}6_{\rm F}5 = 11.8$ $J_{\rm H}6_{\rm F}4 = 7.0$	1.52–1.83 (m, 6H, CH ₂ CH ₂ CH ₂) 3.54 (m, 1H, OCH ₂), 3.86 (m, 1H, OCH ₂), 4.48 (s, 2H, CH ₂ C(C) 4.85 (m, 1H, CH)

carbons of **4a–e,f–j**, informative was that in the ¹³C spectrum of **4bj**, registered without C–H spin decoupling, the C⁸ exhibits a doublet with ¹*J*_C8,_H = 255.6 Hz, whereas the C⁷ signal appears as a doublet with ²*J*_C7,_H = 50.6 Hz. Accordingly, the signals at $\delta_{\rm C}$ = 67–84 ppm in the ¹³C NMR spectra of **4a–e,f–j** are assigned to C⁷ adjacent to the polyfluorinated benzene ring. Only the J values most structurally informative for the ¹³C signals assignment are shown in Table 5.

That low-field location of the C^2 resonances of **2a** and **2b** is caused by polyfluorination of the benzene ring is illustrated by the respective values for 1-fluoro-4-iodobenzene (87.1 ppm) and pentafluoroiodobenzene (66.1 ppm) [51]. Interestingly, a dependence is observed of the ethynyl δ_c values on substitution both in the fluorinated benzene ring and at the ethynyl β -C-atom. Thus, in going from anilines **4a–e,f–i**, containing fluorine *ortho* to the ethynyl fragment, to **4d–e,f–i**, having no substituent at the 3-position, the two ethynyl signals approach each other as a result of the α -C drift to a high field and of the β -C signals – to a low field, both moving towards the ethynyl δ_c values reported for 2-ethynyl-4,6-difluoroaniline [25] and nonfluorinated tolanes [52,53]. The similar takes place in going from anilines with β -substituents CMe₂OH (**f**) and *n*-Bu (**g**) to those with β -substituents Ph (**h**) and CH₂OTHP (**i**).

¹³C NMR chemical shifts (ppm) and coupling constants (Hz) for anilines **2a-e**, **4a-e**, **f-j** and **5** (CDCl₃).

$ \begin{array}{c} \mathbf{R}^{6} \\ \mathbf{R}^{5} \\ \mathbf{F} \\ \mathbf{2a} \end{array} $	\mathbf{H}_{2} \mathbf{H}_{3} \mathbf{R}^{3} $\mathbf{e}, 5$	$\begin{array}{c} NH_2 \\ R^6 \\ 6 \\ R^5 \\ 5 \\ R^4 \\ \mathbf{4a-e, f-j} \end{array}$		FFF gn FHF hP	$C(CH_3)_2OH$ 2 I -Bu 5 Br h CH_2OTHP				
	C ¹	C ²	C ³	C ⁴	C ⁵	C ⁶	C ⁷	C ⁸	Others
2a	141.2 ${}^{2}J_{C}1_{F}6 = 11.1$	65.5 ² J _C 2, _F 3 = 32.1	154.7 ${}^{1}J_{C}3_{,F}3 = 248.7$ ${}^{3}J_{C}3_{,CF3} = 1.6$	96.7 ${}^{2}J_{C}4_{,CF3} = 34.6$ ${}^{2}J_{C}4_{,F}3 = 19.6$ ${}^{2}J_{C}4_{,F}5 = 12.5$	148.3 ${}^{1}J_{C}5_{1F}5 = 257.2$ ${}^{2}J_{C}5_{1F}6 = 13.5$ ${}^{3}J_{C}5_{CF3} = 1.6$	134.5 ${}^{1}J_{C}6,_{F}6 = 241.8$ ${}^{2}J_{C}6,_{F}5 = 15.5$			121.5 (CF ₃) ¹ J _{CF3,F} =272.7
2b	133.0 ${}^{2}J_{\rm C}1,{}_{\rm F}6=11.9$	65.2 ${}^{2}J_{C}2,_{F}3 = 27.2$	147.2 ${}^{1}J_{C}3_{F}3 = 239.8$ ${}^{2}J_{C}3_{F}4 = 11.5$	132.3 ${}^{1}J_{C}4,_{F}4 = 246.0$ ${}^{2}J_{C}4,_{F}3 = 19.3$ ${}^{2}J_{C}4,_{F}5 = 13.5$	141.0 ${}^{1}J_{C}5_{F}5 = 250.0$ ${}^{2}J_{C}5_{F}4 = 14.1$ ${}^{2}J_{C}5_{F}6 = 13.4$	135.2 ${}^{1}J_{C}6, {}_{F}6 = 242.4$ ${}^{2}J_{C}6, {}_{F}5 = 12.8$			
2c	133.2	72.9	146.9	141.1	105.1	144.5			

	C ¹	C^2	C ³	C ⁴	C ⁵	C ⁶	C ⁷	C ⁸	Others
	${}^{2}J_{\rm C}1_{\rm F}6 = 15.2$	$^{2}J_{C}2,_{F}3 = 26.6$	${}^{1}J_{C}3_{F}3 = 239.5;$ ${}^{2}J_{C}3_{F}4 = 14.2$	${}^{1}J_{C}4,_{F}4 = 243.6$ ${}^{2}J_{C}4,_{F}3 = 16.7$ ${}^{3}J_{C}4,_{F}6 = 11.8$	${}^{2}J_{C}5,_{F}4 = 25.0$ ${}^{2}J_{C}5,_{F}6 = 22.2$	${}^{1}J_{C}6_{F}6 = 241.7$ ${}^{3}J_{C}6_{F}4 = 9.6$			
2d	133.0 ${}^{2}J_{C}1,_{F}6 = 14.0$	82.3 ${}^{3}J_{C}2,_{F}4 = 10.5$	120.3 ${}^{2}J_{C}3,_{F}4 = 24.2$	154.4 ${}^{1}J_{C}4,_{F}4 = 242.4$ ${}^{3}J_{C}4,_{F}6 = 11.9$	104.2 ${}^{2}J_{C}5,_{F}4 = 26.3$ ${}^{2}J_{C}5,_{F}6 = 23.5$	148.9 ${}^{1}J_{C}6,{}_{F}6 = 245.9$ ${}^{3}J_{C}6,{}_{F}4 = 12.0$			
2e	$^{3}J_{C}1,_{F}5 = 8.7$	74.9 ${}^{3}J_{C}2,_{F}4 = 6.5$	126.5 ${}^{2}J_{C}3,_{F}4 = 20.0$	143.1 ${}^{1}J_{C}4,_{F}4 = 243.0$ ${}^{2}J_{C}4,_{F}5 = 13.5$	150.9 ${}^{1}J_{C}5,_{F}5 = 246.6$ ${}^{2}J_{C}5,_{F}4 = 13.3$	102.6 ${}^{2}J_{C}6_{F}5 = 21.0$			
5	138.7 ² J _C 1, _F 6 = 11.9	91.8 ${}^{2}J_{C}2,{}_{F}3 = 26.4$	152.8 ${}^{1}J_{C}3,_{F}3 = 252.0$ ${}^{3}J_{C}3,_{CF3} = 1.9$	97.2 ${}^{2}J_{C}4_{,CF3} = 34.7$ ${}^{2}J_{C}4_{,F}3 = 17.7$ ${}^{2}J_{C}4_{,F}5 = 12.6$	147.4 ${}^{1}J_{C}5,_{F}5 = 257.2$ ${}^{2}J_{C}5,_{F}6 = 13.5$ ${}^{3}J_{C}5,_{CF3} = 1.8$	135.5 ${}^{1}J_{C}6_{F}6 = 241.0$ ${}^{2}J_{C}6_{F}5 = 15.6$			121.7 (CF ₃) ${}^{1}J_{CF3,F}$ =273.0
4af	141.1 ${}^{2}J_{C}1_{F}6 = 11.1$	94.3 ${}^{2}J_{C}2,_{F}3 = 21.8$	156.3 ${}^{1}J_{C}3,F3 = 256.8$ ${}^{3}J_{C}3,CF3 \approx 2$	96.8 ${}^{2}J_{C}4_{,CF3} = 34.7$ ${}^{2}J_{C}4_{,F}3 = 16.3$ ${}^{2}J_{C}4_{,F}5 = 12.6$	148.0 ${}^{1}J_{C}5,F5 = 259.2$ ${}^{2}J_{C}5,F6 = 13.2$ ${}^{3}J_{C}5,CF3 \approx 2$	135.4 ${}^{1}J_{C}6,F6 = 238.4$ ${}^{2}J_{C}6,F5 = 15.2$	69.6	106.1	31.4 (CH ₃) 65.9 (COH) 121.7 (CF ₃) ¹ J _{CF3,F} = 272.4
4ag	141.0 ${}^{2}J_{\rm C}1_{\rm F}6$ = 11.4	95.8 ² J _C 2, _F 3 = 21.8	156.3 ${}^{1}J_{C}3,_{F}3 = 255.8$ ${}^{3}J_{C}3,_{CF3} \approx 2$	96.8 2 / _C 4, _{CF3} = 34.7 2 / _C 4, _F 3 = 16.3 2 / _C 4, _F 5 = 12.6	147.5 ${}^{1}_{J_{C}5,F^{5}} = 258.1$ ${}^{2}_{J_{C}5,F^{6}} = 15.0$ ${}^{3}_{J_{C}5,CF^{3}} \approx 2$	135.5 ${}^{1}J_{C}6_{F}6 = 237.7$ ${}^{2}J_{C}6_{F}5 = 15.3$	67.8	103.0	13.6 (CH ₃) 19.4 (CH ₂) 22.0 (CH ₂) 30.6 (CH ₂) 121.8 (CF ₃) ¹ J _{CF3+F} =272.6
4ah	140.9 ² J _C 1, _F 6 = 11.7	95.2 ² J _C 2, _F 3 = 21.7	156.2 ¹ J _C 3, _F 3 = 257.1 ³ J _C 3, _{CF3} ≈ 2	97.1 ${}^{2}J_{C}4_{,CF3} = 34.7$ ${}^{2}J_{C}4_{,F}3 = 16.3$ ${}^{2}J_{C}4_{,F}5 = 12.6$	148.1 ${}^{1}J_{C}5,_{F}5 = 258.8$ ${}^{2}J_{C}5,_{F}6 = 13.1$ ${}^{3}J_{C}5,_{CF3} \approx 2$	135.5 ${}^{1}J_{c}6_{F}6 = 238.5$ ${}^{2}J_{c}6_{F}5 = 15.2$	76.1	101.0	121.7 (CF ₃) ¹ J _{CF3-F} =272.8 121.8 (Ph) 128.6 (Ph) 129.3 (Ph) 131.7 (Ph)
4ai	141.8 ² J _C 1, _F 6=11.7	94.3 ² J _C 2, _F 3=21.9	156.5 ¹ J _c 3, _F 3 = 257.3 ³ J _c 3, _{CF3} ≈ 2	96.5 ${}^{2}J_{C4,CF3} = 34.7$ ${}^{2}J_{C4,F3} = 16.3$ ${}^{2}J_{C4,F5} = 12.6$	148.2 ${}^{1}J_{C}5,F5 = 259.2$ ${}^{2}J_{C}5,F6 = 13.4$ ${}^{3}J_{C}5,CF3} \approx 2$	135.4 ${}^{1}J_{C}6_{F}6 = 238.2$ ${}^{2}J_{C}6_{F}5 = 15.2$	73.2	97.5	19.0 (CH ₂) 25.3 (CH ₂) 30.3 (CH ₂) 55.2 (CH ₂) 62.3 (CH ₂) 97.8 (CH) 121.7 (CF ₃) ¹ J _{CF3.F} = 272.3
4bf	133.4 ${}^{2}J_{C}1,_{F}6 = 11.5$	93.8 ² J _C 2, _F 3 = 17.5	147.8 ${}^{1}J_{C}3,{}_{F}3 = 247.7$ ${}^{2}J_{C}3,{}_{F}4 = 11.2$	132.7 ${}^{1}J_{C}4,_{F}4 = 242.1$ ${}^{2}J_{C}4,_{F}3 = 16.3$ ${}^{2}J_{C}4,_{F}5 = 13.4$	141.5 ${}^{1}J_{C}5_{F}5 = 252.0$ ${}^{2}J_{C}5_{F}4, {}^{2}J_{C}5_{F}6 \approx 14$	136.0 ${}^{1}J_{C}6,F6 = 238.8$ ${}^{2}J_{C}6,F5 = 12.6$	69.9	105.8	31.4 (CH ₃) 65.9 (COH)
4bg	133.2 ${}^{2}J_{C}1_{F}6 = 11.5$	95.2 ${}^2J_{\rm C}2_{\rm F}3 = 17.7$	148.0 ${}^{1}J_{C}3,_{F}3 = 246.5$ ${}^{2}J_{C}3,_{F}4 = 11.1$	132.8 ${}^{1}J_{C}4,{}_{F}4 = 241.6$ ${}^{2}J_{C}4,{}_{F}3 = 16.7$ ${}^{2}J_{C}4,{}_{F}5 = 13.3$	140.9 ${}^{1}J_{C}5_{F}5 = 250.8$ ${}^{2}J_{C}5_{F}4, {}^{2}J_{C}5_{F}6 \approx 14$	136.1 ${}^{1}J_{C}6,F6 = 238.2$ ${}^{2}J_{C}6,F5 = 12.7$	68.1	102.9	13.5 (CH ₃) 19.5 (CH ₂) 22.0 (CH ₂) 30.6 (CH ₂)
4bh	133.2 ${}^{2}J_{C}1,_{F}6 = 11.8$	94.4 ${}^{2}J_{C}2,_{F}3 = 17.7$	${}^{1}J_{C}3_{F}3 = 247.9$ ${}^{2}J_{C}3_{F}4 = 11.1$	132.7 ${}^{1}J_{C}4,{}_{F}4 = 242.3$ ${}^{2}J_{C}4,{}_{F}3 = 16.6$ ${}^{2}J_{C}4,{}_{F}5 = 13.5$	141.3 ${}^{1}J_{C}5,_{F}5 = 252.2$ ${}^{2}J_{C}5,_{F}4, {}^{2}J_{C}5,_{F}6 \approx 14$	135.9 ${}^{1}J_{C}6,F6 = 236.3$ ${}^{2}J_{C}6,F5 = 12.3$	76.4	100.7	121.9 (Ph) 128.4 (Ph) 129.1 (Ph) 131.5 (Ph)
4bi	134.0 ${}^{2}J_{\rm C}1_{\rm F}6$ = 11.6	93.6 ² J _c 2, _F 3 = 17.7	1 48.0 1 J _C 3, _F 3 = 248.1 2 J _C 3, _F 4 = 11.1	132.5 ${}^{1}J_{C}4_{F}4 = 241.8$ ${}^{2}J_{C}4_{F}3 = 16.6$ ${}^{2}J_{C}4_{F}5 = 13.5$	141.6 ${}^{1}J_{C}5,F5 = 252.3$ ${}^{2}J_{C}5,F4, {}^{2}J_{C}5,F6 \approx 14$	136.0 ${}^{1}J_{C}6_{F}6 = 238.8$ ${}^{2}J_{C}6_{F}5 = 12.8$	73.5	97.4	19.0 (CH ₂) 25.3 (CH ₂) 30.3 (CH ₂) 55.1 (CH ₂) 62.3 (CH ₂) 97.6 (CH)
4bj	134.5 ${}^{2}J_{C}1,_{F}6 = 11.7$	93.4 ${}^{2}J_{C}2,_{F}3 = 17.5$	148.5 ${}^{1}J_{C}3,_{F}3 = 249.0$ ${}^{2}J_{C}3,_{F}4 = 11.2$	132.8 ${}^{1}J_{C}4_{F}4 = 242.4$ ${}^{2}J_{C}4_{F}3 = 16.4$ ${}^{2}J_{C}4_{F}5 = 13.8$	142.0 ${}^{1}J_{C}5,_{F}5 = 253.0$ ${}^{2}J_{C}5,_{F}4, {}^{2}J_{C}5,_{F}6 \approx 14$	136.2 ${}^{1}J_{C}6,F6 = 239.0$ ${}^{2}J_{C}6,F5 = 12.6$	71.6 ² J _C 7, _H =50.6	89.0 ¹ J _C 8, _H =255.6	
4cf	133.3 ${}^{2}J_{C}1,_{F}6 = 15.1$	99.5 ${}^{2}J_{C}2,_{F}3 = 17.5$	147.0 ${}^{1}J_{C}3,F3 = 245.8$ ${}^{2}J_{C}3,F4 = 13.7$	141.1 ${}^{1}J_{C}4,_{F}4 = 239.2$ ${}^{2}J_{C}4,_{F}3 = 13.9$ ${}^{2}J_{C}4,_{F}5 = 12.7$	105.4 ${}^{2}J_{C}5,_{F}4 = 24.4$ ${}^{2}J_{C}5,_{F}6 = 22.3$	145.3 ${}^{1}J_{C}6,F6 = 238.0$ ${}^{3}J_{C}6,F4 = 10.4$	70.9	106.1	31.4 (CH ₃) 65.8 (COH)
4cg	133.1 ${}^{2}J_{C}1,_{F}6 = 14.9$	$^{101.0}_{2}J_{C}2,_{F}3 = 17.6$	147.4 ${}^{1}J_{C}3,_{F}3 = 245.3$ ${}^{2}J_{C}3,_{F}4 = 13.7$	141.3 ${}^{1}J_{C}4,{}_{F}4 = 238.9$ ${}^{2}J_{C}4,{}_{F}3, {}^{2}J_{C}4,{}_{F}5 \approx 14$	104.5 ${}^{2}J_{C}5,{}_{F}4,\;{}^{2}J_{C}5,{}_{F}6\approx23$	145.4 ${}^{1}J_{C}6,F6 = 237.2$ ${}^{3}J_{C}6,F4 = 10.5$	69.3	103.2	13.6 (CH ₃) 19.5 (CH ₂) 22.0 (CH ₂) 30.6 (CH ₂)
4ch	133.4	100.2	147.2	141.5	105.5	145.5	77.9	100.9	122.4 (Ph)

	C ¹	C^2	C ³	C ⁴	C ⁵	C ⁶	C ⁷	C ⁸	Others
	$^{2}J_{\rm C}1_{\rm F}6 = 15.7$	${}^{2}J_{C}2_{F}3 = 17.5$	${}^{1}J_{C}3_{F}3 = 246.8$ ${}^{2}J_{C}3_{F}4 = 13.6$	${}^{1}J_{C}4,_{F}4 = 239.3$ ${}^{2}J_{C}4,_{F}3, {}^{2}J_{C}4,_{F}5 \approx 13$	${}^{2}J_{C}5,{}_{F}4,\;{}^{2}J_{C}5,{}_{F}6\approx23$	${}^{1}J_{C}6_{,F}6 = 237.8$ ${}^{3}J_{C}6_{,F}4 = 10.5$			128.7 (Ph) 129.9 (Ph) 131.9 (Ph)
4ci	133.8 ² J _C 1, _F 6 = 15.1	99.4 ${}^{2}J_{C}2_{,F}3 = 17.7$	147.4 ${}^{1}J_{C}3,F3 = 246.9$ ${}^{2}J_{C}3,F4 = 13.8$	141.0 ${}^{1}J_{C4,F4} = 239.2$ ${}^{2}J_{C4,F3} = 13.6$ ${}^{2}J_{C4,F5} = 12.4$	105.6 ²J _C 5, _F 4, ²J _C 5, _F 6≈23	145.2 ${}^{1}J_{C}6,F6 = 237.8$ ${}^{3}J_{C}6,F4 = 10.4$	74.6	97.6	19.1 (CH ₂) 25.3 (CH ₂) 30.3 (CH ₂) 55.0 (CH ₂) 62.2 (CH ₂) 97.5 (CH)
4df	133.0 ${}^{2}J_{C}1,_{F}6 = 13.7$	$^{109.4}_{J_{C}2,F}4 = 11.0$	113.3 ${}^{2}J_{C}3,_{F}4 = 23.4$	153.8 ${}^{1}J_{C}4,F4 = 237.9$ ${}^{3}J_{C}4,F6 = 12.3$	104.6 ${}^{2}J_{C}5,_{F}4 = 26.8$ ${}^{2}J_{C}5,_{F}6 = 22.9$	${}^{1}J_{C}6,{}_{F}6 = 241.6$ ${}^{3}J_{C}6,{}_{F}4 = 12.7$	76.8	101.3	31.5 (CH ₃) 65.6 (COH)
4dg	132.9 ² J _C 1, _F 6 = 13.5	$^{110.9}_{J_{C}2,F}4 = 11.0$	113.3 ${}^{2}J_{C}3,{}_{F}4 = 23.2$	153.9 ${}^{1}J_{C}4,{}_{F}4 = 237.4$ ${}^{3}J_{C}4,{}_{F}6 = 12.5$	103.8 ${}^{2}J_{C}5,F4 = 26.8$ ${}^{2}J_{C}5,F6 = 22.9$	$^{1}J_{C}6_{F}6 = 241.0$ $^{3}J_{C}6_{F}4 = 12.9$	75.3	97.9	13.6 (CH ₃) 19.3 (CH ₂) 22.1 (CH ₂) 30.8 (CH ₂)
4dh	133.2 ² J _c 1, _F 6=13.7	$^{109.8}_{J_{C}2,F}4 = 11.0$	113.3 ${}^{2}J_{C}3,{}_{F}4 = 23.3$	153.9 ${}^{1}J_{C}4,{}_{F}4 = 237.9$ ${}^{3}J_{C}4,{}_{F}6 = 12.4$	104.7 ${}^{2}J_{C}5,{}_{F}4 = 26.9$ ${}^{2}J_{C}5,{}_{F}6 = 22.8$	$^{1}J_{C}6_{F}6 = 241.6$ $^{3}J_{C}6_{F}4 = 12.7$	83.8	96.4	122.5 (Ph) 128.5 (Ph) 128.9 (Ph) 131.6 (Ph)
4di	133.7 ² J _C 1, _F 6 = 13.8	$^{109.0}_{3}J_{c}2_{F}4 = 10.9$	113.5 ² J _C 3, _F 4=23.3	153.6 ¹ J _C 4, _F 4=237.8 ³ J _C 4, _F 6=12.3	104.9 ${}^{2}J_{C}5_{F}4 = 26.8$ ${}^{2}J_{C}5_{F}6 = 22.8$	$^{1}50.4$ $^{1}J_{C}6_{F}6 = 241.6$ $^{3}J_{C}6_{F}4 = 12.7$	80.5	92.5	19.0 (CH ₂) 25.3 (CH ₂) 30.3 (CH ₂) 54.9 (CH ₂) 62.2 (CH ₂) 97.3 (CH)
4ef	$^{144.9}$ $^{3}J_{C}1,_{F}5 = 9.4$	$^{102.9}_{J_{\rm C}2,{\rm F}4}$ = 7.0	$^{120.0}_{2}J_{C}3,_{F}4 = 19.0$	142.8 ${}^{1}J_{C}4_{F}4 = 238.1$ ${}^{2}J_{C}4_{F}5 = 13.4$	${}^{1}J_{C}5,_{F}5 = 249.1$ ${}^{2}J_{C}5,_{F}4 = 13.7$	${}^{103.0}_{2}J_{C}6_{F}5 = 20.9$	84.0	99.7	31.6 (CH ₃) 65.7 (COH)
4eg	144.8	104.5	119.8	142.7	150.6	102.7	75.3	96.3	13.6 (CH ₃)
	${}^{3}J_{C}1,_{F}5 = 9.1$	${}^{3}J_{C}2,_{F}4 = 6.9$	${}^{2}J_{C}3,_{F}4 = 18.6$	${}^{1}J_{C}4,_{F}4 = 237.4$ ${}^{2}J_{C}4,_{F}5 = 13.5$	${}^{1}J_{C}5_{F}5 = 247.6$ ${}^{2}J_{C}5_{F}4 = 13.7$	${}^{2}J_{C}6_{,F}5 = 20.8$			19.2 (CH ₂) 22.1 (CH ₂) 30.9 (CH ₂)
4eh	$^{144.9}$ $^{3}J_{C}1,_{F}5 = 9.4$	$^{103.1}$ $^{3}J_{C}2,_{F}4 = 7.3$	119.5 ² J _C 3, _F 4 = 18.9	142.5 ${}^{1}J_{C}4,F4 = 237.9$ ${}^{2}J_{C}4,F5 = 13.6$	$^{1}51.0$ $^{1}J_{C}5,_{F}5 = 249.1$ $^{2}J_{C}5,_{F}4 = 13.8$	${}^{102.6}_{2J_{C}6,F5}$ = 20.9	83.8	94.7	122.4 (Ph) 128.2 (Ph) 128.3 (Ph) 131.2 (Ph)
4ei	$^{145.5}_{^{3}J_{C}1,_{\rm F}5} = 9.4$	102.5 ${}^{3}J_{\rm C}2,{}_{\rm F}4=7.3$	120.2 ${}^{2}J_{\rm C}3_{\rm F}4$ = 18.9	142.7 ¹ / _C 4, _F 4 = 238.0 ² / _C 4, _F 5 = 13.5	151.4 ¹ / _C 5, _F 5 = 249.3 ² / _C 5, _F 4 = 13.8	102.8 ${}^{2}J_{C}6_{F}5$ = 20.9	80.8	91.0	19.1 (CH ₂) 25.3 (CH ₂) 30.3 (CH ₂) 54.9 (CH ₂) 62.2 (CH ₂) 97.2 (CH)

In the IR spectra of all anilines synthesized the valence vibrations of the N-H ($3354-3496 \text{ cm}^{-1}$) and C(C ($2206-2235 \text{ cm}^{-1}$) bonds are observed. Characteristic for compound **4bj** are the ethynyl C-H vibration at 3304 cm^{-1} and the high-frequency shift ($\sim 100 \text{ cm}^{-1}$) of the C(C band from that of anilines **4a–e,f–i** (cf [46]).

3. Conclusion

Table 5 (Continued)

By means of the Pd-catalysed condensation of polyfluorinated *ortho*-iodoanilines with terminal alkynes the corresponding *ortho*-alkynylanilines – base building blocks for assembling polyfluor-obenzoazaheterocycles and molecular design of their functional derivatives were obtained.

4. Experimental

4.1. General

NMR spectra were recorded on a Bruker AV-300 (300.13 for $^{1}\mathrm{H}$ and 282.37 MHz for $^{19}\mathrm{F})$ and AV-400 (400.13 for $^{1}\mathrm{H},$ 376.44 for $^{19}\mathrm{F}$ and 100.62 MHz for $^{13}\mathrm{C})$ spectrometers in CDCl₃ using residual

CHCl₃ ($\delta_{\rm H}$ 7.24 ppm), CDCl₃ ($\delta_{\rm C}$ 76.9 ppm) as internal references and C₆F₆ ($\delta_{\rm F}$ = -163.0 ppm) as an external reference. ¹³C NMR spectra were registered with C–H spin decoupling, while the another is not stated.

Masses of molecular ions were determined by HRMS on a DFS Thermo scientific instrument (EI, 70 eV), or by Hybrid Quadrupole Time of Flight mass spectrometer (microTOF-Q, Bruker) equipped with Atmospheric Pressure Chemical Ionization (APCI) and Atmospheric Pressure Electrostatic Spray Ionization (API-ES). GC-MS was performed in a Hewlett-Packard instrument with a HP 5890 Series II gas chromatograph and HP 5971 (EI, 70 eV) massselective detector using a HP5MS capillary column (30 mm \times $0.25 \text{ mm} \times 0.25 \text{ mm}$; the carrier gas was He et 1 mL/min. IR spectra were recorded with a Bruker V-22 spectrometer. The starting 2-(prop-2-in-1-yloxy)oxane **3i** [54] and Pd(PPh₃)₂Cl₂ [55] were prepared by the reported protocols. 3,4-Difluoroaniline, other materials and solvents were of a commercial supply, the solvents having been distilled. Sorbfil plates were used for products isolation by TLC (eluent: hexane-EtOAc, $10 \div 5$: 1) as an oils. According to ¹⁹F NMR data with calibration of peak intensities by C₆F₆ as an internal standard the first synthesized compounds had purity \geq 95% (Table 6).

Tab	ole	6
-		

Exact values of molecular ion masses and IR data of anilines 2a	- d and 4a-e,f-j .
---	----------------------------------

Compound	m/z	Calcd for	[M] ⁺ (calcd)	[M] ⁺ (found)	IR spectra, v (cm ⁻¹)		
					OH (C(C-H)	NH ₂	C(C
2a	[M] ⁺	C ₇ H ₂ F ₆ IN	340.9131	340.9133		3507, 3402	
2c	[M] ⁺	C ₆ H ₃ F ₃ IN	272.9257	272.9258		3480, 3383	
2d	[M] ⁺	C ₆ H ₄ F ₂ IN	254.9351	254.9350		3465, 3369	
4af	[M] ⁺	C ₁₂ H ₉ F ₆ NO	297.0583	297.0584	3609	3411, 3358	2232
4ag	[M] ⁺	C13H11F6N	295.0790	295.0793		3515, 3408	2232
4ah	[M] ⁺	C ₁₅ H ₇ F ₆ N	315.0477	315.0475		3511, 3405	2214
4ai	[M] ⁺	C ₁₅ H ₁₃ F ₆ NO ₂	353.0845	353.0847		3474, 3339	2231
4bf	[M+H ⁺ -H ₂ O] ⁺	$C_{11}H_8F_4N$	230.0587	230.0586	3604	3355	2227
4bg	[M] ⁺	$C_{12}H_{11}F_4N$	245.0822	245.0821		3496, 3396	2235
4bh	[M-H ⁺] ⁻	$C_{14}H_6F_4N$	264.0442	264.0440		3473, 3386	2211
4bi	[M] ⁺	$C_{14}H_{13}F_4NO_2$	303.0877	303.0876		3470, 3354	2233
4bj	[M] ⁺	C ₈ H ₃ F ₄ N	189.0196	189.0200	3304 (C(CH)	3503, 3402	2112
4cf	[M] ⁺	$C_{11}H_{10}F_{3}NO$	229.0709	229.0711	3599	3359	2227
4cg	[M] ⁺	$C_{12}H_{12}F_{3}N$	227.0916	227.0915		3472, 3396	2230
4ch	[M+H ⁺] ⁺	$C_{14}H_9F_3N$	248.0682	248.0690		3473, 3392	2206
4ci	[M] ⁺	$C_{14}H_{14}F_{3}NO_{2}$	285.0971	285.0968		3475, 3354	2231
4df	[M] ⁺	$C_{11}H_{11}F_2NO$	211.0803	211.0800	3568	3350	2223
4dg	[M] ⁺	$C_{12}H_{13}F_2N$	209.1011	209.1016		3481, 3384	2229
4dh	[M] ⁺	$C_{14}H_9F_2N$	229.0698	229.0699		3476, 3386	2206
4di	[M+H ⁺] ⁺	$C_{14}H_{16}F_2NO_2$	268.1144	268.1132		3469, 3357	2229
4ef	[M] ⁺	$C_{11}H_{11}F_2NO$	211.0803	211.0802	3568	3408, 3301	2218
4eg	[M+H ⁺] ⁺	$C_{12}H_{14}F_2N$	210.1089	210.1085		3477, 3384	2225
4eh	$[M-H^{+}]^{-}$	$C_{14}H_8F_2N$	228.0630	228.0623		3452, 3361	2206
4ei	[M+H ⁺] ⁺	$C_{14}H_{16}F_2NO_2$	268.1144	268.1141		3469, 3361	2223

4.2. Synthetic procedures

4.2.1. 2-Iodo-3,5,6-trifluoro-4-(trifluoromethyl)aniline (2a). Method I (typical procedure for anilines 2a-d).

To a stirred solution of aniline **1a** (0.52 g, 2.4 mmol) in dioxane (18 mL) at 70 °C were added 0.31 Γ (1.2 mmol) fine-ground iodine and a solution of iodic acid (0.43 g, 2.4 mmol) in H₂O (3 mL). The reaction mixture was refluxed for 4 h, cooled to r.t., poored into H₂O (50 mL) and extracted with CHCl₃ (3 × 30 mL). The extract was washed with sat. Na₂S₂O₃ (2 × 30 mL) and NaCl (30 mL) solutions, then with H₂O (30 mL), dried (MgSO₄), and purified by flash chromatography on Al₂O₃ to afford **2a** (0.79 g, 97%) as an oil.

Method II. A solution of 2,3,5-trifluoro-4-(trifluoromethyl)aniline **1a** (0.34 g, 1.57 mmol) in EtOH (3 mL) was added during 15 min to a stirred mixture of I₂ (0.51 g, 2.0 mmol), Ag₂SO₄ (0.62 g, 2.0 mmol) and EtOH (10 mL). The mixture was boiled for 4 h, filtered, solvent was evaporated. The residue was dissolved in CHCl₃ (40 mL), the solution was washed with sat. aq. solutions of Na₂S₂O₃ (2 × 30 mL) and NaCl (30 mL), then with H₂O (30 mL), dried (MgSO₄), and purified by flash chromatography on Al₂O₃ to afford **2a** (0.49 g, 93%) as an oil.

4.2.2. 2,3,4,5-Tetrafluoro-6-(hex-1-yn-1-yl)aniline (**4bg**) (typical procedure for anilines **4a–e,f–i**)

To a stirred mixture of aniline **2b** (0.100 g, 0.344 mmol), hex-1yne **3g** (0.084 g, 1.031 mmol) and Et₃N (3 mL) under argon added were Pd(PPh₃)₂Cl₂ (0.010 g, 0.014 mmol), Cul (0.006 g, 0.031 mmol) and, additionally, Et₃N (3 mL). Stirring was continued at 70 °C for 3 h, the mixture was cooled to r.t., diluted by CHCl₃ (10 mL) and poured into a mixture of H₂O (30 mL) and CHCl₃ (20 mL). The aqueous layer was extracted with CHCl₃ (2 × 30 mL), the collected organic solution was washed with H₂O (3 × 30 mL) and dried (MgSO₄). Evoparation of the solvent and chromatography (TLC) of the crude product (eluent: hexane–EtOAc, 10:1 → 10:1 → 10:1, R_f = 0.54) gave aniline **4bg** (0.067 g, 80%) as an oil.

4.2.3. 2-Ethynyl-tetrafluoroaniline (4bj) (typical procedure for anilines 4bj, 4dj)

The crude product (**4bf**), obtained by reaction of aniline **2b** (0.202 g, 0.693 mmol) with alkyne **3f** (see typical procedure for

anilines **4a–e,f–i**), and powdered KOH (0.078 g, 1.4 mmol) in absolute benzene (8 mL) were refluxed with stirring for 40 min. The mixture was cooled to r.t. and poured into a mixture of H₂O (30 mL) and CHCl₃ (20 mL). The aqueous layer was extracted with CHCl₃ (2 × 30 mL), the collected organic solution was washed with H₂O (3 × 30 mL) and dried (MgSO₄). Evoparation of the solvent and chromatography (TLC) of the crude product (eluent: hexane–EtOAc, $15:1 \rightarrow 15:1 \rightarrow 15:1$, R_f = 0.46) gave aniline **4bj** (0.093 g, 71% on **2b**) as an oil.

4.2.4. 2-Bromo-3,5,6-trifluoro-4-(trifluoromethyl)aniline (5)

To a stirred solution of aniline **1a** (2.0 g, 9.3 mmol) in glycial AcOH (7 mL) were added powdered iron (0.07 g, 1.3 mmol) and anhydrous AcONa (1.0 g, 12.1 mmol). The mixture was warmed to 45 °C and a solution of Br₂ (2.7 g, 16.8 mmol) in AcOH (7 mL) was dropwise added for 1 h. The mixture was stirred at 60 °C for 2 h, then cooled to r.t. and decolorized by adding a sat. aq. solution of Na₂S₂O₃ and steam distilled. The distillate was extracted with CHCl₃ (3 × 50 mL), the extract was washed with H₂O (50 mL), dried (MgSO₄), evaporated to afford the title aniline (2.3 g, 85%) as a colorless solid. m.p.: 33–34 °C. IR (KBr): 3510 and 3414 (NH₂) cm⁻¹. Anal. Calcd. for C₇H₂F₆BrN: C, 28.60; H, 0.69, Br, 27.18; N, 4.76. Found: C, 28.42; H, 0.70; Br, 27.15; N, 4.72.

Acknowledgment

The authors thank Russian Foundation of Basic Research for financial support (grant 09-03-00248).

References

- (1) (a) A.R. Katrizky, C.W. Rees, O. Meth-Cohn (Eds.), Comprehensive Heterocyclic Chemistry, vol. 1, Pergamon Press, Oxford/New York/Toronto/Sydney/Paris/ Frankfurt, 1984;
- (b) R. Filler, Y. Kobayashi, L.M. Yagupolskii (Eds.), Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, Elsevier, Amsterdam, 1993.
- [2] I. Ojima (Ed.), Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwel, Chippenham, 2009.
- [3] R.E. Banks, B.E. Smart, J.C. Tatlow (Eds.), Organofluorine Chemistry. Principles and Commercial Applications, Plenum Press, New York, 1994.
- [4] K.L. Kirk, J. Fluorine Chem. 127 (2006) 1013-1029.
- [5] C. Isanbor, D. O'Hagan, J. Fluorine Chem. 127 (2006) 303-319.
- [6] S.S. Laev, V.U. Evtefeev, V.D. Shteingarts, J. Fluorine Chem. 110 (2001) 43-46.

- [7] S.S. Laev, L.Yu. Gurskaya, G.A. Selivanova, I.V. Beregovaya, L.N. Shchegoleva, N.V. Vasil'eva, M.M. Shakirov, V.D. Shteingarts, Eur. J. Org. Chem. (2007) 306–316.
- [8] G.A. Selivanova, L.Yu. Gurskaya, L.M. Pokrovsky, V.F. Kollegov, V.D. Shteingarts, J. Fluorine Chem. 125 (2004) 1829–1834.
- [9] E.V. Panteleeva, V.D. Shteingarts, J. Grobe, B. Krebs, M.U. Triller, H.Z. Rabeneck, Z. Anorg. Allg. Chem. 629 (2003) 71–82.
- [10] L.Yu. Safina, G.A. Selivanova, I.Yu. Bagrjanskaja, V.D. Shteingarts, Russ. Chem. Bull., Int. Ed. (2009) 1022-1033.
- [11] L.Yu. Safina, G.A. Selivanova, K.Yu. Koltunov, V.D. Shteingarts, Tetrahedron Lett. 50 (2009) 5245–5247.
- [12] B. Robinson, Chem. Rev. 63 (1963) 373-401.
- [13] B. Robinson, Chem. Rev. 69 (1969) 227–250.
- [14] G. La Regina, A. Coluccia, F. Piscitell¹, A. Bergamini, A. Sinistro, A. Cavazza, G. Maga, A. Samuele, S. Zanoli, E. Novellino, M. Artico, R. Silvestri, J. Med. Chem. 50 (2007) 5034–5038.
- [15] M. Katayama, Y. Kato, T. Hatano, M. Hatori, S.J. Marumo, J. Pestic. Sci. 23 (1998) 289–295.
- [16] K. Cucek, B. Vercek, Synthesis (2008) 1741-1746.
- [17] T.D. Petrova, V.P. Mamaev, G.G. Yakobson, Izv. Akad. Nauk SSSR, Ser. Khim. (1969) 679–682.
- [18] R. Filler, S.M. Woods, J. Org. Chem. 38 (1973) 811-812.
- [19] C. Praveen, K. Karthikeyan, P.T. Perumal, Tetrahedron 65 (2009) 9244-9255.
- [20] K. Okuma, J.-i. Seto, K.-i. Sakaguchi, S. Ozaki, N. Nagahora, K. Shioji, Tetrahedron Lett. 50 (2009) 2943–2945.
- [21] R. Sanz, V. Guilarte, A. Perez, Tetrahedron Lett. 50 (2009) 4423-4426.
- [22] Y.-J. Guo, R.-Y. Tang, J.-H. Li, P. Zhong, X.-G. Zhang, Adv. Synth. Catal. 351 (2009) 2615–2618.
- [23] N. Sakai, K. Annaka, T. Konakahara, Tetrahedron Lett. 47 (2006) 631-634.
- [24] D.F. Kennedy, B.A. Messerle, S.L. Rumble, New J. Chem. 33 (2009) 818-824.
- [25] A. Arcadi, G. Bianchi, F. Marinelli, Synthesis (2004) 610-618.
- [26] Y. Ohta, H. Chiba, S. Oishi, N. Fujii, H. Ohno, J. Org. Chem. 74 (2009) 7052-7058.
- [27] Y. Yin, Z. Chai, W.-Y. Ma, G. Zhao, Synthesis (2008) 4036-4040.
- [28] S. Kamijo, Y. Sasakib, Y. Yamamotoa, Tetrahedron Lett. 45 (2004) 35-38.
- [29] Y. Chen, N.A. Markina, R.C. Larock, Tetrahedron 65 (2009) 8908–8915.
- [30] I. Ambrogio, S. Cacchi, G. Fabrizi, Tetrahedron Lett. 48 (2007) 7721–7725.
- [31] Z. Shen, X. Lu, Adv. Synth. Catal. 351 (2009) 3107-3112.
- [32] J. Wang, N. Soundarajan, N. Liu, K. Zimmermann, B.N. Naidu, Tetrahedron Lett. 46 (2005) 907–910.

- [33] I. Ambrogio, S. Cacchi, G. Fabrizi, A. Prastaro, Tetrahedron 65 (2009) 8916-8929.
- [34] A. Isobe, J. Takagi, T. Katagiri, K. Uneyama, Org. Lett. 10 (2008) 2657-2659.
- [35] C. Peng, Y. Wang, L. Liu, H. Wang, J. Zhao, Q. Zhu, Eur. J. Org. Chem. (2010) 818-822
- [36] M.M. Nad', T.V. Talalaeva, G.V. Kazennirova, K.A. Kocheshkov, Izv. Akad. Nauk SSSR, Ser. Khim. (1959) 65–70.
- [37] (a) The previously reported four-step procedure to prepare fluorinated orthohaloanilines involving metalation/halogenation of fluorinated Boc-protected anilines [37b,c] seems more complicated.
 - (b) S. Leconte, R. Ruzziconi, J. Fluorine Chem. 117 (2002) 161–172;
 (c) F. Bellezza, A. Cipiciani, R. Ruzziconi, S. Spizzichino, J. Fluorine Chem. 129
- (2008) 97–107. [38] D. Grote, C. Finke, S. Kossmann, F. Neese, W. Sander, Chem. Eur. J. 16 (2010) 4496–
- 4506. [39] ASTRAZENECA AB; ASTRAZENECA UK LIMITED, Patent WO2006/82400 A1
- (2006).
- [40] Y. Zhang, T. Ren, W. Zhu, Y. Xie, Org. Prep. Proc. Int. 39 (2007) 90–92.
 [41] B.R. Patil, S.R. Bhusare, R.P. Pawar, Y.B. Vibhute, ARKIVOC (2006) 104–108
- [41] B.R. Patil, S.R. Bhusare, R.P. Pawara, Y.B. Viblute, Tetrahedron Lett. 46 (2005) 7179–7181.
- [43] N.V. Ivashkina, E.A. Yakovleva, I.D. Ivanchikova, A.A. Moroz, M.S. Shvartsberg, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 54 (2005) 1509–1513.
- [44] A. Lei, M. Srivastava, X. Zhang, J. Org. Chem. 67 (2002) 1969-1971.
- [45] R. Chinchilla, C. Najera, Chem. Rev. 107 (2007) 874–922.
- [46] I.D. Ivanchikova, N.I. Lebedeva, M.S. Shvartsberg, Synthesis (2004) 2131-2134.
- [47] M.G. Hogben, W.A. Graham, J. Am. Chem. Soc. 91 (1969) 283-296.
- [48] L.N. Pushkina, A.P. Stepanov, V.S. Zhukov, A.D. Naumov, Zh. Org. Khim. 8 (1972) 586-597.
- [49] J.C. Collings, J.M. Burke, P.S. Smith, A.S. Batsanov, J.A.K. Howard, T.B. Marder, Org. Biomol. Chem. (2004) 3172–3178.
- [50] V. Wray, J. Chem. Soc., Perkin Trans. II (1978) 855-861.
- [51] R.S. da Ribeiro, P.M. Esteves, M.C.S. de Mattos, Synthesis (2011) 739-744.
- [52] S.-T. Lin, C.-C. Lee, E.-C. Wu, Tetrahedron 64 (2008) 5103–5106.
- [53] N. Iranpoor, H. Firouzabadi, A. Tarassoli, M. Fereidoonnezhad, Bull. Chem. Soc. Jpn. 83 (2010) 1367–1373.
- [54] B.M. Trost, C. Jonasson, M. Wucher, J. Am. Chem. Soc. 123 (2001) 12736-12737.
- [55] S.G. Davies, B.E. Mobbs, C.J. Goodwin, J. Chem. Soc., Perkin Trans. I (1987) 2597-2604.