Syntheses of Lamellarins I and K by [3+2] Cycloaddition of a Nitrone to an Alkyne

Maite Díaz, Enrique Guitián,* Luis Castedo

Departamento de Química Orgánica y Unidad Asociada al CSIC,Universidad de Santiago, 15706 Santiago de Compostela, Spain Fax 34 981 595012; E-mail: qoenrgui@usc.es

Received 23 March 2001

Abstract: Lamellarins I and K were obtained by a new approach based on the 1,3-dipolar cycloaddition of a nitrone to an alkyne. The key cycloaddition yields an isoxazoline which rearranges to afford the central pyrrole ring.

Key words: lamellarins, nitrone-alkyne 1,3-dipolar cycloaddition

The lamellarin alkaloids are a group of approximately 35 compounds isolated from the marine prosobranch mollusc *Lamellaria* sp., the marine ascidian *Didemnum* sp. and the sponge *Dendrilla cactos*. Most of them have the basic structure **1**, although about a third have a double bond between carbons 8 and 9.¹ The lamellarins have an interesting range of pharmacological activities, including antitumour and anti HIV-1 properties, reversal of multidrug resistance (MDR), and immunomodulatory activity.^{1,2} For example, it has been claimed that lamellarins I (**1a**) and K (**1b**) not only exhibit potent cytotoxic activity *in vitro* against multidrug-resistant cell lines, but also reverse their MDR at noncytotoxic concentrations, ^{2,3} and the results of in vivo tests of lamellarin K are consistent with these claims.³

Figure 1

The first synthesis of lamellarins was published by Steglich's group in 1997.⁴ Since then, new procedures for the preparation of lamellarins of general structure **1** have been developed by Banwell⁵ and Ishibashi.⁶ Banwell's synthesis of lamellarin K is particularly interesting because it is convergent, versatile and high-yielding.^{5a} The key step in this approach is the formation of the central pyrrole ring by an intramolecular 1,3-dipolar cycloaddition between an azomethine ylide and an alkyne.⁵ Here we present a related approach to lamellarins which relies on two known facts: a) nitrones add to alkynes to form isoxazolines,⁷ and b) isoxazolines with a R-CH₂- substituent at position 3 can be rearranged to pyrroles⁸ (Scheme 1).

Scheme 1

As synthetic targets we selected lamellarins I and K. Application of our procedure to their synthesis requires preparation of alkyne 2 and nitrones 3. Alkyne 2 was synthesized from isovanillin (4) as shown in Scheme 2. Protection of the hydroxyl group of 4 as an isopropyl ether by treatment with K_2CO_3 and ⁱPrBr, followed by treatment with iodine and silver trifluoroacetate, afforded iodide 5, which upon palladium-catalyzed coupling with trimethyl-silylacetylene (TMSA) yielded 6. Treatment with MCP-BA transformed the formyl group of 6 into a hydroxyl group, which was then protected with K_2CO_3 and ⁱPrBr as above, with accompanying loss of the TMS group. Finally, deprotonation of the resulting alkyne with LDA

Scheme 2 a) K_2CO_3 , 2-bromopropane/DMF, 100 °C, 24 h, 98%; b) I_2 , F_3CCO_2 Ag, CHCl₃, rt, 3 h, 80%; c) TMSA, PdCl₂(PPh₃)₂, CuI, Et₃N, dioxane, 45 °C, 3 h, 98%; d) MCPBA, NaHCO₃, CH₂Cl₂, rt, 30 min, 73%; e) K_2CO_3 , 2-bromopropane/DMF, 100 °C, 24 h, 45%; f) LDA, THF, -78 °C, 15 min; then ClCO₂Et, -78 °C \rightarrow rt, 94%

Synlett 2001, No. 7, 1164-1166 ISSN 0936-5214 © Thieme Stuttgart · New York

Scheme 3 a) NaBH₄, MeOH, rt, 1 h, 96-97%; b) H₂O₂, Na₂WO₄, MeOH, rt, 3 h, 45-49%

Scheme 4

and carboxylation with ethyl chloroformate afforded 2 in good yield.

N-Oxides **3** were obtained from dihydroisoquinolines **7**, which were prepared using standard isoquinoline alkaloid procedures.⁹ Reduction of the imine double bond of **7** with sodium borohydride, followed by a non-optimized oxidation with sodium tungstate¹⁰ (45-49% yield), afforded Noxides **3**.

The key cycloaddition step was carried out by heating a mixture of nitrone **3** and alkyne **2** under argon for 18 h at 120 °C in a sealed tube. Under these conditions compounds **9** were obtained in moderate yields.¹¹ The cycloaddition appears to take place with the expected regiochemistry to form the isoxazoline **8**, which upon heating undergoes rearrangement to the corresponding pyrrole **9**.

Finally, lamellarins I and K were obtained from **9a** and **9b**, respectively, by removal of the isopropyl protecting groups¹² with concomitant acid-catalyzed lactonization.¹³

Acknowledgement

Financial support from the DGES (PB96-0967) is gratefully acknowledged. We also thank the Xunta de Galicia for the award of a fellowship to M. Díaz.

References and Notes

- Urban, S.; Hickford, S. J. H.; Blunt, J. W.; Munro, M. H. G. *Current Organic Chemistry* 2000, *4*, 765-807. Lamellarins O, P, Q and R have a different structure characterized by a nonfused polysubstituted pyrrole nucleus.
- (2) Andersen, R. J.; Faulkner, D. J.; Cun-heng, H.; Van Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1985, 107, 5492. Quesada, A. R.; Gravalos, M. D. G.; Puentes, J. L. F. Br. J. Cancer 1996, 74, 677. Boger, D.; Soenen, D. R.; Boyce, C. W.; Hedrick, C. W.; Jin, Q. J. Org. Chem. 2000, 65, 2479. Reddy, M. V. R.; Rao, M. R.; Rhodes, D.; Hansen, M. S. T.; Rubins, K.; Bushman, F. D.; Venkateswarlu, Y.; Faulkner, D. J. J. Med. Chem. 1999, 42, 1901.
- (3) Puentes, J. L. F.; García, D.; Rodríguez, A. US Patent. 5,852,033, 1995.
- (4) a) Heim, A.; Terpin, A.; Steglich, W. Angew. Chem. Int. Ed. Engl. 1997, 36, 155. b) Peschko, C.; Winklhofer, C.; Steglich, W. Chem.-Eur. J. 2000, 6, 1147.

- (5) a) Banwell, M.; Flyn, B.; Hockless, D. Chem. Commun. 1997, 2259. b) Banwell, M.; Flyn, B.; Hockless, D.; Longmore, R. W.; Rae, D. Aust. J. Chem. 1999, 52, 755.
- (6) Ishibashi, F.; Miyazaki, Y.; Ywao, M. Tetrahedron 1997, 53, 5951.
- (7) a) Tufariello, J. J. in *1,3-Dipolar Cycloaddition Chemistry*, Padwa, A., Ed., John Wiley and Sons, New York, 1988, vol. 2, pp. 83-68. b) Breuer, R.; Aurich, H. G.; Nielsen, A. T. in *Nitrones, Nitronates and Nitroxides*; Patai, S., Ed., John Wiley and Sons, New York, 1989, pp. 139-312. c) Little, R. D. in *Comprehensive Organic Synthesis*, Trost, B. M.; Fleming, I.; Paquette, L.A., Eds., Pergamon Press, Oxford, 1991, pp. 239-270.
- (8) a) Zhao, B-X.; Yu, Y.; Eguchi, S. *Tetrahedron* 1996, 52, 12049. b) Schmidt, G.; Stracke, H. U.; Winterfeldt, E. *Chem. Ber.* 1970, 103, 3196.
- (9) a) Shamma, M. *The Isoquinoline Alkaloids*, Academic Press, New York, 1972. b) Shamma, M.; Moniot, J. M. *Isoquinoline Alkaloid Research 1972-1977*, Plenum Press, New York, 1978.
- (10) Murahashi, S.; Mitsui, H.; Shiota, T.; Tsuda, T.; Watanabe, S. J. Org. Chem. **1990**, 55, 1736.
- (11) Experimental procedure for the cycloaddition. A solution of **3b** (37 mg, 0.08 mmol) and **2** (38 mg, 0.12 mmol) in toluene (1 mL) was heated under argon in a sealed tube for 18 h at 120 °C. Then the solvent was evaporated in vacuo and the residue

was chromatographed (silicagel, hexane/ether) to yield 9b (38 mg, 61% yield) as an oil. Spectroscopic data for 9b: UV (EtOH), λ_{max} : 304 nm. IR (NaCl), v: 1694 cm⁻¹. ¹H NMR (CDCl₃), δ: 6.73 (m, 2H), 6.61 (s, 1H), 6.50 (s, 1H), 6.40 (m, 2H), 4.50-4.32 (m, 5H), 4.05-3.98 (m, 3H), 3.74 (s, 3H), 3.52 (s, 3H), 3.46 (s, 3H), 3.25 (s, 3H), 3.10-2.90 (m, 2H), 1.26-0.78 (m, 27H) ppm. ¹³C NMR (CDCl₃), 162.2 (C), 151.4 (C), 150.1 (C), 149.5 (C), 148.2 (C), 145.8 (C), 145.7 (C), 144.5 (C), 141.3 (C), 130.0 (C), 129.0 (C), 127.8 (C), 124.0 (C), 123.2 (CH), 122.0 (C), 120.1 (C), 119.8 (C), 119.6 (C), 115.9 (CH), 114.8 (CH), 107.4 (CH), 104.7 (CH), 75.5 (CH), 71.7 (CH), 71.6 (CH), 71.4 (CH), 60.5 (CH₃), 59.7 (CH₂), 56.1 (CH₃), 55.7 (CH₃), 55.1 (CH₃), 42.6 (CH₂), 23.0 (CH₂), 22.7 (CH₃), 22.2 (CH₃), 21.9 (CH₃), 15.2 (CH₃), 13.7 (CH₃) ppm. LRMS, m/z (%):745 (M+, 34). HRMS, m/z calcd. for C₄₃H₅₅NO₁₀ 745.382598, found 745.385468.

- (12) Banwell, M.; Flyn, B.; Stewart, S. G. J. Org. Chem. **1998**, 63, 9139.
- (13) Spectroscopic data for these synthetic compounds are identical to those published for lamellarins I and K. Carrol, A. R.; Bowden, B. F.; Coll, J. C. Aust. J. Chem. 1993, 46, 489.

Article Identifier:

1437-2096,E;2001,0,07,1164,1166,ftx,en;G06001ST.pdf