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ABSTRACT: An efficient and practical protocol for visible-light-induced 

decarboxylative cyclization of 2-alkenylarylisocyanides with α-oxocarboxylic acids 

has been developed, which afforded a broad range of 2-acylindoles in moderate to 

good yields. The reaction proceeds through a cascade of acyl radical 

addition/cyclization under irradiation of Ir3+ photoredox catalyst without external 

oxidants, and features with simple operation, scalability, broad substrate scope and 

good functional group tolerance. 
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INTRODUCTION

Functionalized indoles are widely found in pharmaceuticals and nature products.1 In 

the past decades, considerable efforts have been devoted to the development of 
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efficient methods for the synthesis of functionalized indoles.2 Traditionally, the indole 

scaffolds are constructed by cyclization reactions such as Hemetsberger or 

Cadogan−Sundberg indole synthesis, intramolecular Ullmann or Heck coupling 

reactions.3 Although these cyclization reactions are effective, preparation of required 

starting materials through multistep reactions dramatically limits their application. 

Recently, transition-metal-catalyzed site-selective C-H bond activation of indoles has 

become one of the most powerful and straightforward methods for the synthesis of 

functionalized indoles,4 C2, C3 or C7-substituted indoles were synthesized by 

arylation,5 cyanation,6 alkylation7 and alkenylation reactions.8 Among various 

functionalized indoles, 2-acylindoles are extremely important structural components 

that present in many natural products, pharmaceuticals, and biological active 

compounds (Figure 1).9 Therefore, the development of mild and practical protocols 

for the synthesis of 2-acylindoles is of great value. 
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Uvarindole C
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anticancer D-64131

Figure 1. Representative compounds containing 2-acylindole scaffolds

Generally, 2-acylindoles are synthesized through nucleophilic addition of 

2-lithioindoles,10 palladium-catalyzed cross-couplings11 or cyclization reactions.12 

Transition-metal-catalyzed, ligand directed C2-H acylation of indoles has been 

reported in the past decades.13 However, these methods suffered from requirement of  

prefunctionalization, harsh reaction conditions and excess oxidants. Aryl isocyanides 
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have been widely applied for the construction of N-containing heterocycles involving 

a radical cyclization process.14 In the cases of 2-alkenylarylisocyanides, Fukuyama 

and coworkers reported AIBN/Bu3SnH-mediated cyclization of 

2-alkenylarylisocyanides to synthesize 2-stannyl-3-substituted indole compounds 

(Scheme 1a).15a Chatani et al. developed a method for the synthesis of 

2-boryl-3-substituted indoles via the copper(I)-catalyzed borylative cyclization of 

2-alkenylphenyl isocyanides using diboronates (Scheme 1b).15c Jamison and 

co-workers developed a copper-catalyzed method to prepare 2-aryl-3-substituted 

indole derivatives using arylboronic acids (Scheme 1c).15d 

Visible-light-induced photocatalysts have emerged as a powerful tool for the radical 

transformations.16 The application of this strategy to the cyclization of 

2-alkenylarylisocyanides with P-radicals was demonstrated by Yang and coworkers 

recently, a variety of 2-phosphinoylindoles was obtained in good yields (Scheme 

1d).17 On the other hand, α-oxocarboxylic acids have been recognized as a good acyl 

radical precursor that could undergo decarboxylation under photocatalyst to generate 

the acyl radicals.18 Inspired by these previous works, we envisioned that reaction of  

acyl radicals generated form α-oxocarboxylic acids with 2-alkenylarylisocyanides 

would be a versatile process for the synthesis of 2-acylindoles. Herein, we report 

synthesis of 2-acylindoles through visible-light-induced decarboxylative cyclization 

of 2-alkenylarylisocyanides with α-oxocarboxylic acids under mild conditions.
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Scheme 1 Cyclization of 2-alkenylarylisocyanides

RESULTS AND DISCUSSION

Initially, the reaction of 2-alkenylarylisocyanide 1a and 2-oxo-2-phenylacetic acid 2a 

was first examined under 20 W blue LEDs. The desired product 3a was isolated in a 

12% yield in the presence of PC-A ([Ir(dF(CF3)ppy)2(dtb-bpy)]PF6) and K2CO3 in 

CH3CN (Table 1, entry 1). Encouraged by this result, we next screened different 

solvents including DMA, DMF, DMSO, THF, DCM (Table 1, entries 2-7) and DMF 

was proved to be the best solvent which provided the desired product 3a in a 55% 

yield(Table 1, entry 4). Then bases (K3PO4, K2HPO4, Cs2CO3, KOAc, NaOAc, 

DIPEA, Et3N) were screened (Table 1, entries 8-14). When K2HPO4 was used, the 
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yield was improved to 61% (Table 1, entry 9). Photocatalysts were also essential to 

this decarboxylative cyclization. PC-B ([Ir(dtb-bpy)(ppy)2]PF6), PC-C 

([Ir(dF(CF3)ppy)2(1,10-Phen)]PF6), PC-D Ir(ppy)3, PC-E (Ru(bpy)3Cl2) and PC-F 

(Eosin Y) did not give better results, and the reaction did not take place in the absence 

of photocatalyst (Table 1, entries 15-20). When the reaction was performed in dark, 

the reaction did not take place (Table 1, entry 21). When the reaction was performed 

in the absence of base, the yield decreased dramatically, which indicated that base 

was also essential to this reaction (Table 1, entry 22).

Table 1 Optimization of Reaction Conditionsa 

NC

CN O
OH

O
20 W Blue LED

Photocatalyst
Base

N
H

O
+

Solvent, 12 h, r.t.

1a 2a 3a

CN

Entry Photocatalyst Base Solvent Yieldb (%)

1 PC-A K2CO3 CH3CN 12

2 PC-A K2CO3 DMA 50

3 PC-A K2CO3 DMSO 49

4 PC-A K2CO3 DMF 55

5 PC-A K2CO3 DCM 32

6 PC-A K2CO3 THF 41

7 PC-A K2CO3 MeOH NR

8 PC-A K3PO4 DMF 48

9 PC-A K2HPO4 DMF 61
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10 PC-A Cs2CO3 DMF 44

11 PC-A KOAc DMF 16

12 PC-A NaOAc DMF 21

13 PC-A DIPEA DMF 32

14 PC-A Et3N DMF 41

15 PC-B K2HPO4 DMF 17

16 PC-C K2HPO4 DMF 41

17 PC-D K2HPO4 DMF 20

18 PC-E K2HPO4 DMF NR

19 PC-F K2HPO4 DMF NR

20 - K2HPO4 DMF NR

21c PC-A K2HPO4 DMF NR

22 PC-A - DMF 21

a Reaction conditions: 1a (0.2 mmol, 1.0 equiv.), 2a (0.4 mmol, 2.0 equiv.), catalyst (2.0 mol%) 

and base (0.4 mmol, 2 equiv.) in solvent (2 mL), irradiated with 20 W blue LEDs for 12 h at room 

temperature. b Isolated yields. NR = no reaction. c Reaction was conducted in dark. 

With the optimized conditions in hand, we next evaluated the substrate scope with 

respect to 2-alkenylarylisocyanides, and the results was summarized in Table 2. It was 

found that the electronic effect had no obvious influence on this transformation. Both 

electron-donating and electron–withdrawing groups on 2-alkenylarylisocyanide were 

tolerated, affording the corresponding product 3b-3o in moderate to good yields. 

Halogenes such as F, Cl, CF3 were also compatible. Unfortunately, 
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dichloro-substituted isocyanide only gave product 3k in a low 27% yield. Notably, 

2-alkenylarylisocyanide bearing synthetic valuable -CN could be smoothly converted 

into the corresponding product 3n in 47% yield. The functional groups on the alkenyl 

were finally checked. Both COOEt and CONMe2 were tolerated and afforded the 

desired products 3o and 3p in 51%, 37% yields, respectively. The structure of 3o was 

confirmed by X-ray crystallography (CCDC, No. 1977763).

Table 2 Scope of 2-alkenylarylisocyanides
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Reaction conditions: 1a (0.2 mmol, 1.0 equiv.), 2a (0.4 mmol, 2.0 equiv.), K2HPO4 (0.4mmol, 2.0 

equiv.) and [Ir(dF(CF3)ppy)2(dtb-bpy)]PF6 (2.0 mol%) in DMF (2 mL) with 20W blue LEDs for 
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12 h.

The scope of α-oxocarboxylic acids was next explored. As shown in Table 3, various 

acids bearing the electron-donating groups (e.g., CH3, C2H5, OCH3 and NMe2) could 

successfully be converted to the corresponding products 4a-4i in 40-65% yields. 

Furthermore, substituents at meta or para position of 2-oxo-2-phenylacetic acid did 

not affect the efficiency of reactions. Acids with a fluorine also reacted with 

isocyanide 1a to generate the corresponding products 4j and 4k. However, 

ortho-fluoro-substituted acid gave the desired product 4j in a low yield. Pleasingly, 

heterocyclic  α-oxocarboxylic acid afforded the cyclization product 4l in a 38% 

yield. Unfortunately, NO2-substituted 2-oxo-2-phenylacetic acid, alkyl substituted 

(e.g., CH3 and t-Bu) α-oxocarboxylic acids, pivalic acid and benzoic acid failed to 

give the desired product 4m-4q. 

Table 3 Scope of α-oxocarboxylic acids 
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Reaction condition: 1a (0.2 mmol, 1.0 equiv.), 2a (0.4 mmol, 2.0 equiv.), K2HPO4 (0.4 mmol, 2.0 

equiv.) and [Ir(dF(CF3)ppy)2(dtb-bpy)]PF6 (2.0 mol%) in DMF (2 mL) with 20W blue LEDs for 12 h.

To highlight the synthetic utility of this reaction, a gram-scale experiment was 

performed and product 3a was obtained in a 51% yield (Scheme 2a). Product 3a was 

then subjected to the reduction reaction, and the corresponding product 5 was isolated 

in a 75% yield (Scheme 2b). Moreover, the product 5o can be easily hydrolyzed and 
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N-methylated in the presence of (MeO)2SO2 and NaOH, and the desired product 6 

was obtained in 92% yield.[19]

CN

NC

O
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O
N
H

CN
O

+

3a (0.86g, 51%)1a (6.5 mmol, 1.00g) 2a (13.0 mmol, 1.95 g)
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H
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EtOH, r.t., 15 min

(c)N
H

CO2Et
O

3o

N

COOH
O

6, 92%

(MeO)2SO2
NaOH

acetone, reflux, 1 h

Scheme 2 Scale-up experiment and transformations of product 3a, 3o

To gain insight of the reaction mechanism, the radical trapping experiments were 

performed by adding TEMPO or BHT as the radical scavenger. When 2.0 equivalents 

of TEMPO or BHT were added, the reaction did not take place, which suggested a 

radical process might involve in this reaction. Furthermore, when using D2O as the 

cosolvent, deuterated product 3a was obtained in a 45% yield, and 33% of deuteration 

was detected at benzyl position. When DMF-d7 was used as the solvent, the 

deuterated product [D]-3a was not detected. These results indicate that the proton of 

benzyl position might come from the water existed in DMF (Scheme 3). The reaction 

of potassium 2-oxo-2-phenylacetate 2a’ and 1a also works with a competitive yield of 

54%, which demonstrates that the base could facilitate the elimination of CO2.
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Scheme 3 Mechanistic Studies

On the basis of our own studies and the previous reports, a plausible catalytic cycle 

was proposed in Scheme 4. First, the irritation of the photocatalyst Ir3+ with visible 

light affords the excited-state Ir3+*. The potassium 2-oxo-2-phenylacetate 2a’ 

generated from phenylglyoxylic acid 2a was oxidized by excited-state Ir3+* affords 

benzoyl radical I, along with the formation of Ir2+. Then the benzoyl radical I was 

trapped by 2-alkenylarylisocyanide (1a) to produce A, which was followed by 

5-exo-trig cyclization to afford benzyl radical B. The reduction of benzyl radical B 

with Ir2+ specie through a SET pathway produces benzyl anion C and Ir3+ specie was 

formed at the same time to fulfill1g the catalytic cycle. Finally, benzyl anion C 

underwent protonation and isomerization to yield the desired product 3a.
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CONCLUSION

In summary, we have developed a mild approach for the synthesis of 2-acylindoles 

via visible-light-induced decarboxylative cyclization of 2-alkenylarylisocyanides with 

α-oxocarboxylic acids. This reaction is performed under air at room temperature, 

which features simple operation, scalability, broad substrate scope and good 

functional group tolerance. The primary mechanism investigations suggested a radical 

process in this reaction.

EXPERIMENTAL SECTION

General Information. All reagents and all solvents were used directly as obtained 

commercially unless otherwise noted. 1H and 13C NMR spectra were recorded on a 

Bruker AM 400 spectrometer (operating at 400 and 101 MHz, respectively) in CDCl3 

(with tetramethylsilane as internal standard, δ = 7.26 ppm for 1H NMR; 77.16 ppm for 

13C NMR), DMSO-d6 (with tetramethylsilane as internal standard, δ = 2.50 ppm for 

1H NMR; 39.52 ppm for 13C NMR). 

HPLC/MS analysis was carried out with gradient elution (5% CH3CN to 100% CH3C
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N) on an Agilent 1200 RRLC with a photodiode array UV detector and an Agilent 62

24 TOF mass spectrometer (also used to produce high resolution mass spectra). The 

infrared (IR) spectra were acquired as thin films using a universal ATR sampling 

accessory on a Bruker Vertex 80 FT-IR spectrometer and the absorption frequencies 

are reported in cm-1 using KBr plates. Melting points were determined on a Stanford 

Research Systems OptiMelt apparatus. 20W blue LEDs (LDL04-20W,  = 455 nm) 

were purchased from Qianfang Lighting Technology Co., Ltd. The material of the 

irradiation vessel is borosilicate glass and the distance between the light source to the 

irradiation vessel is about 3 cm. α-keto acids[20], arylisocyanides 1b-1p[21], and 

photocatalyst A-C[22] were synthesized according the reported literature. The 

arylisocyanides 1a[23], 1o[24], 1p[23], 6[19] and all the α-keto acids[25] are compounds 

known.

General Procedure for the Synthesis of Arylisocyanides. Aniline (2.5 mmol, 1.0 

equiv), palladium acetate (10 mol%), tri-orthotolyl phosphine (20 mol%) were added 

to a screw-cap pressure vial containing a stir bar. The vial was equipped with a rubber 

septum and the vessel was evacuated and back-filled with argon three times. DMF 

(degassed, 5mL), triethylamine (3.0 equiv) and alkenyl coupling partner (1.2 equiv) 

were added through a needle. The pressure vial was sealed and stirred at 130 ºC for 8 

hours. After cooling to room temperature, the mixture was quenched with saturated 

aqueous solution of NaCl (30 mL) and extracted with ethyl acetate (3×30 mL), the 

combined organic layer was dried over Na2SO4. The filtrate was concentrated in 

vacuo and the resulting mixture was purified by flash column chromatography on 

silica gel to afford the corresponding 2-alkenylarylaniline.
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Acetic anhydride (1.5 equiv) and formic acid (1.6 equiv) were stirred at 50 ºC in 

a sealed tube for 1.5 hours. The resulting anhydride was cooled to room temperature 

and was added dropwise over 10 min to a stirred solution of 2-alkenyl aniline (2.0 

mmol, 1.0 equiv) in THF (8mL) at 0 ºC. The solution was warmed to room 

temperature and stirred for 1 hour. A saturated aqueous solution of sodium 

bicarbonate (30 mL) was added slowly to the mixture and then the organic layer was 

extracted with ethyl acetate (3×30 mL). The combined organic layer was dried over 

Na2SO4, filtered and concentrated in vacuo. The crude product was used directly in 

the next step without further purification.

A solution (12 mL) of the crude formamide (2.0 mmol, 1.0 equiv) and 

triethylamine (3.0 equiv) in THF was cooled to 0 ºC and phosphoryl chloride (1.5 

equiv) was added dropwise while maintaining the reaction temperature at 0 ºC. After 

reacted for an additional 1 hour at 0 ºC, the mixture was warmed to room temperature 

and quenched with saturated aqueous solution of sodium bicarbonate (30 mL). The 

mixture was extracted with ethyl acetate (3×30 mL) and the combined organic layer 

was dried over Na2SO4, filtered and concentrated in vacuo. The crude residue was 

purified via flash column chromatography on silica gel to afford the corresponding 

arylisocyanides.

General Procedure for the Synthesis of Indole Products. To a 10 mL vial equipped 

with a magnetic stirrer bar, arylisocyanides 1 (0.2 mmol), α-keto acids 2 (0.4 mmol), 

[Ir(dF(CF3)ppy)2(dtb-bpy)]PF6 (2 mol%), K2HPO4 (0.4 mmol) and DMF (2 mL) were 

added in sequence. Two 20W blue LEDs was placed at a distance of about 3cm from 
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the reaction vessel. After the reaction was complete (as monitored by TLC), the 

mixture was quenched with H2O (10 mL) and extracted with ethyl acetate (3×10 mL), 

the combined organic layer was dried over Na2SO4, filtered and concentrated in 

vacuo. The crude residue was purified via flash column chromatography on silica gel 

to afford the corresponding indole products.

General Procedure for Gram-scale Experiment. To a 250 mL round bottom flask 

equipped with a magnetic stirrer bar, arylisocyanides 1a (6.5 mmol, 1.00 g), α-keto 

acids 2a (13.00 mmol, 1.95 g), [Ir(dF(CF3)ppy)2(dtb-bpy)]PF6 (0.065 mmol, 75 mg), 

K2HPO4 (13.00 mmol, 2.26 g) and DMF (65 mL) were added in sequence. Two 20W 

blue LEDs was placed at a distance of about 3cm from the reaction vessel. After the 

reaction was complete (as monitored by TLC, 3 days), the mixture was quenched with 

H2O (100 mL) and extracted with ethyl acetate (3×150 mL), the combined organic 

layer was dried over Na2SO4, filtered and concentrated in vacuo. The crude residue 

was purified via flash column chromatography on silica gel to afford the 

corresponding indole products (0.86 g, 51%).

3-(2-Isocyano-5-methylphenyl)acrylonitrile (1b). This product was obtained as a 

yellow solid (238 mg, 71% yield). Eluent: petroleum ether/ethyl acetate 6:1 (v/v). 

m.p.: 138-139℃; 1H NMR (400 MHz, DMSO-d6) δ 7.78 (s, 1H), 7.68 (d, J = 16.6 Hz, 

1H), 7.57 (d, J = 8.1 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 6.66 (d, J = 16.6 Hz, 1H), 2.37 

(s, 3H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 168.1, 143.6, 140.5, 132.7, 129.3, 

127.5, 127.0, 122.3, 118.1, 101.3, 20.8. IR (neat): 2216, 2117, 1619, 1482 cm-1; 

HRMS (ESI) calculated for C11H8N2 [M+H]+: 169.0760, found: 169.0762. 
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3-(2-Isocyano-4-methylphenyl)acrylonitrile (1c). This product was obtained as a 

yellow solid (229 mg, 68% yield). Eluent: petroleum ether/ethyl acetate 6:1 (v/v). 

m.p.: 137-138℃; 1H NMR (400 MHz, DMSO-d6) δ 7.82 (d, J = 8.1 Hz, 1H), 7.63 (d, 

J = 16.6 Hz, 1H), 7.50 (s, 1H), 7.40 (d, J = 8.1 Hz, 1H), 6.62 (d, J = 16.6 Hz, 1H), 

2.35 (s, 3H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 168.3, 143.3, 143.0, 131.1, 

127.8, 126.8, 126.6, 124.5, 118.2, 100.4, 20.5. IR (neat): 2210, 2113, 1604, 1496 

cm-1; HRMS (ESI) calculated for C11H8N2 [M+H]+: 169.0760, found: 169.0763.

3-(2-Isocyano-3-methylphenyl)acrylonitrile (1d). This product was obtained as a 

yellow solid (161 mg, 48% yield). Eluent: petroleum ether/ethyl acetate 6:1 (v/v). 

m.p.: 118-119℃; 1H NMR (400 MHz, DMSO-d6) δ 7.75 (d, J = 7.7 Hz, 1H), 7.69 (d, 

J = 16.6 Hz, 1H), 7.53 – 7.45 (m, 2H), 6.65 (d, J = 16.6 Hz, 1H), 2.38 (s, 3H). 

13C{1H} NMR (101 MHz, DMSO-d6) δ 170.9, 143.9, 135.7, 132.9, 129.6, 129.6, 

124.6, 124.2, 118.1, 101.4, 18.4. IR (neat): 2217, 2113, 1619, 1447 cm-1; HRMS 

(ESI) calculated for C11H8N2 [M+H]+: 169.0760, found: 169.0762.

3-(2-Isocyano-3,5-dimethylphenyl)acrylonitrile (1e). This product was obtained as 

a white solid (273 mg, 75% yield). Eluent: petroleum ether/ethyl acetate 6:1 (v/v). 

m.p.: 134-135℃; 1H NMR (400 MHz, DMSO-d6) δ 7.64 – 7.57 (m, 2H), 7.33 (s, 1H), 

6.60 (d, J = 16.4 Hz, 1H), 2.32 (s, 6H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 170.3, 

144.0, 139.6, 135.4, 133.6, 129.3, 124.5, 122.4, 118.2, 101.1, 20.7, 18.3. IR (neat): 

2216, 2109, 1610, 1461 cm-1; HRMS (ESI) calculated for C12H10N2 [M+H]+: 

183.0917, found: 183.0913.

3-(2-Isocyano-4-methoxyphenyl)acrylonitrile (1f). This product was obtained as a 
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yellow solid (250 mg, 68% yield). Eluent: petroleum ether/ethyl acetate 6:1 (v/v). 

m.p.: 131-132℃; 1H NMR (400 MHz, DMSO-d6) δ 7.89 (d, J = 8.9 Hz, 1H), 7.60 (d, 

J = 16.6 Hz, 1H), 7.31 (s, 1H), 7.17 (d, J = 8.8 Hz, 1H), 6.54 (d, J = 16.6 Hz, 1H), 

3.85 (s, 3H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 168.5, 161.8, 143.0, 128.1, 

126.0, 122.0, 118.5, 117.3, 112.3, 98.5, 56.2. IR (neat): 2210, 2121, 1602, 1453 cm-1; 

HRMS (ESI) calculated for C11H8N2O [M+H]+: 185.0709, found: 185.0706.

3-(5-(Tert-butyl)-2-isocyanophenyl)acrylonitrile (1g). This product was obtained as 

a green solid (294 mg, 70% yield). Eluent: petroleum ether/ethyl acetate 6:1 (v/v). 

m.p.: 94-95℃; 1H NMR (400 MHz, DMSO-d6) δ 7.89 (s, 1H), 7.67 (d, J = 16.6 Hz, 

1H), 7.59 (s, 2H), 6.80 (d, J = 16.6 Hz, 1H), 1.29 (s, 9H). 13C{1H} NMR (101 MHz, 

DMSO-d6) δ 168.2, 153.3, 143.7, 129.2, 129.1, 127.3, 123.7, 122.3, 118.2, 101.5, 

35.0, 30.6. IR (neat): 2218, 2117, 1612, 1478 cm-1; HRMS (ESI) calculated for 

C14H14N2 [M+H]+: 211.1230, found: 211.1229.

3-(5-Fluoro-2-isocyanophenyl)acrylonitrile (1h). This product was obtained as a 

yellow solid (210 mg, 61% yield). Eluent: petroleum ether/ethyl acetate 6:1 (v/v). 

m.p.: 128-129℃; 1H NMR (400 MHz, DMSO-d6) δ 7.89 (d, J = 9.5 Hz, 1H), 7.84 – 

7.74 (m, 1H), 7.69 (d, J = 16.5 Hz, 1H), 7.54 – 7.44 (m, 1H), 6.76 (d, J = 16.5 Hz, 

1H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 168.8, 161.8 (d, J = 250.5 Hz), 142.6 (d, 

J = 2.0 Hz), 132.2 (d, J = 9.1 Hz), 130.3 (d, J = 9.1 Hz), 121.2, 119.3 (d, J = 24.2 Hz), 

117.7, 113.6 (d, J = 26.3 Hz), 103.1. 19F NMR (377 MHz, CDCl3) δ -106.8. IR (neat): 

2225, 2121, 1609, 1480 cm-1; HRMS (ESI) calculated for C10H5FN2 [M+Na]+: 

195.0329, found: 195.0328.
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3-(5-Chloro-2-isocyanophenyl)acrylonitrile (1i). This product was obtained as a 

yellow solid (244 mg, 65% yield). Eluent: petroleum ether/ethyl acetate 6:1 (v/v). 

m.p.: 132-133℃; 1H NMR (400 MHz, DMSO-d6) δ 8.09 (s, 1H), 7.75 (d, J = 8.5 Hz, 

1H), 7.72 – 7.63 (m, 2H), 6.80 (d, J = 16.5 Hz, 1H). 13C{1H} NMR (101 MHz, 

DMSO-d6) δ 169.8, 142.4, 135.0, 131.8, 131.5, 129.5, 126.7, 123.4, 117.8, 103.2. IR 

(neat): 2219, 2117, 1622, 1472 cm-1; HRMS (ESI) calculated for C10H5ClN2 [M+H]+: 

189.0214, found: 189.0226.

3-(4-Chloro-2-isocyanophenyl)acrylonitrile (1j). This product was obtained as a 

yellow solid (263 mg, 70% yield). Eluent: petroleum ether/ethyl acetate 6:1 (v/v). 

m.p.: 161-162℃; 1H NMR (400 MHz, DMSO-d6) δ 7.99 – 7.84 (m, 2H), 7.69 – 7.63 

(m, 2H), 6.71 (d, J = 16.6 Hz, 1H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 170.0, 

142.5, 136.1, 130.6, 128.6, 128.3, 127.5, 125.5, 117.9, 102.2. IR (neat): 2215, 2120, 

1622, 1478 cm-1; HRMS (ESI) calculated for C10H5ClN2 [M+H]+: 189.0214, found: 

189.0222.

3-(3,5-Dichloro-2-isocyanophenyl)acrylonitrile (1k). This product was obtained as 

a green solid (320 mg, 72% yield). Eluent: petroleum ether/ethyl acetate 6:1 (v/v). 

m.p.: 135-136℃; 1H NMR (400 MHz, DMSO-d6) δ 8.10 – 8.02 (m, 2H), 7.67 (d, J = 

16.4 Hz, 1H), 6.82 (d, J = 16.5 Hz, 1H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 

174.6, 142.1, 135.2, 133.1, 131.8, 131.3, 125.6, 122.3, 117.5, 104.4. IR (neat): 2222, 

2113, 1622, 1461 cm-1; HRMS (ESI) calculated for C10H4Cl2N2 [M+H]+: 222.9824, 

found: 222.9827.

3-(2-Isocyano-5-(trifluoromethyl)phenyl)acrylonitrile (1l). This product was 
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obtained as a yellow solid (222 mg, 50% yield). Eluent: petroleum ether/ethyl acetate 

6:1 (v/v). m.p.: 118-119℃; 1H NMR (400 MHz, DMSO-d6) δ 8.34 (s, 1H), 7.97 – 

7.90 (m, 2H), 7.73 (d, J = 16.6 Hz, 1H), 6.92 (d, J = 16.6 Hz, 1H). 13C{1H} NMR 

(101 MHz, DMSO-d6) δ 171.2, 142.3, 130.8, 130.4 (q, J = 33.3 Hz), 129.0, 128.6 (q, 

J = 4.0 Hz), 127.5, 124.2 (q, J = 4.0 Hz), 123.1 (q, J = 273.7 Hz), 117.7, 103.8. 19F 

NMR (377 MHz, CDCl3) δ -63.1. IR (neat): 2219, 2119, 1612, 1482 cm-1; HRMS 

(ESI) calculated for C11H5F3N2 [M+Na]+: 245.0297, found: 245.0305.

3-(2-Isocyano-4-(trifluoromethyl)phenyl)acrylonitrile (1m). This product was 

obtained as a yellow solid (235 mg, 53% yield). Eluent: petroleum ether/ethyl acetate 

6:1 (v/v). m.p.: 118-119℃; 1H NMR (400 MHz, DMSO-d6) δ 8.20 (s, 1H), 8.14 (d, J 

= 8.3 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 16.6 Hz, 1H), 6.84 (d, J = 16.6 

Hz, 1H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 170.4, 142.4, 133.5, 131.8 (q, J = 

33.3 Hz), 128.2, 126.9 (q, J = 4.0 Hz), 125.0 (q, J = 4.0 Hz), 122.9 (q, J = 273.7 Hz), 

117.6, 104.4 (one carbon missing due to overlap). 19F NMR (377 MHz, CDCl3) δ 

-63.3. IR (neat): 2221, 2120, 1620 cm-1; HRMS (ESI) calculated for C11H5F3N2 

[M+Na]+: 245.0297, found: 245.0296.

3-(2-Cyanovinyl)-4-isocyanobenzonitrile (1n). This product was obtained as a 

yellow solid (100 mg, 28% yield). Eluent: petroleum ether/ethyl acetate 4:1 (v/v). 

m.p.: 147-148℃; 1H NMR (400 MHz, DMSO-d6) δ 8.51 (s, 1H), 8.09 (d, J = 8.3 Hz, 

1H), 7.92 (d, J = 8.3 Hz, 1H), 7.73 (d, J = 16.5 Hz, 1H), 6.82 (d, J = 16.5 Hz, 1H). 

13C{1H} NMR (101 MHz, DMSO-d6) δ 172.0, 142.1, 135.2, 131.3, 130.9, 128.9, 

127.6, 117.6, 117.2, 113.1, 103.7. IR (neat): 2233, 2222, 2123, 1484 cm-1; HRMS 
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(ESI) calculated for C11H5N3 [M+H]+: 180.0556, found: 180.0559.

2-(2-Benzoyl-1H-indol-3-yl)acetonitrile (3a). This product was obtained as a yellow 

solid (31.7 mg, 61% yield). Eluent: petroleum ether/ethyl acetate 3:1 (v/v). m.p.: 

154-155℃; 1H NMR (400 MHz, DMSO-d6) δ 11.90 (s, 1H), 7.87 (d, J = 8.1 Hz, 1H), 

7.83 (d, J = 7.7 Hz, 2H), 7.77 – 7.69 (m, 1H), 7.66 – 7.58 (m, 2H), 7.52 (d, J = 8.3 Hz, 

1H), 7.37 (t, J = 7.6 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 4.21 (s, 2H). 13C{1H} NMR 

(101 MHz, DMSO-d6) δ 188.0, 138.1, 136.5, 132.8, 131.4, 129.1, 128.8, 126.3, 125.8, 

120.8, 120.2, 118.6, 113.2, 111.2, 13.5. IR (neat): 3325, 2253, 1633, 1534, 1442 cm-1; 

HRMS (ESI) calculated for C17H12N2O [M+H]+: 261.1022, found: 261.1023.

2-(2-Benzoyl-5-methyl-1H-indol-3-yl)acetonitrile (3b). This product was obtained 

as a yellow solid (27.4 mg, 50% yield). Eluent: petroleum ether/ethyl acetate 3:1 (v/v). 

m.p.: 159-160℃; 1H NMR (400 MHz, DMSO-d6) δ 11.77 (s, 1H), 7.81 (d, J = 7.6 Hz, 

2H), 7.74 – 7.79 (m, 1H), 7.66 – 7.56 (m, 3H), 7.41 (d, J = 8.4 Hz, 1H), 7.21 (d, J = 

8.5 Hz, 1H), 4.16 (s, 2H), 2.43 (s, 3H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 187.9, 

138.2, 135.0, 132.7, 131.4, 129.6, 129.1, 128.8, 127.9, 126.6, 119.1, 118.6, 113.0, 

110.7, 21.3, 13.4. IR (neat): 3323, 2251, 1632, 1534 cm-1; HRMS (ESI) calculated for 

C18H14N2O [M+H]+: 275.1179, found: 275.1175.

2-(2-Benzoyl-6-methyl-1H-indol-3-yl)acetonitrile (3c). This product was obtained 

as a yellow solid (35.6 mg, 65%). Eluent: petroleum ether/ethyl acetate 3:1 (v/v). m.p.: 

121-122℃; 1H NMR (400 MHz, DMSO-d6) δ 11.74 (s, 1H), 7.81 (d, J = 7.8 Hz, 2H), 

7.78 – 7.69 (m, 2H), 7.64 – 7.59 (m, 2H), 7.29 (s, 1H), 7.05 (d, J = 8.3 Hz, 1H), 4.16 

(s, 2H), 2.44 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 187.8, 138.3, 137.0, 
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135.7, 132.6, 131.0, 129.1, 128.8, 124.4, 122.9, 119.9, 118.6, 112.5, 111.4, 21.7, 13.6; 

IR (neat): 3325, 2252, 1630, 1532 cm-1; HRMS (ESI) calculated for C18H14N2O 

[M+H]+: 275.1179, found: 275.1177.

2-(2-Benzoyl-7-methyl-1H-indol-3-yl)acetonitrile (3d). This product was obtained 

as a white solid (29.6 mg, 54% yield). Eluent: petroleum ether/ethyl acetate 3:1 (v/v). 

m.p.: 202-203℃; 1H NMR (400 MHz, DMSO-d6) δ 11.77 (s, 1H), 7.85 (d, J = 7.7 Hz, 

2H), 7.76 – 7.70 (m, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.64 – 7.58 (m, 2H), 7.20 – 7.08 

(m, 2H), 4.08 (s, 2H), 2.52 (s, 3H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 188.0, 

138.2, 136.1, 133.0, 132.1, 129.4, 128.8, 126.2, 126.0, 122.7, 121.0, 118.6, 117.6, 

111.3, 17.0, 13.6. IR (neat): 3317, 2250, 1626, 1535 cm-1; HRMS (ESI) calculated for 

C18H14N2O [M+H]+: 275.1179, found: 275.1176.

2-(2-Benzoyl-5,7-dimethyl-1H-indol-3-yl)acetonitrile (3e). This product was 

obtained as a yellow solid (27.6 mg, 48% yield). Eluent: petroleum ether/ethyl acetate 

3:1 (v/v). m.p.: 175-176℃; 1H NMR (400 MHz, DMSO-d6) δ 11.66 (s, 1H), 7.83 (d, J 

= 7.4 Hz, 2H), 7.76 – 7.68 (m, 1H), 7.65 – 7.57 (m, 2H), 7.43 (s, 1H), 7.01 (s, 1H), 

4.04 (s, 2H), 2.48 (s, 3H), 2.40 (s, 3H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 188.0, 

138.3, 134.7, 132.9, 132.1, 129.8, 129.4, 128.8, 128.2, 126.5, 122.4, 118.6, 116.6, 

110.8, 21.2, 16.9, 13.5. IR (neat): 3309, 2251, 1627, 1536 cm-1; HRMS (ESI) 

calculated for C19H16N2O [M+H]+: 289.1335, found: 289.1336.

2-(2-Benzoyl-6-methoxy-1H-indol-3-yl)acetonitrile (3f). This product was obtained 

as a yellow solid (30.2 mg, 52% yield). Eluent: petroleum ether/ethyl acetate 3:1 

(v/v). m.p.: 121-122℃; 1H NMR (400 MHz, DMSO-d6) δ 11.70 (s, 1H), 7.83 – 7.73 
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(m, 3H), 7.73 – 7.67 (m, 1H), 7.65 – 7.57 (m, 2H), 6.94 (s, 1H), 6.87 (d, J = 8.9 Hz, 

1H), 4.17 (s, 2H), 3.81 (s, 3H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 187.2, 158.9, 

138.5, 137.9, 132.4, 130.5, 128.9, 128.8, 121.2, 120.9, 118.6, 112.8, 112.2, 94.2, 55.2, 

13.6. IR (neat): 3325, 2252, 1627, 1529 cm-1; HRMS (ESI) calculated for C18H14N2O2 

[M+H]+: 291.1128, found: 291.1129.

2-(2-Benzoyl-5-(tert-butyl)-1H-indol-3-yl)acetonitrile (3g). This product was 

obtained as a yellow solid (32.2 mg, 51% yield). Eluent: petroleum ether/ethyl acetate 

3:1 (v/v). m.p.: 55-56℃; 1H NMR (400 MHz, DMSO-d6) δ 11.77 (s, 1H), 7.85 – 7.79 

(m, 3H), 7.74 – 7.68 (m, 1H), 7.65 – 7.58 (m, 2H), 7.51 – 7.44 (m, 2H), 4.23 (s, 2H), 

1.37 (s, 9H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 187.9, 143.3, 138.3, 134.9, 

132.6, 131.5, 129.1, 128.8, 126.1, 124.7, 118.7, 115.2, 112.9, 111.4, 34.6, 31.5, 13.5. 

IR (neat): 3328, 2253, 1633, 1535 cm-1; HRMS (ESI) calculated for C21H20N2O 

[M+H]+: 317.1648, found: 317.1648.

2-(2-Benzoyl-5-fluoro-1H-indol-3-yl)acetonitrile (3h). This product was obtained as 

a yellow solid (24.5 mg, 44% yield). Eluent: petroleum ether/ethyl acetate 3:1 (v/v). 

m.p.: 176-178℃; 1H NMR (400 MHz, DMSO-d6) δ 12.00 (s, 1H), 7.83 (d, J = 7.5 Hz, 

2H), 7.77 – 7.59 (m, 4H), 7.57 – 7.49 (m, 1H), 7.29 – 7.20 (m, 1H), 4.20 (s, 2H). 

13C{1H} NMR (101 MHz, DMSO-d6) δ 187.8, 157.5 (d, J = 236.3 Hz), 137.9, 133.1, 

132.9, 129.2, 128.9, 126.5 (d, J = 10.1 Hz), 118.5, 114.9 (d, J = 26.3 Hz), 114.8 (d, J 

= 10.1 Hz), 111.2 (d, J = 6.1 Hz), 104.4 (d, J = 24.2 Hz), 13.5 (one carbon missing 

due to overlap). 19F NMR (377 MHz, DMSO-d6) δ -20.6. IR (neat): 3317, 2253, 1636, 
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1533 cm-1; HRMS (ESI) calculated for C17H11FN2O [M+Na]+: 301.0748, found: 

301.0749.

2-(2-Benzoyl-5-chloro-1H-indol-3-yl)acetonitrile (3i). This product was obtained as 

a white solid (27.6 mg, 47% yield). Eluent: petroleum ether/ethyl acetate 3:1 (v/v). 

m.p.: 181-182℃; 1H NMR (400 MHz, DMSO-d6) δ 12.09 (s, 1H), 7.99 (s, 1H), 7.83 

(d, J = 7.4 Hz, 2H), 7.78 – 7.70 (m, 1H), 7.66 – 7.59 (m, 2H), 7.53 (d, J = 8.8 Hz, 1H), 

7.37 (d, J = 8.8 Hz, 1H), 4.21 (s, 2H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 187.9, 

137.8, 134.8, 133.0, 132.7, 129.2, 128.9, 127.3, 125.9, 125.3, 119.4, 118.5, 115.0, 

110.7, 13.4. IR (neat): 3317, 2253, 1637, 1532 cm-1; HRMS (ESI) calculated for 

C17H11ClN2O [M+H]+: 295.0633, found: 295.0633.

2-(2-Benzoyl-6-chloro-1H-indol-3-yl)acetonitrile (3j). This product was obtained as 

a yellow solid (28.8 mg, 49% yield). Eluent: petroleum ether/ethyl acetate 3:1 (v/v). 

m.p.: 198-199℃; 1H NMR (400 MHz, DMSO-d6) δ 12.03 (s, 1H), 7.91 (d, J = 8.7 Hz, 

1H), 7.86 – 7.80 (m, 2H), 7.77 – 7.70 (m, 1H), 7.66 – 7.59 (m, 2H), 7.54 (s, 1H), 7.24 

(d, J = 8.7 Hz, 1H), 4.21 (s, 2H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 187.8, 137.9, 

136.6, 132.9, 132.3, 130.4, 129.2, 128.9, 125.1, 121.9, 121.4, 118.4, 112.6, 111.4, 

13.5. IR (neat): 3317, 2253, 1634, 1531 cm-1; HRMS (ESI) calculated for 

C17H11ClN2O [M+H]+: 295.0633, found: 295.0629.

2-(2-Benzoyl-5,7-dichloro-1H-indol-3-yl)acetonitrile (3k). This product was 

obtained as a yellow solid (17.7 mg, 27% yield). Eluent: petroleum ether/ethyl acetate 

3:1 (v/v). m.p.: 70-71℃; 1H NMR (400 MHz, DMSO-d6) δ 12.49 (s, 1H), 8.00 (s, 1H), 

7.87 – 7.81 (m, 2H), 7.78 – 7.70 (m, 1H), 7.65 – 7.55 (m, 3H), 4.14 (s, 2H). 13C{1H} 
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NMR (101 MHz, DMSO-d6) δ 187.9, 137.5, 134.8, 133.6, 132.0, 129.7, 128.9, 128.4, 

125.2, 124.6, 118.6, 118.3, 111.0, 13.3 (one carbon missing due to overlap). IR (neat): 

3278, 2204, 1644, 1568 cm-1; HRMS (ESI) calculated for C17H10Cl2N2O [M+H]+: 

329.0243, found: 329.0244.

2-(2-Benzoyl-5-(trifluoromethyl)-1H-indol-3-yl)acetonitrile (3l). This product was 

obtained as a yellow solid (28.2 mg, 43% yield). Eluent: petroleum ether/ethyl acetate 

3:1 (v/v). m.p.: 149-150℃; 1H NMR (400 MHz, CDCl3) δ 9.30 (s, 1H), 8.11 (s, 1H), 

7.83 – 7.77 (m, 2H), 7.69 – 7.52 (m, 5H), 3.94 (s, 2H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 188.2, 138.0, 137.3, 133.6, 133.1, 129.4, 129.0, 126.4, 124.7 (q, J = 272.7 

Hz), 124.4 (q, J = 33.3 Hz), 123.6 (q, J = 3.0 Hz), 118.6 (q, J = 4.0 Hz), 117.1, 113.3, 

112.2, 14.5. 19F NMR (377 MHz, CDCl3) δ -60.9. IR (neat): 3312, 2256, 1640, 1541 

cm-1; HRMS (ESI) calculated for C18H11F3N2O [M+Na]+: 351.0716, found: 351.0725.

2-(2-Benzoyl-6-(trifluoromethyl)-1H-indol-3-yl)acetonitrile (3m). This product 

was obtained as a white solid (30.1 mg, 46% yield). Eluent: petroleum ether/ethyl 

acetate 3:1 (v/v). m.p.: 146-147℃; 1H NMR (400 MHz, CDCl3) δ 9.27 (s, 1H), 7.94 

(d, J = 8.5 Hz, 1H), 7.84 – 7.78 (m, 2H), 7.75 (s, 1H), 7.71 – 7.64 (m, 1H), 7.61 – 

7.54 (m, 2H), 7.48 (d, J = 8.5 Hz, 1H), 3.96 (s, 2H). 13C{1H} NMR (101 MHz, CDCl3) 

δ 188.2, 138.0, 135.1, 133.6, 129.5, 129.2, 129.1, 129.0 (q, J = 31.3 Hz), 124.6 (q, J = 

272.7 Hz), 121.6, 118.4 (q, J = 3.0 Hz), 117.2, 111.3, 110.4 (q, J = 4.0 Hz), 14.5 (one 

carbon missing due to overlap). 19F NMR (377 MHz, CDCl3) δ -61.6. IR (neat): 3313, 

2255, 1640, 1513 cm-1; HRMS (ESI) calculated for C18H11F3N2O [M+Na]+: 351.0716, 

found: 351.0722.
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2-Benzoyl-3-(cyanomethyl)-1H-indole-5-carbonitrile (3n). This product was 

obtained as a white solid (26.8 mg, 47% yield). Eluent: petroleum ether/ethyl acetate 

1:1 (v/v). m.p.: 226-227℃; 1H NMR (400 MHz, DMSO-d6) δ 12.45 (s, 1H), 8.53 (s, 

1H), 7.87 – 7.81 (m, 2H), 7.79 – 7.72 (m, 1H), 7.72 – 7.60 (m, 4H), 4.24 (s, 2H). 

13C{1H} NMR (101 MHz, DMSO-d6) δ 187.8, 137.6, 137.5, 133.6, 133.3, 129.3, 

129.0, 127.5, 126.7, 126.0, 120.0, 118.3, 114.6, 111.8, 102.9, 13.4. IR (neat): 3299, 

2223, 1645, 1538 cm-1; HRMS (ESI) calculated for C18H11N3O [M+H]+: 286.0975, 

found: 286.0977.

Ethyl 2-(2-benzoyl-1H-indol-3-yl)acetate (3o). This product was obtained as a 

yellow solid (31.3 mg, 51% yield). Eluent: petroleum ether/ethyl acetate 6:1 (v/v). 

m.p.: 138-139℃; 1H NMR (400 MHz, CDCl3) δ 8.97 (s, 1H), 7.82 – 7.74 (m, 2H), 

7.64 (d, J = 8.2 Hz, 1H), 7.62 – 7.54 (m, 1H), 7.52 – 7.44 (m, 2H), 7.42 – 7.30 (m, 

2H), 7.19 – 7.13 (m, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.81 (s, 2H), 1.20 (t, J = 7.1 Hz, 

3H). 13C{1H} NMR (101 MHz, CDCl3) δ 189.0, 171.1, 139.2, 136.6, 132.5, 132.3, 

129.0, 128.8, 128.5, 126.7, 121.3, 121.1, 116.5, 112.3, 61.1, 31.5, 14.4. IR (neat): 

3345, 1728, 1631, 1534, 1443 cm-1; HRMS (ESI) calculated for C19H17NO3 [M+H]+: 

308.1281, found 308.1290.

2-(2-Benzoyl-1H-indol-3-yl)-N,N-dimethylacetamide (3p). This product was 

obtained as a yellow solid (22.6 mg, 37% yield). Eluent: petroleum ether/ethyl acetate 

6:1 (v/v). m.p.: 159-160℃; 1H NMR (400 MHz, CDCl3) δ 9.01 (s, 1H), 7.79 – 7.70 

(m, 3H), 7.62 – 7.54 (m, 1H), 7.52 – 7.43 (m, 2H), 7.36 – 7.27 (m, 2H), 7.17 – 7.09 

(m, 1H), 3.86 (s, 2H), 2.90 (s, 3H), 2.83 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 
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189.0, 170.4, 139.6, 136.8, 132.2, 131.8, 129.0, 128.9, 128.7, 126.6, 122.0, 121.0, 

118.5, 112.2, 37.4, 35.9, 31.3. IR (neat): 3256, 1634, 1530, 1444 cm-1; HRMS (ESI) 

calculated for C19H18N2O2 [M+H]+: 307.1441, found 307.1445.

2-(2-(4-Methylbenzoyl)-1H-indol-3-yl)acetonitrile (4a). This product was obtained 

as a yellow solid (35.6 mg, 65% yield). Eluent: petroleum ether/ethyl acetate 3:1 (v/v). 

m.p.: 175-176℃; 1H NMR (400 MHz, CDCl3) δ 9.08 (s, 1H), 7.82 (d, J = 8.2 Hz, 1H), 

7.74 – 7.68 (m, 2H), 7.46 – 7.35 (m, 2H), 7.34 (d, J = 7.9 Hz, 2H), 7.28 – 7.20 (m, 

1H), 3.93 (s, 2H), 2.45 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 188.2, 144.1, 

136.2, 135.8, 131.8, 129.9, 129.2, 127.2, 127.0, 121.8, 120.6, 117.6, 112.6, 111.1, 

21.9, 14.6. IR (neat): 3325, 2252, 1633, 1534 cm-1; HRMS (ESI) calculated for 

C18H14N2O [M+H]+: 275.1179, found: 275.1177.

2-(2-(4-Ethylbenzoyl)-1H-indol-3-yl)acetonitrile (4b). This product was obtained as 

a yellow solid (31.7 mg, 55% yield). Eluent: petroleum ether/ethyl acetate 3:1 (v/v). 

m.p.: 126-127℃; 1H NMR (400 MHz, CDCl3) δ 8.99 (s, 1H), 7.83 (d, J = 8.2 Hz, 1H), 

7.77 – 7.71 (m, 2H), 7.46 – 7.35 (m, 4H), 7.27 – 7.23 (m, 1H), 3.96 (s, 2H), 2.75 (q, J 

= 7.6 Hz, 2H), 1.29 (t, J = 7.6 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 188.2, 

150.3, 136.2, 136.0, 131.8, 129.3, 128.8, 127.2, 127.0, 121.8, 120.7, 117.7, 112.6, 

111.2, 29.2, 15.4, 14.6. IR (neat): 3323, 2252, 1632, 1534 cm-1; HRMS (ESI) 

calculated for C19H16N2O [M+H]+: 289.1335, found: 289.1337.

2-(2-(4-Isopropylbenzoyl)-1H-indol-3-yl)acetonitrile (4c). This product was 

obtained as a yellow solid (39.3 mg, 65% yield). Eluent: petroleum ether/ethyl acetate 

3:1 (v/v). m.p.: 105-106℃; 1H NMR (400 MHz, DMSO-d6) δ 11.85 (s, 1H), 7.86 (d, J 
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= 8.1 Hz, 1H), 7.81 – 7.75 (m, 2H), 7.55 – 7.45 (m, 3H), 7.36 (t, J = 7.6 Hz, 1H), 7.24 

– 7.17 (m, 1H), 4.23 (s, 2H), 3.03 (dt, J = 13.6, 6.8 Hz, 1H), 1.32 – 1.20 (m, 6H). 

13C{1H} NMR (101 MHz, DMSO-d6) δ 187.5, 153.7, 136.4, 135.8, 131.6, 129.5, 

126.8, 126.2, 125.6, 120.7, 120.0, 118.6, 113.2, 110.9, 33.6, 23.5, 13.4. IR (neat): 

3325, 2253, 1633, 1534 cm-1; HRMS (ESI) calculated for C20H18N2O [M+H]+: 

303.1492, found: 303.1491.

2-(2-(3,5-Dimethylbenzoyl)-1H-indol-3-yl)acetonitrile (4d). This product was 

obtained as a white solid (35.2 mg, 61% yield). Eluent: petroleum ether/ethyl acetate 

3:1 (v/v). m.p.: 161-162℃; 1H NMR (400 MHz, CDCl3) δ 9.10 (s, 1H), 7.85 (d, J = 

8.2 Hz, 1H), 7.50 – 7.42 (m, 4H), 7.32 – 7.27 (m, 2H), 3.90 (s, 2H), 2.44 (s, 6H). 

13C{1H} NMR (101 MHz, CDCl3) δ 188.8, 139.2, 138.7, 136.3, 134.9, 132.0, 127.4, 

127.1, 126.6, 121.9, 120.7, 117.6, 112.6, 111.2, 21.4, 14.7. IR (neat): 3322, 2252, 

1633, 1534 cm-1; HRMS (ESI) calculated for C19H16N2O [M+H]+: 289.1335, found: 

289.1337.

2-(2-(3-Methoxybenzoyl)-1H-indol-3-yl)acetonitrile (4e). This product was 

obtained as a yellow solid (30.2 mg, 52% yield). Eluent: petroleum ether/ethyl acetate 

3:1 (v/v). m.p.: 152-153℃; 1H NMR (400 MHz, DMSO-d6) δ 11.89 (s, 1H), 7.86 (d, J 

= 8.1 Hz, 1H), 7.57 – 7.48 (m, 2H), 7.41 – 7.26 (m, 4H), 7.24 – 7.17 (m, 1H), 4.19 (s, 

2H), 3.85 (s, 3H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 187.7, 159.3, 139.5, 136.5, 

131.3, 130.1, 126.3, 125.9, 121.4, 120.8, 120.2, 118.9, 118.6, 113.5, 113.2, 111.3, 

55.4, 13.5. IR (neat): 3326, 2252, 1634, 1586, 1533 cm-1; HRMS (ESI) calculated for 

C18H14N2O2 [M+H]+: 291.1128, found: 291.1127.
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 2-(2-(4-Methoxybenzoyl)-1H-indol-3-yl)acetonitrile (4f). This product was 

obtained as a yellow solid (29.7 mg, 51% yield). Eluent: petroleum ether/ethyl acetate 

3:1 (v/v). m.p.: 171-172℃;1H NMR (400 MHz, DMSO-d6) δ 11.86 (s, 1H), 7.89 – 

7.80 (m, 3H), 7.54 – 7.49 (m, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 

7.16 (d, J = 8.1 Hz, 2H), 4.20 (s, 2H), 3.89 (s, 3H). 13C{1H} NMR (101 MHz, 

DMSO-d6) δ 186.5, 163.1, 136.2, 131.8, 131.7, 130.5, 126.2, 125.4, 120.6, 119.9, 

118.6, 114.1, 113.0, 110.2, 55.6, 13.4. IR (neat): 3346, 1719, 1597, 1540, 1439, 1266 

cm-1; HRMS (ESI) calculated for C18H14N2O2 [M+H]+: 291.1128, found: 291.1127.

2-(2-(4-(Dimethylamino)benzoyl)-1H-indol-3-yl)acetonitrile (4g). This product was 

obtained as a yellow solid (26.1 mg, 43% yield). Eluent: petroleum ether/ethyl acetate 

3:1 (v/v). m.p.: 228-229℃; 1H NMR (400 MHz, DMSO-d6) δ 11.79 (s, 1H), 7.81 (d, J 

= 8.1 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.52 – 7.46 (m, 1H), 7.32 (t, J = 7.6 Hz, 1H), 

7.18 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 8.3 Hz, 2H), 4.16 (s, 2H), 3.07 (s, 6H). 13C{1H} 

NMR (101 MHz, DMSO-d6) δ 185.5, 153.4, 135.9, 132.8, 131.8, 126.3, 124.8, 124.7, 

120.3, 119.7, 118.8, 112.9, 111.0, 108.7, 39.7, 13.4. IR (neat): 3299, 1676, 1586, 

1533 cm-1; HRMS (ESI) calculated for C19H17N3O [M+H]+: 304.1444, found: 

304.1446.

2-(2-([1,1'-Biphenyl]-4-carbonyl)-1H-indol-3-yl)acetonitrile (4h). This product was 

obtained as a yellow solid (26.9 mg, 40% yield). Eluent: petroleum ether/ethyl acetate 

3:1 (v/v). m.p.: 178-179℃; 1H NMR (400 MHz, DMSO-d6) δ 11.94 (s, 1H), 7.97 – 

7.87 (m, 5H), 7.84 – 7.77 (m, 2H), 7.58 – 7.49 (m, 3H), 7.49 – 7.42 (m, 1H), 7.38 (t, J 

= 7.6 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 4.26 (s, 2H). 13C{1H} NMR (101 MHz, 
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DMSO-d6) δ 187.5, 144.2, 138.9, 136.9, 136.5, 131.5, 130.0, 129.2, 128.5, 127.0, 

126.9, 126.3, 125.8, 120.8, 120.2, 118.7, 113.2, 111.2, 13.5. IR (neat): 3317, 2252, 

1632, 1609, 1534 cm-1; HRMS (ESI) calculated for C23H16N2O [M+H]+: 337.1335, 

found: 337.1334.

2-(2-(2-Naphthoyl)-1H-indol-3-yl)acetonitrile (4i). This product was obtained as a 

yellow solid (25.5 mg, 41% yield). Eluent: petroleum ether/ethyl acetate 3:1 (v/v). 

m.p.: 197-198℃; 1H NMR (400 MHz, DMSO-d6) δ 11.99 (s, 1H), 8.46 (s, 1H), 8.19 – 

8.10 (m, 2H), 8.11 – 8.05 (m, 1H), 7.95 – 7.87 (m, 2H), 7.77 – 7.61 (m, 2H), 7.57 – 

7.50 (m, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 7.5 Hz, 1H), 4.26 (s, 2H). 13C{1H} 

NMR (101 MHz, DMSO-d6) δ 188.0, 136.5, 135.3, 134.9, 132.0, 131.6, 131.0, 129.7, 

128.7, 128.6, 127.7, 127.1, 126.4, 125.8, 124.9, 120.8, 120.2, 118.6, 113.2, 111.1, 

13.6. IR (neat): 3314, 2251, 1626, 1533 cm-1; HRMS (ESI) calculated for C21H14N2O 

[M+H]+: 311.1179, found: 311.1171.

2-(2-(2-Fluorobenzoyl)-1H-indol-3-yl)acetonitrile (4j). This product was obtained 

as a yellow solid (15.6 mg, 28% yield). Eluent: petroleum ether/ethyl acetate 3:1 (v/v). 

m.p.: 157-158℃; 1H NMR (400 MHz, CDCl3) δ 8.99 (s, 1H), 7.82 (d, J = 8.2 Hz, 1H), 

7.64 – 7.55 (m, 2H), 7.45 – 7.39 (m, 2H), 7.37 – 7.30 (m, 1H), 7.27 – 7.22 (m, 2H), 

3.92 (s, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 184.2, 159.6 (d, J = 253.5 Hz), 

136.5, 134.0 (d, J = 8.1 Hz), 131.7, 130.2 (d, J = 2.0 Hz), 127.8, 127.2, 127.1, 125.3 

(d, J = 4.0 Hz), 122.0, 121.0, 117.2 (d, J = 9.1 Hz), 116.9, 112.7, 112.3, 14.1. 19F 

NMR (377 MHz, CDCl3) δ -12.4. IR (neat): 3326, 2253, 1639, 1533 cm-1; HRMS 

(ESI) calculated for C17H11FN2O [M+Na]+: 301.0748, found: 301.0752.
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2-(2-(4-Fluorobenzoyl)-1H-indol-3-yl)acetonitrile (4k). This product was obtained 

as a yellow solid (29.5 mg, 53% yield). Eluent: petroleum ether/ethyl acetate 3:1 (v/v). 

m.p.: 188-189℃; 1H NMR (400 MHz, DMSO-d6) δ 11.90 (s, 1H), 7.95 – 7.86 (m, 3H), 

7.56 – 7.48 (m, 1H), 7.49 – 7.41 (m, 2H), 7.38 (dd, J = 7.6 Hz, J = 7.6 Hz, 1H), 7.21 

(dd, J = 7.6 Hz, J = 7.6 Hz, 1H), 4.23 (s, 2H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 

186.6, 164.8 (d, J = 252.5 Hz), 134.7 (d, J = 2.0 Hz), 136.5, 132.1 (d, J = 9.1 Hz), 

131.3, 126.3, 125.9, 120.8, 120.2, 118.6, 115.9 (d, J = 22.2 Hz), 113.2, 111.4, 13.5. 

19F NMR (377 MHz, CDCl3) δ -104.5. IR (neat): 3326, 2253, 1634, 1598, 1535 cm-1; 

HRMS (ESI) calculated for C17H11FN2O [M+Na]+: 301.0748, found: 301.0747.

2-(2-(Thiophene-3-carbonyl)-1H-indol-3-yl)acetonitrile (4l). This product was 

obtained as a yellow solid (20.2 mg, 38% yield). Eluent: petroleum ether/ethyl 

acetate3:1 (v/v). m.p.: 155-156℃; 1H NMR (400 MHz, DMSO-d6) δ 11.92 (s, 1H), 

8.40 (s, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.81 – 7.73 (m, 1H), 7.62 – 7.51 (m, 2H), 7.37 

(t, J = 7.6 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 4.28 (s, 2H). 13C{1H} NMR (101 MHz, 

DMSO-d6) δ 181.2, 141.0, 136.4, 134.9, 132.0, 127.8, 127.7, 126.3, 125.6, 120.7, 

120.0, 118.7, 113.3, 110.8, 13.3. IR (neat): 3318, 2252, 1624, 1536 cm-1; HRMS 

(ESI) calculated for C15H10N2OS [M+H]+: 267.0587, found: 267.0587.

2-(2-(Hydroxy(phenyl)methyl)-1H-indol-3-yl)acetonitrile (5). Compound 3a (131 

mg, 0.5 mmol) was dissolved in ethanol (EtOH) (10 mL) and was cooled to 0 ºC. It 

was then treated with sodium borohydride (NaBH4) (21 mg, 0.51 mmol). The reaction 

was stirred at this temperature and was monitored by TLC. After about fifteen 

minutes the starting material was consumed. The reaction was quenched with brine 
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and was extracted to DCM. The organic layer dried over Na2SO4 and was evaporated 

to afford the crude compound, which was purified by column chromatography to 

afford the desired alcohol as a yellow oil (98.3 mg, 75%). Eluent: petroleum 

ether/ethyl acetate 1:1 (v/v). 1H NMR (400 MHz, DMSO-d6) δ 11.12 (s, 1H), 7.55 (d, 

J = 7.8 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.36 – 7.28 (m, 3H), 7.26 – 7.20 (m, 1H), 7.09 (t, 

J = 7.5 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), 6.24 (s, 1H), 6.08 (s, 1H), 4.12 (s, 2H). 

13C{1H} NMR (101 MHz, DMSO-d6) δ 143.6, 139.4, 135.4, 128.2, 127.1, 126.8, 

126.1, 121.4, 119.3, 118.9, 117.8, 111.5, 98.8, 67.3, 12.2. IR (neat): 3409, 2923, 

2854, 2252, 1532, 1493, 1410, 1026 cm-1; HRMS (ESI) calculated for C17H14N2O 

[M+H]+: 263.1179, found: 263.1178.

2-(2-(hydroxy(phenyl)methyl)-1-methyl-1H-indol-3-yl)acetic acid (6).[19] To the 

solution of ethyl 2-(2-benzoyl-1H-indol-3-yl)acetate 3o (0.50 g, 1.63 mmol) in 4 mL of acetone, 

dimethyl sulfate (0.23 mL, 2.44 mmol) and finely powdered sodium hydroxide (0.34 g, 8.31 

mmol) were added. Then the mixture was stirred and refluxed for 1 h. After cooling to room 

temperature, the precipitate was filtered off and dissolved in 10 mL of water, the water solution 

was then acidified with acetic acid to pH ~5 to afford the precipitate. The product was obtained as 

fine yellowish crystals after filtration and washing with water. Yield (0.44 g, 92%). 1H NMR (400 

MHz, DMSO-d6) δ 3.48 (s, 2H), 3.75 (s, 3H), 7.12-7.16 (m, 1H), 7.35-7.39 (m, 1H), 7.54–

7.57 (m, 3H), 7.64–7.69 (m, 2H), 7.76–7.77 (m, 2H). 13C{1H} NMR (101 MHz, DMSO-d6) 

δ 189.2, 171.8, 138.9, 138.1, 134.2, 133.1, 129.2, 128.7, 126.5, 124.9, 120.7, 120.0, 114.8, 

110.5, 31.6, 30.8.
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