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Abstract: The solution and solid-phase syntheses of a 3,9-diazabi-
cyclo[3.3.1]non-6-en-2-one have been realised via sequential
Dakin–West/Pictet–Spengler reactions.
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With the emergence of automated solution and solid-
phase synthesis, combinatorial chemistry had become an
essential tool in the discovery of new therapeutic agents.
Since the first synthesis of peptide libraries, a large num-
ber of non-peptidic libraries have been produced, particu-
larly heterocyclic libraries.1 In the process of identifying
new active scaffolds, one possible approach is to use the
diversity pool of natural products as a guideline2 to gener-
ate new templates. With this consideration in mind, our at-
tention was attracted by the Saframycin, Safracin,
Renieramycin and Ecteinascidin families (Figure), which
show powerful antiproliferative and antitumoural proper-
ties thus making them very attractive targets.3 In all these
families, a common 3,9-diazabicyclo[3.3.1]non-6-ene
core structure element was present. An indole 3,9-diaza-
bicyclo[3.3.1]non-6-en-2-one structure has been selected
as potential scaffold for combinatorial libraries. Here, we
report the development of a highly efficient solution and
solid-phase synthesis of this core structure. The synthesis
of this type of structure has been already reported in the
literature and the strategy was, in general, to produce first
a �-carboline derivative between an aldehyde and tryp-
tophan and then closing the bicycle or generating an acyl
iminium for the cyclisation on an elaborated scaffold.4

Our approach consists in a simple linear construction of
the molecule before its cyclisation to the bicycle via an in-
tramolecular Pictet–Spengler reaction. In addition, with
our route, we are able to introduce a quaternary carbon
with a define stereochemistry which enhances the poten-
tial diversity of our scaffold. A novel sequential Dakin–
West/Pictet–Spengler reaction serves as key step of our
synthetic route, which starts from L-tryptophan. Attach-
ment of the template on solid-phase was achieved by us-
ing the commercially available L-5-hydroxy-tryptophan.

Figure Examples of structure from the Saframycin and Renieramy-
cin families in red is outlined the core 3,9-diazabicyclo[3.3.1]nonene

Solution-Phase Synthesis

Dipeptide 2 was obtained in 63% yield after peptide bond
formation between 1 and phenylalanine methylester and
subsequent hydrolysis. Then, the carboxylic acid moiety
was transformed to a methyl ketone unit through a Dakin–
West5 type reaction. Partial racemisation at the C-� stere-
ocenter was observed under the required conditions. After
hydrolysis, the methyl ketone derivative 3 as a mixture of
2 diastereoisomers (57/43) was obtained in 77% yield.
Under acidic conditions (20% TFA in DCM), the Boc
group was cleaved generating a free amino group, which
immediately underwent intramolecular imine formation6

with the methyl ketone. Then, an intramolecular Pictet–
Spengler7 cycli-sation reaction occurred yielding the 3,9-
diazabicyclo[3.3.1]non-6-en-2-one derivative 4 (100%
conversion, 62% isolated yield) (Scheme 1). The quater-
nary stereocenter generated during cyclisation is con-
trolled through the asymmetric center of the L-tryptophan.
Nevertheless, target structure 4 was obtained as a mixture
of diastereoisomers (cis-4/trans-4 57/43) which were sep-
arated by flash chromatography on silica gel.8 The cis or
trans configuration (relative configuration between the
methyl and the benzyl group) of the diastereoisomers was
determined by modified 1H-1H ROESY experiments9 on a
BRUKER DPX 400 MHz. For the cis diastereoisomer,
NOE effects were observed between (CH2

16)-NH5 and
CH3

3-NH5 whereas for the trans diastereoisomer, NOE ef-
fects were observed between (CH11)-NH5 and CH3

3-NH5.
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Mohan and co-workers reported a serine based carbamate
linker for the attachment of phenolic compounds stable to
TFA and organic bases.10 The cleavage mechanism is
based on the cleavage of the TIPS protecting group of a
serine side chain with a 1 M TBAF/THF solution which
provides an alkoxy ion able to attack intramolecularly the
urethane linkage and so to release the phenol derivative.
During his study, Mohan has used a BocNH-Trp(OH)-
OMe template (Scheme 2).

Methylester hydrolysis of immobilised BocNH-Trp(OH)-
OMe resulted in a significant product loss due to linker
cleavage. No selective hydrolysis reaction conditions
could be found. Therefore, we decided to replace the car-
boxylate-protecting group by an allyl ester function. We
carried out a new efficient synthesis of the Mohan linker
by using a preformed protected template prepared in solu-
tion before anchoring to the solid-phase. From 1, esterifi-
cation was performed under conditions described by
Albericio and co-workers11 with a mixture of allyl bro-
mide and acetonitrile. After aqueous work-up, compound
5 was directly isolated by precipitation in hexanes in 63%
yield and a purity greater than 95%. p-Nitrophenylcarbon-
ate 6 was generated by treating 5 with paranitrophenyl

chloroformate (66% yield after flash chromatography).
Solid-phase experiments were performed on Syn-
phase��.12 The first part of the linker was introduced via
peptide formation with BocNH-Ser(OTIPS)-OH. After
Boc deprotection of the immobilised serine, template 6
was loaded on the solid-phase through the creation of an
urethane bond (Scheme 3).

Solid-phase synthesis of the 3,9-diazabicyclo[3.3.1]non-
6-en-2-one scaffold was initiated by removal13 of the allyl
group from functionalised resin 8. Then, phenylalanine al-
lyl ester was coupled under standard conditions and the al-
lyl group was subsequently removed affording the free
carboxylic acid 9. Completion of the reaction was moni-
tored by cleavage of cut off lantern’s loops with 1 M
TBAF/THF and analysis by LC/MS. The modified
Dakin–West required significantly prolonged reaction
times compared to its solution phase pendant to go to
completion. Cyclisation with 20% TFA/CH2Cl2 at room
temperature did not lead to any of the expected scaffold.
Different conditions were examined resulting in complete
cyclisation after 16 hours with 20% TFA in C2H4Cl2 at
50 °C (Scheme 4).

Scheme 1 Solution synthesis of 3,9-diazabicyclo[3.3.1]non-6-en-2-one scaffold. Reagents and conditions: i) a) HCl·H2N-Phe-OMe, DCC,
HOBt, Et3N, THF, 16 h, r.t., b) NaOH 2N, THF, 2 h, r.t. (63%). ii) a) AcOH, Ac2O, DMAP, Et3N, THF, 16 h, 45 °C, b) NaOH 2N, THF, 2 h,
r.t. (77%). iii) 20% TFA/CH2Cl2, 16 h, r.t. (62%).

Scheme 2 Serine-based linker developed by Mohan
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Cleavage reactions with 1 M TBAF in THF solution were
very efficient, however LC/MS analysis of the samples
were sometimes tedious due to the presence of high con-
centrations of tetrabutylammonium salts, which saturated
the mass detector. From our original experiments, we
knew that cleavage was occurring when inorganic bases
were used. Applying similar conditions, effective cleav-
age of the final scaffold was achieved with a cocktail so-
lution containing NaOH (aq) 2 N/H2O/THF (2/8/10) for 2
hours at room temperature. Target compound 4 was ob-

tained in an overall yield of 35% (after 6 steps) with a pu-
rity of 85% by HPLC after aqueous work-up. The
structure was confirmed by NMR and MS.

In addition, the immobilised scaffold was further func-
tionalised. Acylation or alkylation on the bridged nitrogen
was performed (Scheme 5). After cleavage, samples were
analysed by LC/MS, which confirmed the mass of the ex-
pected materials with purities around 80% by HPLC for
11 and 12.

Scheme 3 Template synthesis and loading. Reactions and conditions: i) CH3CN/allyl bromide (3/2, 10 mL per mmole of 1), i-Pr2EtN, r.t.,
36 h (63%). ii) 4-NO2PhOCOCl, Et3N, Ch2Cl2, r.t., 5 h (64%). iii) a) BocNH-Ser(OTIPS)-OH, HOBt, DIC, NMM, THF, 50 °C, 24 h, b) 20%
TFA/CH2Cl2, 2 x 90 min. iv) 6, TEA, CH2Cl2, 50 °C, 16 h.

Scheme 4 Solid-phase synthesis of the 3,9-diazabicyclo[3.3.1]non-6-en-2-one scaffold. Reagents and conditions: i) Pd(II)acetate, PPh3, mor-
pholine, CH2Cl2, 2 h, r.t. ii) pTsOH·H2N-Phe-OAll, Et3N, DIC, HOBt, THF, 40 °C, 24 h. iii) Ac2O, AcOH, DMAP, Et3N, THF, 30 °C, 4 days.
iv) 20% TFA/C2H4Cl2, 50 °C, 16 h. v) 1M TBAF/THF, r.t., 2 h or NaOH 2N/H2O/THF (2/8/10), r.t., 2 h.
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In conclusion, we have shown an efficient solution and
solid-phase synthesis of a novel diazabicyclo[3.3.1]non-
enone core which might serve as an attractive scaffold for
combinatorial libraries. The key step of this synthesis was
a sequential Dakin–West/Pictet–Spengler reaction. Cur-
rently, optimisation of the linker and the cleavage condi-
tions are under investigation as well as the diversification
of the scaffold.
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Scheme 5 Functionalisation of the immobilised scaffold. Reagents and conditions: i) AcCl, Pyridine, CH2Cl2, 16 h, r.t. ii) BnBr, i-Pr2NEt,
DMF, 50 °C, 24 h. iii) NaOHaq 2N/H2O/THF (2/8/10), r.t., 2 h.

Scheme 6 i) 20% TFA/CH2Cl2, 16 h, r.t.; ii) NaBH4, MeOH
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