Feasibility of sigmatropic rearrangement on electron-deficient coumarinyl ketones

Lakshmi Narayan Dutta, Banani De, Godhuli Pal, and Amarendra Patra

Abstract: Different alkyl/aryl 7-hydroxy-8-coumarinyl ketones were converted to 7-*O*-allyl and 7-*O*-cyclohexenyl ethers and the study of hitherto unreported signatropic rearrangement on 7-*O*-allyl and 7-*O*-cyclohex-2'-ene-1'-ylcoumarinyl ketones prepared is accounted herein. The rearrangement yielded alkyl/aryl 6-allyl-7-hydroxy-8-coumarinyl ketones **3** and alkyl/aryl 6-cyclohex-2'-en-1'-yl-7-hydroxy-8-coumarinyl ketones **7** as the major products. Interestingly, unusual selectivity was observed in the case of alkyl 7-*O*-allylcoumarinyl ketones. Thus alkyl 3-allyl-7-hydroxy-8-coumarinyl ketones **4** and alkyl 8-allyl-7-hydroxy-6-coumarinyl ketones **5** were the outcome from alkyl 7-*O*-allyl-8-coumarinyl ketones and alkyl 4-methyl-7-*O*-allyl-8-coumarinyl ketones, respectively, albeit in minor yields.

Key words: allyloxycoumarinyl ketones, 7-*O*-cyclohex-2'-en-1'-ylcoumarinyl ketones, sigmatropic rearrangement, 3-allylcoumarinyl ketones, 8-allylcoumarinyl ketones.

Résumé : On a transformé diverses alkyl/aryl 7-hydroxy-8-coumarinylcétones en leurs éthers, les oxydes de 7-*O*-allyle et 7-*O*-cyclohexényle correspondants, et on rapporte les résultats obtenus lors des réarrangements signatropiques qui n'avaient jamais été rapportés antérieurement et qui ont été effectués sur les 7-*O*-allyl- et 7-*O*-cyclohex-2'-én-1'-ulcoumarinylcétones ainsi préparées. Les produits principaux de ces réactions sont les alkyl/aryl 6-allyl-7-hydroxy-8-coumarinylcétones, **3**, et les alkyl/aryl 6-cyclohex-2'-én-1'-yl-7-hydroxy-8-coumarinylcétones, **7**. On a observé une sélectivité inhabituelle intéressante dans le cal des alkyl 7-*O*-allylcoumarinylcétones. Même s'ils n'ont été obtenus qu'avec de faibles rendements, les alkyl 3-allyl-7hydroxy-8-coumarinylcétones, **4**, et alkyl 8-allyl-7-hydroxy-6-coumarinylcétones, **5**, sont les produits obtenus à partir respectivement des 7-*O*-allyl-8-coumarinylcétones et alkyl 4-méthyl-7-*O*-allyl-8-coumarinylcétones.

Mots-clés : allyloxycomarinylcétones, 7-*O*-cyclohex-2'-én-1'-ylcoumarinylcétones, réarrangement sigmatropique, 3-allylcoumarinylcétones, 8-allylcoumarinylcétones.

[Traduit par la Rédaction]

Introduction

Coumarins (1, 2) have attracted the attention of synthetic organic chemists (3–5) throughout the globe for building up new exotic molecules owing to their well-established range of biological activities (6–10). In quest of newer synthetic methodologies we have successfully carried out a series of systematic studies on the selectivities of different organometallics (11, 12) and ylids (13) involving typical non-concerted processes on coumarinyl ketones and coumarincarboxaldehydes. Under the scope of concerted process we have extensively applied a sigmatropic reaction in the form of thermal Claisen rearrangement for the synthesis of various natural and unnatural coumarins. In spite of a flurry of activity in the synthesis of coumarin employing Claisen rearrangement (14–20), there is virtually no report on the efficacy of the rearrangement on the coumarin moiety

Received 26 November 2007. Accepted 22 February 2008. Published on the NRC Research Press Web site at canjchem.nrc.ca on 3 April 2008.

L.N. Dutta,¹ B. De, G. Pal. Department of Chemistry, Jadavpur University, Kolkata 700 032, India
A. Patra. Centre of Advanced Studies on Natural Products, Department of Chemistry, University College of Science, Kolkata 700 009, India.

¹Corresponding author (e-mail: amarendra@satyam.net.in).

bearing further electron-rich and electron-deficient functionalities. Herein we report the findings of an intense investigation on Claisen rearrangement restricting the functionalisation to the electron-deficient coumarinyl ketones.

Discussion

The starting materials selected for this study, viz. 7allyloxy-8-coumarinyl alkyl/aryl ketones 2a-2h and 7cyclohex-2'-en-1'-yloxy-8-coumarinyl alkyl/aryl ketones 6a-6h were prepared from 7-hydroxy-8-coumarinyl alkyl/aryl ketones 1a-1h. The hydroxycoumarinyl ketones could be from 7-hydroxycoumarin and 4-methyl-7procured hydroxycoumarin, as appropriate, exploiting Fries rearrangement (21). The aforesaid allyl coumarinyl ethers have thus been successfully prepared in good yield by following the usual protocol of refluxing the compounds for 8 h in dry acetone with allyl bromide in the presence of anhydrous K₂CO₃. An initial signatropic rearrangement study revealed that the allyl ethers failed to record any positive result in solvents like chlorobenzene and polyethylene glycol 400. Consequent to that, the rearrangement was tried and ultimately became successful in N,N-diethylaniline. The C-C bond formations showed typical selectivities by yielding 6-allyl substituted coumarinyl ketones 3 and 3-allyl substituted coumarinyl ketones 4 with 7-allyloxy-8-coumarinyl ketones

Scheme 1. Reagents and conditions: (i) -Br, anhyd. K₂CO₃, dry Me₂CO, 14 h, and reflux; (ii) PhNEt₂, 195 °C, and 8 h.

Scheme 2. Reagents and conditions: (i) Br, NEt₃, dry Me₂CO, 4 h, and reflux. (ii) Ph₂O, reflux for 10 min.

2a, **2c**, and **2e**, whereas the 4-methyl-7-allyloxy-8coumarinyl ketones **2b**, **2d**, and **2f** resulted in 6-allyl substituted coumarinyl ketones **3** along with 8-allyl substituted 6coumarinyl ketones **5** as a consequence of unusual acyl migration. The allyl ethers having benzoyl coumarinyl functionality, **2g** and **2h**, did produce only the usual 6-allyl substituted coumarinyl ketones without any trace of other rearranged products (Scheme 1).

It should be noted that attempted cyclohexenylation of hydroxycoumarinyl ketones following the usual protocol of refluxing in dry acetone with 3-bromocyclohexene in the presence of anhydrous K₂CO₃ (22) turned out to be entirely unsuccessful. Finally the problem was overcome through the judicious selection of a base, viz. triethylamine instead of anhydrous K_2CO_3 (Scheme 2). It should be emphasized that the study of Claisen rearrangement turned out to be remarkably successful in diphenyl ether as solvent, while the yield was extremely poor when carried out in chlorobenzene (<5%) and N,N-diethylaniline $(\sim10\%)$. The cyclohexenyl ethers on Claisen rearrangement underwent regioselective formation of 6-cyclohex-2'-ene-1'-yl-8-coumarinyl alkyl/aryl ketones 7a-7h in good yields (Table 1). No unusual acyl migration or Claisen rearrangement on other positions of coumarin moiety was observed with cyclohexenyl ethers.

The formation of 6-allyl and 6-cyclohexenyl substituted coumarinyl ketones turned out to be quite obvious via an intermediate **A** (Scheme 3). In the formation of 3-allylcoumarinyl ketones, the intermediate **C** may be visualized as a consequence of a [3,3] Cope rearrangement of the intermediate **B** produced via a [3,3] signatropic shift. Alternatively, the genesis of 3-allylcoumarinyl ketones from alkyl

Table 1. Yields of the compounds 2 to 7.

	Substituents			Yield (%)					
Entry		\mathbb{R}^1	\mathbb{R}^2	2	3	4	5	6	7
1	a	Н	Me	83	44	40	_	66	60
2	b	Me	Me	83	46	_	33	93	62
3	c	Η	Et	84	41	26	_	76	62
4	d	Me	Et	85	42	_	26	63	65
5	e	Η	<i>n</i> -Pr	84	43	24	_	70	59
6	f	Me	<i>n</i> -Pr	84	43	_	26	78	61
7	g	Η	Ph	85	47	_	_	76	59
8	h	Me	Ph	85	44			89	58

7-allyloxy-8-coumarinyl ketones may be rationalized from the intermediate C formed via a [3,3] sigmatropic shift, which further underwent Cope rearrangement with the transfer of allyl functionality at the 4a position, leading to the intermediate C. The intermediate C follows an itinerary of further [3,3] Cope rearrangement followed by [1,7] tautomeric shift to afford the 3-allyl substituted coumarinyl ketones. The 4-methyl-7-allyloxycoumarinyl ketones prefer to follow from the intermediate **B** as an alternative pathway leading to the anionic intermediate **D**, along with the ejected acylium ion R-C≡O⁺ that may exist, most plausibly enjoying the character of an intimate ion pair though the feasibility of a concerted mechanism cannot be ruled out. On further chemical mutation to intermediate F, the 6-acyl-8allylcoumarinyl ketones are being derived via the [1,3] tautomeric shift.

Scheme 3.

The structures of the compounds were unequivocally settled from elemental analyses and extensive spectroscopic investigations. Assignment of the structures of 6-allyl and 8allylsubstituted coumarinyl ketones posed an interesting problem and could be unequivocally solved by critical analysis of the ¹H NMR and ¹³C NMR spectra, with particular emphasis on the proton signals of C-5 and carbon signals of C-6 and C-8. The proton signals at the 5-position enjoy more deshielding because of the anisotropic effect offered by the newly arrived adjacent ketocarbonyl functionality. On the contrary, the C-6 carbon signal of 8-allyl substituted compounds are more shielded than those of the 6-allyl substituted compounds (23) (Table 2), and the C-8 signals varied oppositely.

Conclusion

In conclusion, it is worth mentioning that an unusual selectivity was observed in the product formation with the introduction of a methyl group at the 4-position of the 7allyloxy-8-coumarinyl ketone moiety. The changeover in the character of the minor products with the introduction of methyl group at the 4-position of the 8-coumarinyl ketone

403

Table 2. Chemical shift (δ) values of C-5 protons and C-6, C-8 carbon signals.

	Location of	δ Value					
Compound	ketoalkyl functionality	C-5 proton signal	C-6 carbon signal	C-8 carbon signal			
3b	C-8	7.48	126.1	108.6			
5b	C-6	7.88	112.4	116.3			
3d	C-8	7.43	126.2	108.7			
5d	C-6	7.95	112.5	116.0			
3f	C-8	7.49	126.1	108.7			
5f	C-6	7.95	112.5	116.2			

moiety may be rationalized either from steric or electronic considerations. The plausible explanation of such selectivity in favor of the electronic and (or) steric effect of methyl group can only be confirmed on further study of Claisen rearrangement on 7-allyloxy-8-coumarinyl ketones with varying substituents (Et, *n*-Pr, *i*-Pr, *t*-Bu, CHO, CN, CO₂Me, CH₂OH) at the 4-position.

Experimental

All melting points were determined in open capillaries and are uncorrected. IR spectra (v_{max} in cm⁻¹) were recorded in KBr with a PerkinElmer 883-IR and RXI FT IR spectrophotometers. The UV spectra were measured in 95% ethanol using an Hitachi U 2000 and Lamda 20 ELMER spectrophotometers. The elemental analyses were carried out in a PerkinElmer 240C elemental analyzer. The ¹H NMR and ¹³C NMR spectra were recorded in a Bruker AV300 supercon NMR spectrometer operating at 300.13 MHz for proton and 75.47 MHz for carbon, using CDCl₃ as solvent and TMS as an internal standard. Mass spectra were recorded on a Finnigan Mat 1020 C, Shimadzu Model GEMS QP1000A, and LC-MS MS Q-TOF-micro spectrometers and a Q TRAP LC/MS/MS system operative at 70 eV. The column chromatographic separation and filtration were performed with silica gel (mesh size 60-120) prepared by Glaxo (India) Ltd and Merck (India) Ltd. Petroleum ether used had a boiling point 60-80 °C.

Preparation of 7-allyloxycoumarinyl ketones 2a-2h

General procedure

7-Hydroxycoumarinyl ketones (4.3 mmol) dissolved in dry acetone (50 mL) were treated with allyl bromide (4.9 mmol) and anhydrous K_2CO_3 (4.3 mmol) and refluxed under anhydrous conditions on water bath for ~14 h. Excess acetone was distilled off and the residual solid cakelike mass was treated with water (150 mL). The mixture was acidified in cold conditions with cold dil HCl (4 N). The solid separated was filtered out and washed with cold water until it was neutral. The resultant solid was dried and crystallized from EtOAc/petroleum ether to obtain crystals of 7allyloxycoumarinyl ketones **2a–2h**.

Compound 2a

Mp 68 °C. IR (cm⁻¹): 3080, 2980, 1740, 1700, 1620, 1590, 1490, 1400. ¹H NMR & 2.57 (sharp s, 3H, 1'-CH₃), 4.73 (d, J = 5.0 Hz, 2H, OCH₂CH=CH₂), 5.34 (d, J = 10.0 Hz, 1H, OCH₂CH=CH₄H_B), 5.39 (d, J = 17.0 Hz, 1H, OCH₂CH=CH₄H_B), 5.95 (m, 1H, OCH₂CH=CH₂), 6.27 (d, J = 9.0 Hz, 1H, 3-H), 6.91 (d, J = 7.2 Hz, 1H, 6-H), 7.45 (d, J = 7.2 Hz, 1H, 5-H), 7.70 (d, J = 9.0 Hz, 1H, 4-H). Anal. calcd. for C₁₄H₁₂O₄: C 68.84, H 4.95; found: C 68.79, H 4.90.

Compound 2b

Mp 108 °C. IR (cm⁻¹): 3060, 2995, 1730, 1710, 1605, 1565, 1495, 1380. ¹H NMR δ : 2.32 (d, J = 1.0 Hz, 3H, 4-CH₃), 2.53 (sharp s, 3H, 1'-CH₃), 4.58 (d, J = 6.0 Hz, 2H, OCH₂CH=CH₂), 5.23 (d, J = 10.0 Hz, 1H, OCH₂CH=CH₄H_B), 5.32 (d, J = 17.0 Hz, 1H, OCH₂CH=CH₄H_B), 5.96 (m, 1H, OCH₂CH=CH₂), 6.08 (q, J = 1.0 Hz, 1H, 3-H), 6.80 (d, J = 9.0 Hz, 1H, 6-H), 7.47 (d, J = 9.0 Hz, 1H, 5-H). Anal. calcd. for C₁₅H₁₄O₄: C 69.75, H 5.46; found: C 69.72, H 5.41.

Compound 2c

Mp 65 °C. IR (cm⁻¹): 3080, 2970, 1750, 1715, 1610, 1570, 1490, 1405, 1300. ¹H NMR δ : 1.16 (t, *J* = 7.0 Hz, 3H, 2'-CH₃), 2.86 (q, *J* = 7.0 Hz, 2H, 1'-CH₂), 4.63 (d, *J* = 6.0 Hz, 2H, OCH₂CH=CH₂), 5.30 (d, *J* = 10.0 Hz, 1H,

OCH₂CH=CH_AH_B), 5.37 (d, J = 17.0 Hz, 1H, OCH₂CH=CH_AH_B), 5.98 (m, 1H, OCH₂CH=CH₂), 6.24 (d, J = 9.0 Hz, 1H, 3-H), 6.84 (d, J = 9.0 Hz, 1H, 6-H), 7.43 (d, J = 9.0 Hz, 1H, 5-H), 7.63 (d, J = 9.0 Hz, 1H, 4-H). Anal. calcd. for C₁₅H₁₄O₄: C 69.75, H 5.46; found: C 69.70, H 5.41.

Compound 2d

Mp 70 °C. IR (cm⁻¹): 3090, 2990, 1745, 1710, 1605, 1570, 1495, 1380. ¹H NMR δ : 1.21 (t, J = 7.0 Hz, 3H, 2'-CH₃), 2.39 (d, J = 1.0 Hz, 3H, 4-CH₃), 2.91 (q, J = 7.0 Hz, 2H, 1'-CH₂), 4.60 (d, J = 5.0 Hz, 2H, OCH₂CH=CH₂), 5.45 (d, J = 10.0 Hz, 1H, OCH₂CH=CH_AH_B), 5.52 (d, J = 16.0 Hz, 1H, OCH₂CH=CH_AH_B), 6.02 (m, 1H, OCH₂CH=CH₂), 6.15 (q, J = 1.0 Hz, 1H, 3-H), 6.88 (d, J = 7.2 Hz, 1H, 6-H), 7.51 (d, J = 7.2 Hz, 1H, 5-H). Anal. calcd. for C₁₆H₁₆O₄: C 70.57, H 5.92; found: C 70.60, H 5.88.

Compound 2e

Mp 52 °C. IR : 3080, 2970, 1760, 1710, 1610, 1560, 1490, 1410. ¹H NMR δ: 0.93 (t, J = 5.1 Hz, 3H, 3'-CH₃), 1.68 (tq, J = 5.1 Hz, 5.1 Hz, 2H, 2'-CH₂), 2.77 (t, J = 5.1 Hz, 2H, 1'-CH₂), 4.56 (d, J = 6.0 Hz, 2H, OCH₂CH=CH₂), 5.23 (d, J = 12.0 Hz, 1H, OCH₂CH=CH₄H_B), 5.28 (d, J = 18.0 Hz, 1H, OCH₂CH=CH₄H_B), 5.90 (ddt, J = 18.0, 12.0, 6.0 Hz, 1H, OCH₂CH=CH₂), 6.17 (d, J = 9.0 Hz, 1H, 3-H), 6.78 (d, J = 9.0 Hz, 1H, 6-H), 7.36 (d, J = 9.0 Hz, 1H, 5-H), 7.57 (d, J = 9.0 Hz, 1H, 4-H). Anal. calcd. for C₁₆H₁₆O₄: C 70.57, H 5.92; found: C 70.52, H 5.99.

Compound 2f

Mp 70 °C. IR (cm⁻¹): 3060, 2950, 1735, 1720, 1600, 1560, 1485, 1370. ¹H NMR δ : 0.98 (t, J = 7.0 Hz, 3H, 3'-CH₃), 1.73 (tq, J = 7.0 Hz, 7.0 Hz, 2H, 2'-CH₂), 2.38 (d, J = 1.0 Hz, 3H, 4-CH₃), 2.83 (t, J = 7.0 Hz, 2H, 1'-CH₂), 4.63 (d, J = 6.0 Hz, 2H, OCH₂CH=CH₂), 5.28 (d, J = 10.0 Hz, 1H, OCH₂CH=CH_AH_B), 5.37 (d, J = 18.0 Hz, 1H, OCH₂CH=CH_AH_B), 5.97 (ddt, J = 18.0, 10.0, 6.0 Hz, 1H, OCH₂CH=CH₂), 6.13 (q, J = 1.0 Hz, 1H, 3-H), 6.85 (d, J = 9.0 Hz, 1H, 6-H), 7.52 (d, J = 9.0 Hz, 1H, 5-H). Anal. calcd. for C₁₇H₁₈O₄: C 71.31, H 6.34; found: C 71.34, H 6.30.

Compound 2g

Mp 102 °C. IR : 3065, 2980, 1725, 1675, 1610, 1565, 1495, 1405. ¹H NMR δ : 4.58 (d, J = 5.0 Hz, 2H, OCH₂CH=CH₂), 5.16 (d, J = 11.0 Hz, 1H, OCH₂CH=CH₄H_B), 5.18 (d, J = 17.0 Hz, 1H, OCH₂CH=CH₄H_B), 5.83 (m, 1H, OCH₂CH=CH₂), 6.24 (d, J = 8.0 Hz, 1H, 3-H), 6.92 (d, J = 8.0 Hz, 1H, 6-H), 7.52 (m, 5H, C₆H₅), 7.77 (d, J = 8.0 Hz, 1H, 5-H), 7.88 (d, J = 8.0 Hz, 1H, 4-H). Anal. calcd. for C₁₉H₁₄O₄: C 74.50, H 4.60; found: C 74.45, H 4.65.

Compound 2h

Mp 151 °C. IR : 3090, 2990, 1725, 1680, 1595, 1560, 1490, 1370. ¹H NMR δ : 2.44 (d, J = 1.2 Hz, 3H, 4-CH₃), 4.60 (br d, J = 7.0 Hz, 2H, OCH₂CH=CH₂), 5.15 (d, J = 10.0 Hz, 1H, OCH₂CH=CH_AH_B), 5.18 (d, J = 17.0 Hz, 1H, OCH₂CH=CH_AH_B), 5.81 (ddt, J = 17.0, 10.0, 7.0 Hz, 1H, OCH₂CH=CH₂), 6.14 (q, J = 1.2 Hz, 1H, 3-H), 6.94 (d, J = 9.0 Hz, 1H, 6-H), 7.43 (t, J = 7.8 Hz, 2H, 3'-H and 5'-H), 7.58 (br t, J = 7.8 Hz, 1H, 4'-H), 7.65 (br d, J = 7.8 Hz, 2H,

2'-H and 6'-H), 7.85 (d, J = 9.0 Hz, 1H, 5-H). Anal. calcd. for C₂₀H₁₆O₄: C 74.99, H 5.03; found: C 74.94, H 4.98.

Preparation of 6-allyl-8-coumarinyl alkyl/aryl ketones 3a-3h

General Procedure

The allyloxycoumarinyl ketones **2a–2h** (2.0 mmol) dissolved in distilled PhNEt₂ (30 mL) were heated at 195 °C for 8 h under anhydrous conditions. PhNEt₂ was then distilled off and the residual mass left was dissolved in CHCl₃ (30 mL). The CHCl₃ solution of the mass was washed successively with cold dil. HCl (3 × 15 mL), a saturated brine solution (1x15 mL), followed by a saturated aqueous solution of NaHCO₃ (2 × 15 mL), and again with a saturated brine solution (2 × 15 mL). Removal of solvent after drying over anhydrous Na₂SO₄ afforded a semi-solid mass, which was found to be a mixture of three components. Column chromatographic resolution over silica gel yielded the 6allyl-8-coumarinyl ketones **3a–3h** from petroleum ether and EtOAc (99:1) eluate fractions. The products were crystallized from EtOAc/petroleum ether.

Compound 3a

Mp 121 °C. UV–vis (EtOH) λ_{max} (log ϵ): 321.7 (4.78), 270.5 (4.76), 254.5 (4.75). IR (cm⁻¹): 3080, 2920, 1730, 1710, 1610, 1560, 1400, 1365. ¹H NMR δ : 2.89 (sharp s, 3H, 1'-CH₃), 3.35 (br d, J = 6.5 Hz, 2H, 6-CH₂CH=CH₂), 5.071 (d, J = 10.0 Hz, 1H, CH₂CH=CH_AH_B), 5.072 (d, J = 18.0 Hz, 1H, CH₂CH=CH_AH_B), 6.01 (m, 1H, CH₂CH=CH₂), 6.20 (d, J = 9.5 Hz, 1H, 3-H), 7.33 (s, 1H, 5-H), 7.57 (d, J = 9.5 Hz, 1H, 4-H), 14.02 (s, 1H, 7-OH). ¹³C NMR δ : 33.0 (2°, CH₂CH=CH₂), 33.7 (1°, 1'-CH₃), 108.7 (4°, C-8), 110.3 (4°, C-4a), 112.0 (3°, C-3), 116.9 (2°, CH₂CH=CH₂), 126.7 (4°, C-6), 133.9 (3°, CH₂CH=CH₂), 135.1 (3°, C-5), 144.2 (3°, C-4), 154.4 (4°, C-8a), 159.6 (4°, C-2), 165.1 (4°, C-7), 204.3 (4°, C-1'). MS-EI (70 eV) *m*/*z*: 244 (49.5, M⁺), 229 (57.2), 216 (19.6), 211 (25.6), 201 (100), 183(12.8), 173 (41.8), 155 (16.6), 145 (29.4), 131 23.5), 115 (92.5). Anal. calcd. for C₁₄H₁₂O₄: C 68.84, H 4.95; found: C 68.89, H 4.99.

Compound 3b

Mp 122 °C. IR (cm⁻¹): 3080, 2980, 1740, 1715, 1610, 1560, 1450, 1395. ¹H NMR δ : 2.36 (d, J = 1.0 Hz, 3H, 4-CH₃), 2.90 (sharp s, 3H, 1'-CH₃), 3.38 (br d, J = 6.5 Hz, 2H, CH₂CH=CH₂), 5.06 (d, J = 16.0 Hz, 1H, CH₂CH=CH_AH_B), 5.07 (d, J = 10.0 Hz, 1H, CH₂CH=CH_AH_B), 5.93 (m, 1H, CH₂CH=CH₂), 6.10 (q, J = 1.0 Hz, 1H, 3-H), 7.48 (s, 1H, 5-H), 8.86 (s, 1H, 7-OH). ¹³C NMR δ : 19.2 (1°, 4-CH₃), 33.4 (2°, CH₂CH=CH₂), 33.9 (1°, 1'-CH₃), 108.6 (4°, C-8), 111.1 (3°, C-3), 111.3 (4°, C-4a), 116.8 (2°, CH₂CH=CH₂), 126.1 (4°, C-6), 130.6 (3°, CH₂CH=CH₂), 135.3 (3°, C-5), 153.2 (4°, C-4), 153.7 (4°, C-8a), 159.6 (4°, C-2), 164.8 (4°, C-7), 204.7 (4°, C-1'). MS-EI (70 eV) *m*/*z*: 258 (60.3), 243 (54.4), 230 (21.5), 215 (34.3), 187 (13.2), 115 (27.4), 91 36.7), 77 (41.6), 65 (43.6), 43 (100). Anal. calcd. for C₁₅H₁₄O₄: C 69.75, H 5.46; found: C 69.71, H 5.43.

Compound 3c

3.40 (q, J = 7.0 Hz, 2H, 1'-CH₂), 3.47 (br d, J = 7.0 Hz, 2H, CH₂CH=CH₂), 5.04 (d, J = 7.0 Hz, 1H, CH₂CH=CH_AH_B), 5.10 (d, J = 17.0 Hz, 1H, CH₂CH=CH_AH_B), 5.96 (m, 1H, CH₂CH=CH₂), 6.24 (d, J = 10.0 Hz, 1H, 3-H), 7.38 (s, 1H, 5-H), 7.62 (d, J = 10.0 Hz, 1H, 4-H), 14.20 (s, 1H, 7-OH). MS-EI (70 eV) *m*/*z*: 258 (62.4), 243 (2.9), 229 (100), 212 (3.4), 201 (33.3), 185 (3.8), 173 (8.9), 145 (3.4), 128 (2.9), 115 (7.2). Anal. calcd. for C₁₅H₁₄O₄: C 69.75, H 5.46; found: C 69.71, H 5.49.

Compound 3d

Mp 125 °C. IR (cm⁻¹): 3080, 2960, 1740, 1710, 1610, 1560, 1450, 1395. ¹H NMR δ : 1.17 (t, J = 7.0 Hz, 3H, 2'- CH_3), 2.34 (d, J = 1.0 Hz, 3H, 4- CH_3), 3.30 (q, J = 7.0 Hz, 2H, 1'-CH₂), 3.35 (br d, J = 6.5 Hz, 2H, CH₂CH=CH₂), 5.04 $(d, J = 17.0 \text{ Hz}, 1\text{H}, \text{CH}_2\text{CH}=\text{CH}_AH_B), 5.05 (d, J = 10.0 \text{ Hz},$ 1H, $CH_2CH=CH_AH_B$), 5.91 (m, 1H, $CH_2CH=CH_2$), 6.06 (q, J = 1.0 Hz, 1H, 3-H), 7.43 (s, 1H, 5-H), 14.00 (s, 1H, 7-OH). ¹³C NMR δ: 8.2 (1°, 2'-CH₃), 19.2 (1°, 4-CH₃), 33.5 (2°, CH₂CH=CH₂), 39.7 (2°, 1'-CH₂), 108.7 (4°, C-8), 111.0 (3°, C-3), 111.3 (4°, C-4a), 116.8 (2°, CH₂CH=CH₂), 126.2 (4°, C-6), 130.3 (3°, CH₂CH=CH₂), 135.3 (3°, C-5), 153.2 (4°, C-4), 153.7 (4°, C-8a), 159.7 (4°, C-2), 164.7 (4°, C-7), 207.8 (4°, C-1'). MS-EI (70 eV) m/z: 272 (49.1), 257 (5.9), 243 (100), 215 (19.6), 201 (2.3), 117 (4.7), 115 (2.5). Anal. calcd. for C₁₆H₁₆O₄: C 70.57, H 5.92; found: C 70.60, H 5.87.

Compound 3e

Mp 84 °C. IR (cm⁻¹): 3085, 2970, 1735, 1720, 1625, 1565, 1455, 1400. ¹H NMR δ : 1.05 (t, J = 7.2 Hz, 3H, 3'-CH₃), 1.81 (tq, J = 7.2 Hz, 7.2 Hz, 2H, 2'-CH₂), 3.35 (t, J = 7.2 Hz, 2H, 1'-CH₂), 3.42 (br d, J = 6.6 Hz, 2H, CH₂CH=CH₂), 5.13 (d, J = 16.0 Hz, 1H, CH₂CH=CH_AH_B), 5.14 (d, J = 10.0 Hz, 1H, CH₂CH=CH₂H_B), 5.99 (ddt, J = 16.0, 10.0, 6.6 Hz, 1H, CH₂CH=CH₂), 6.27 (d, J = 9.5 Hz, 1H, 3-H), 7.38 (s, 1H, 5-H), 7.62 (d, J = 9.5 Hz, 1H, 4-H), 14.16 (s, 1H, 7-OH). MS-EI (70 eV) *m*/*z*: 272 (43), 257 (8), 244 (1), 229 (100), 201 (10), 173 (3), 115 (5). Anal. calcd. for C₁₆H₁₆O₄: C 70.57, H 5.92; found: C 70.55, H 5.99.

Compound 3f

Mp 98 °C. IR (cm⁻¹): 3080, 2960, 1740, 1725, 1620, 1560, 1450, 1390. ¹H NMR δ : 1.03 (t, J = 7.0 Hz, 3H, 3'-CH₃), 1.78 (tq, J = 7.0 Hz, 7.0 Hz, 2H, 2'-CH₂), 2.40 (d, J = 1.0 Hz, 3H, 4-CH₃), 3.32 (t, J = 7.0 Hz, 2H, 1'-CH₂), 3.43 (br d, J = 6.5 Hz, 2H, CH₂CH=CH₂), 5.08 (d, J = 9.0 Hz, 1H, $CH_2CH=CH_AH_B$), 5.11 (d, J = 16.0 Hz, 1H, $CH_2CH=CH_AH_B$), 5.98 (m, 1H, $CH_2CH=CH_2$), 6.13 (q, J = 1.0 Hz, 1H, 3-H), 7.49 (s, 1H, 5-H), 14.07 (s, 1H, 7-OH). ¹³C NMR δ: 13.6 (1°, 3'-CH₃), 17.7 (2°, 2'-CH₂), 19.2 (1°, 4-CH₃), 33.4 (2°, CH₂CH=CH₂), 46.8 (2°, 1'-CH₂), 108.7 (4°, C-8), 111.0 (3°, C-3), 111.2 (4°, C-4a), 116.7 (2°, CH₂CH=CH₂), 126.1 (4°, C-6), 130.2 (3°, CH₂CH=CH₂), 135.3 (3°, C-5), 153.0 (4°, C-4), 153.6 (4°, C-8a), 159.6 (4°, C-7), 164.7 (4°, C-2), 207.3 (4°, C-1'). MS-EI (70 eV) m/z: 286 (61.1), 271 (12.8), 258 (2.9), 253 (8.5), 243 (100), 225 (2.9), 215 (14.5), 201 (2.1), 187 (4.3), 115 (9.8). Anal. calcd. for C17H18O4: C 71.31, H 6.34; found: C 71.25, H 6.30.

Compound 3g

Mp 119 °C. IR (cm⁻¹): 3060, 1730, 1710, 1620, 1575, 1450, 1400, 1345. ¹H NMR δ : 3.49 (br d, J = 6.6 Hz, 2H, CH₂CH=CH₂), 5.17 (d, J = 12.0 Hz, 1H, CH₂CH=CH_AH_B), 5.18 (d, J = 15.0 Hz, 1H, CH₂CH=CH₄H_B), 6.02 (ddt, J = 15.0, 12.0, 6.6 Hz, 1H, CH₂CH=CH₂), 6.16 (d, J = 9.0 Hz, 1H, 3-H), 7.43 (s, 1H, 5-H), 7.46 (t, J = 9.0 Hz, 2H, 3'-H and 5'-H), 7.59 (d, J = 9.0 Hz, 1H, 4-H), 7.61 (br t, J = 9.0 Hz, 1H, 4'-H), 7.67 (br d, J = 9.0 Hz, 2H, 2'-H and 6'-H), 11.56 (s, 1H, 7-OH). Anal. calcd. for C₁₉H₁₄O₄: C 74.50, H 4.60; found: C 74.48, H 4.56.

Compound 3h

Mp 180 °C. IR (cm⁻¹): 3060, 1710, 1695, 1590, 1555, 1425, 1365. ¹H NMR δ : 2.26 (d, J = 1.0 Hz, 3H, 4-CH₃), 3.68 (br d, J = 6.5 Hz, 2H, CH₂CH=CH₂), 5.06 (dq, J = 10.0, 1.0 Hz, 1H, CH₂CH=CH_AH_B), 5.17 (dq, J = 16.0, 1.0 Hz, 1H, CH₂CH=CH_AH_B), 5.96 (m, 1H, CH₂CH=CH₂), 6.16 (q, J = 1.0 Hz, 1H, 3-H), 7.68 (s, 1H, 5-H), 7.71 (m, 5H, C₆H₅), 12.76 (s, 1H, 7-OH). Anal. calcd. for C₂₀H₁₆O₄: C 74.99, H 5.03; found: C 74.97, H 5.02.

Subsequent elution of the silica column of crude Claisen products from compounds 2a, 2c, and 2e with petroleum ether/EtOAc (96:4, v/v) afforded the 3-allyl-8-coumarinyl ketones 4a, 4c, and 4e, as appropriate. The products were crystallized from EtOAc/petroleum ether.

Compound 4a

Mp 147 °C. IR (cm⁻¹): 3080, 2960, 1730, 1710, 1610, 1400, 1325. ¹H NMR δ: 2.62 (sharp s, 3H, 1'-CH₃), 3.55 (br d, J = 7.0 Hz, 2H, 3-CH₂CH=CH₂), 4.99 (d, J = 13.0 Hz, 1H, $3-CH_2CH=CH_AH_B$), 5.00 (d, J = 16.0 Hz, 1H, 3- $CH_2CH=CH_{\Delta}H_B$), 5.90 (ddt, J = 16.0, 13.0, 7.0 Hz, 1H, 3- $CH_2CH=CH_2$), 6.22 (d, J = 9.5 Hz, 1H, 6-H), 7.57 (d, J =9.5 Hz, 1H, 5-H), 7.74 (s, 1H, 4-H), 12.93 (s, 1H, 7-OH). ¹³C NMR δ: 26.3 (2°, 3-CH₂CH=CH₂), 26.5 (1°, 1'-CH₃), 111.3 (4°, C-8), 113.6 (3°, C-6), 115.9 (2°, 3-CH₂CH=CH₂), 116.5 (4°, C-4a), 116.7 (4°, C-3), 129.2 (t, 3-CH₂CH=CH₂), 134.2 (3°, C-5), 143.2 (3°, C-4), 156.7 (4°, C-8a), 159.8 (4°, C-2), 163.5 (4°, C-7), 203.4 (4°, C-1'). MS-EI (70 eV) m/z: 244 (82.1), 229 (100), 211 (5.9), 201 (55.9), 187 (20.9), 173 (17.9), 155 (3.4), 145 (7.7), 127 (6.4), 115 (29.9). Anal. calcd. for C₁₄H₁₂O₄: C 68.84, H 4.95; found: C 68.82, H 4.91.

Compound 4c

Mp 130 °C. IR (cm⁻¹): 3080, 2970, 1735, 1710, 1620, 1560, 1450, 1400, 1360. ¹H NMR δ : 1.24 (t, J = 7.0 Hz, 3H, 2'-CH₃), 3.08 (q, J = 7.0 Hz, 2H, 1'-CH₂), 3.60 (br d, J = 7.0 Hz, 2H, 3-CH₂CH=CH₂), 5.02 (d, J = 10.0 Hz, 1H, 3-CH₂CH=CH_AH_B), 5.10 (d, J = 17.0 Hz, 1H, 3-CH₂CH=CH_AH_B), 5.95 (m, 1H, 3-CH₂CH=CH₂), 6.28 (d, J = 10.0 Hz, 1H, 6-H), 7.64 (d, J = 10.0 Hz, 1H, 5-H), 7.84 (s, 1 H, 4-H), 13.12 (s, 1 H, 7-OH). MS-EI (70 eV) m/z: 258 (35.5), 243 (5.1), 229 (100), 201 (54.7), 185 (2.1), 173 (8.5), 145 (3.8), 128 (4.7), 115 (13.6). Anal. calcd. for C₁₅H₁₄O₄: C 69.75, H 5.46; found: C 69.70, H 5.42.

Compound 4e

Mp 132 °C. IR (cm⁻¹): 3090, 2975, 1740, 1725, 1620, 1570, 1470, 1400. ¹H NMR δ : 1.04 (t, *J* = 7.2 Hz, 3H, 3'-CH₃), 1.80 (tq, *J* = 7.2 Hz, 7.2 Hz, 2H, 2'-CH₂), 3.00 (t, *J* = 7.2 Hz, 2H, 1'-

CH₂), 3.61 (br d, J = 6.3 Hz, 2 H, 3-CH₂CH=CH₂), 5.02 (d, J = 10.0 Hz, 1H, 3-CH₂CH=CH_AH_B), 5.12 (d, J = 17.0 Hz, 1H, 3-CH₂CH=CH_AH_B), 5.97 (ddt, J = 17.0, 10.0, 6.3 Hz, 1H, 3-CH₂CH=CH₂), 6.27 (d, J = 9.6 Hz, 1H, 6-H), 7.63 (d, J = 9.6 Hz, 1H, 5-H), 7.83 (s, 1H, 4-H), 13.16 (s, 1H, 7-OH). MS-EI (70 eV) *m*/*z*: 272 (40), 257 (10), 244 (1.5), 229 (100), 201 (18), 173 (2), 145 (1), 115 (5). Anal. calcd. for C₁₆H₁₆O₄: C 70.57, H 5.92; found: C 70.53, H 5.94.

Further elution of the silica column of Claisen product mixture from compounds **2b**, **2d**, and **2f** afforded the 8-allyl-6-coumarinyl ketones **4b**, **4d**, and **4f**, respectively, from later petroleum ether/EtOAc (96:4, v/v) eluate fractions and subsequent crystallization from the appropriate solvent–solvent mixture.

Compound 5b

Mp 98 °C. IR (cm⁻¹): 3080, 2960, 1730, 1710, 1620, 1590, 1395, 1270. ¹H NMR δ: 2.43 (d, *J* = 1.0 Hz, 3H, 4-CH₃), 2.69 (sharp s, 3H, 1'-CH₃), 3.58 (br d, *J* = 7.0 Hz, 2H, 8-CH₂CH=CH₂), 5.00 (d, *J* = 10.0 Hz, 1H, 8-CH₂CH=CH_AH_B), 5.08 (d, *J* = 17.0 Hz, 1H, 8-CH₂CH=CH_AH_B), 5.94 (m, 1H, 8-CH₂CH=CH₂), 6.16 (q, *J* = 1.0 Hz, 1H, 3-H), 7.88 (s, 1H, 5-H), 12.96 (s, 1H, 7-OH). ¹³C NMR δ: 18.6 (1°, 4-CH₃), 26.4 (2°, 8-CH₂CH=CH₂), 26.5 (1°, 1'-CH₃), 112.4 (q, C-6), 112.6 (3°, C-3), 115.7 (2°, 8-CH₂CH=CH₂), 116.1 (4°, C-4a), 116.3 (4°, C-8), 125.7 (3°, 8-CH₂CH=CH₂), 134.2 (3°, C-5), 151.9 (4°, C-4), 156.1 (4°, C-8a), 159.9 (4°, C-2), 163.1 (4°, C-7), 203.5 (4°, C-1'). Anal. calcd. for C₁₅H₁₄O₄: C 69.75, H 5.46; found: C 69.72, H 5.44.

Compound 5d

Mp 110 °C. IR (cm⁻¹): 3080, 2960, 1740, 1710, 1620, 1590, 1450, 1395. ¹H NMR δ : 1.32 (t, J = 7.0 Hz, 3H, 2'- CH_3), 2.45 (d, J = 1.0 Hz, 3H, 4- CH_3), 3.15 (q, J = 7.0 Hz, 2H, 1'-CH₂), 3.68 (br d, J = 7.0 Hz, 2H, 8-CH₂CH=CH₂), 5.06 (d, J = 10.0 Hz, 1H, 8-CH₂CH=CH_AH_B), 5.15 (d, J =18.0 Hz, 1H, 8-CH₂CH=CH_A H_B), 5.99 (m, 1H, 8-CH₂CH=CH₂), 6.20 (s, 1H, 4-H), 7.95 (s, 1H, 5-H), 13.20 (s, 1H, 7-OH). ¹³C NMR δ: 8.2 (1°, 2'-CH₃), 18.4 (1°, 4-CH₃), 26.5 (2°, 8-CH₂CH=CH₂), 31.5 (2°, 1'-CH₂), 112.5 (4°, C-6), 112.6 (3°, C-3), 115.8 (2°, 8-CH₂CH=CH₂), 116.0 (4°, C-8), 116.6 (4°, C-4a), 124.8 (3°, 8-CH₂CH=CH₂), 134.5 (3°, C-5), 151.7 (4°, C-4), 156.2 (4°, C-8a), 159.7 (4°, C-2), 163.4 (4°, C-7), 206.2 (4°, C-1'). MS-EI (70 eV) m/z: 272 (58.5), 257 (10.6), 243 (100), 215 (29.9), 201 (1.6), 187 (7.2), 159 (1.7), 115 (2.5). Anal. calcd. for C₁₆H₁₆O₄: C 70.57, H 5.92; found: C 70.95, H 5.90.

Compound 5f

Mp 128 °C. IR (cm⁻¹): 3080, 2960, 1740, 1715, 1620, 1570, 1450, 1390. ¹H NMR δ: 1.10 (t, J = 8.0 Hz, 3H, 3'-CH₃), 1.80 (tq, J = 8.0 Hz, 8.0 Hz, 2H, 2'-CH₂), 2.50 (d, J =1.0 Hz, 3H, 4-CH₃), 3.08 (t, J = 8.0 Hz, 2H, 1'-CH₂), 3.68 (br d, J = 7.0 Hz, 2H, 8-CH₂CH=CH₂), 5.08 (d, J = 11.0 Hz, 1H, CH₂CH=CH_AH_B), 5.18 (d, J = 18.0 Hz, 1H, 8-CH₂CH=CH_AH_B), 6.00 (m, 1H, 8-CH₂CH=CH₂), 6.24 (s, 1H, 4-H), 7.95 (s, 1H, 5-H), 13.24 (s, 1H, 7-OH). ¹³C NMR δ: 13.7 (1°, 3'-CH₃), 18.0 (2°, 2'-CH₂), 18.7 (1°, 4-CH₃), 26.5 (2°, 8-CH₂CH=CH₂), 40.1 (2°, 1'-CH₂), 112.5(q, C-6), 112.8 (3°, C-3), 115.8 (2°, 8-CH₂CH=CH₂), 116.2 (4°, C-8), 116.6 (4°, C-4a), 125.0 (3°, 8-CH₂CH=CH₂), 134.5 (3°, C-5), 151.7 (4°, C-4), 156.3 (4°, C-8a), 159.8 (4°, C-2), 163.5 (4°, C-7), 205.8 (4°, C-1'). MS-EI (70 eV) m/z: 286 (63.2), 271 (21.3), 258 (3.4), 243 (100), 215 (12.8), 201 (2.5), 187 (8.5), 115 (6.8). Anal. calcd. for $C_{17}H_{18}O_4$: C 71.31, H 6.34; found: C 71.27, H 6.29.

7-O(Cyclohex-2'-ene-1'-yl)-8-coumarinyl ketones 6a-6h

General procedure

Pure and dried 7-hydroxy-8-coumarinyl ketone 1a-1h (2.5 mmol) taken in dry acetone (50 mL) were refluxed with 3-bromocyclohexene (0.4 mL, 0.003 mole) and NEt₃ (1 mL, 0.726 g, 0.007 mole) for 4 h. After distilling off acetone, water (10 mL) was added, and the content was acidified with cold dil HCl (4 N, 15 mL). The organic part of the mixture was then extracted with CHCl₃ (50 mL), which was washed successively with a saturated brine solution (15 mL), a saturated NaHCO₃ solution (2×15 mL), and again with a saturated brine solution (3×15 mL). The CHCl₃ layer was dried over anhydrous Na₂SO₄ for 30 min, filtered, and excess CHCl₃ was distilled off to obtain an oily mass. TLC experiment showed that the oily mass was more polar than the starting material on using 5% EtOAc/benzene as developer solvent. oily mass was The then column chromatographically filtered. Crystals of 6a-6h were obtained on eluting with 10% EtOAc/petroleum ether and subsequent crystallization of the products.

Compound 6a

Mp 118 °C. IR (cm⁻¹): 3071, 2925, 1722, 1666, 1607, 1560, 1489, 1436, 1400. ¹H NMR & 1.66–1.63 (br m, 1H, 6'-H_{ax}), 1.93–1.82 (br m, 3H, 5'-H₂, 6'-H_{eq}), 2.18–2.01 (br m, 2H, 4'-H₂), 2.54 (sharp s, 3H, 8-COCH₃), 4.89 (br s, 1H, 1'-H), 5.78 (br d, J = 12.3 Hz, 1H, 2'-H), 5.98 (br dt, J = 11.1 Hz, 3.8 Hz, 1H, 3'-H), 6.21 (d, J = 9.6 Hz, 1H, 3-H), 6.90 (d, J = 8.7 Hz, 1H, 6-H), 7.41 (d, J = 8.7 Hz, 1H, 5-H), 7.76 (d, J = 9.6 Hz, 1H, 4-H). ¹³C NMR & 18.67 (2°, C-5'), 24.90 (2°, C-4'), 28.39 (2°, C-6'), 32.13 (1°, 8-COCH₃), 72.81 (3°, C-1'), 110.16 (3°, C-6), 112.83 (4°, C-4a), 113.72 (3°, C-3), 120.87 (4°, C-8), 124.85 (3°, C-2'), 129.29 (3°, C-5), 133.34 (3°, C-3'), 142.85 (3°, C-4), 151.49 (4°, C-8a), 157.53 (4°, C-2), 159.68 (4°, C-7), 198.53 (4°, 8-COCH₃). Anal. calcd. for C₁₇H₁₆O₄: C 71.82, H 5.67; found: C 71.85, H 5.66.

Compound 6b

Mp 90 °C. IR (cm⁻¹): 3418, 3029, 2939, 1724, 1601, 1488, 1378, 1282. ¹H NMR δ : 1.70–1.62 (br m, 1H, 6'-H_{ax}), 1.81–1.75 (br m, 3H, 5'-H₂, 6'-H_{eq}), 2.08–2.02 (br m, 2H, 4'-H₂), 2.36 (d, J = 1.0 Hz, 3H, 4-CH₃), 2.60 (sharp s, 3H, 8-COCH₃), 4.88 (br s, 1H, 1'-H), 5.79 (br dt, J = 11.1 Hz, 2.7 Hz, 1H, 2'-H), 5.97 (br dt, J = 10.0 Hz, 2.7 Hz, 1H, 3'-H), 6.09 (d, J = 1.0 Hz, 1H, 3-H), 6.90 (d, J = 8.7 Hz, 1H, 6-H), 7.52 (d, J = 8.7 Hz, 1H, 5-H). Anal. calcd. for C₁₈H₁₈O₄: C 72.47, H 6.08; found: C 72.48, H 6.05.

Compound 6c

Mp 104 °C. IR (cm⁻¹): 3031, 2937, 1725, 1714, 1605, 1560, 1484, 1406. ¹H NMR δ : 1.17 (t, J = 7.2 Hz, 3H, 8-COCH₂CH₃), 1.64–1.59 (br m, 1H, 6'-H_{ax}), 1.84–1.73 (br m, 3H, 5'-H₂, 6'-H_{eq}), 1.92–1.85 (br m, 2H, 4'-H₂), 2.82 (q, J = 7.2 Hz, 2H, 8-COCH₂CH₃), 4.87 (s, 1H, 1'-H), 5.78 (br dt, J = 7.2 Hz, 3.1 Hz, 1H, 2'-H), 5.97 (br dt, J = 7.2 Hz,

3.2 Hz, 1H, 3'-H), 6.20 (d, J = 9.6 Hz, 1H, 3-H), 6.89 (d, J = 8.7 Hz, 1H, 6-H), 7.40 (d, J = 8.7 Hz, 1H, 5-H), 7.61 (d, J = 9.6 Hz, 1H, 4-H). ¹³C NMR δ : 7.55 (1°, 8-COCH₂CH₃), 13.73 (3°, C-3), 18.65 (2°, C-5'), 24.93 (2°, C-4'), 28.42 (2°, C-6'), 38.00 (2°, 8-COCH₂CH₃), 72.74 (3°, C-1'), 110.14 (3°, C-6), 112.84 (4°, C-4a), 120.85 (4°, C-8), 124.90 (3°, C-2'), 129.10 (3°, C-5), 133.28 (3°, C-3'), 142.85 (3°, C-4), 151.52 (4°, C-8a), 157.54 (4°, C-2), 159.72 (4°, C-7), 201.98 (4°, 8-COCH₂CH₃). Anal. calcd. for C₁₈H₁₈O₄: C 72.47, H 6.08; found: C 72.42, H 6.09.

Compound 6d

M 89 °C. IR (cm⁻¹): 3035, 2958, 1726, 1668, 1607, 1568, 1490, 1484, 1377. ¹H NMR δ: 1.18 (t, J = 7.2 Hz, 3H, 8-COCH₂CH₃), 1.67–1.61 (br m, 1H, 6'-H_{ax}), 1.96–1.90 (br m, 3H, 5'-H₂, 6'-H_{eq}), 2.14–2.03 (br m, 2H, 4'-H₂), 2.37 (d, J = 1.0 Hz, 3H, 4-CH₃), 2.83 (q, J = 7.2 Hz, 2H, 8-COCH₂CH₃), 4.44 (br s, 1H, 1'-H), 5.80 (br d, J = 10.5 Hz, 1H, 2'-H), 5.98 (br d, J = 10.0 Hz, 1H, 3'-H), 6.11 (q, J = 1.0 Hz, 1H, 3-H), 6.91 (d, J = 8.8 Hz, 1H, 6-H) 7.52 (d, J = 8.8 Hz, 1H, 5-H). Anal. calcd. for C₁₉H₂₀O₄: C 73.06, H 6.45; found: C 73.09, H 6.44.

Compound 6e

Mp 72 °C. IR (cm⁻¹): 3047, 2929, 1727, 1702, 1607, 1560, 1485, 1458. ¹H NMR δ : 0.96 (t, J = 7.4 Hz, 3H, 8- $COCH_2CH_2CH_3$, 1.67–1.63 (br m, 1H, 6'-H_{ax}), 1.72 (tq, J = 7.3 Hz, 7.3 Hz, 2H, 8-COCH₂CH₂CH₃), 1.84-1.82 (br m, 3H, 5'-H₂, 6'-H_{eq}), 2.07–2.01 (br m, 2H, 4'-H), 2.81 (t, J =7.2 Hz, 2H, 8-COCH₂CH₂CH₃), 4.87 (br s, 1H, 1'-H), 5.79 (br dt, J = 10.0 Hz, 2.8 Hz, 1H, 2'-H), 5.97 (br dt, J =10.0 Hz, 3.4 Hz, 1H, 3'-H), 6.20 (d, J = 9.5 Hz, 1H, 3-H), 6.87 (d, J = 8.7 Hz, 1H, 6-H), 7.39 (d, J = 8.7 Hz, 1H, 5-H),7.60 (d, J = 9.5 Hz, 1H, 4-H). ¹³C NMR δ : 13.64 (1°, 8-COCH₂CH₂CH₃), 16.92 (2°, 8-COCH₂CH₂CH₃), 18.66 (2°, C-5'), 24.93 (2°, C-4'), 28.40 (2°, C-6'), 46.76 (2°, 8-COCH₂CH₂CH₃), 72.70 (3°, C-1'), 110.08 (3°, C-6), 112.81 (4°, C-4a), 113.71 (3°, C-3), 120.95 (4°, C-8), 124.90 (3°, C-2'), 129.98 (3°, C-5), 133.23 (3°, C-3'), 142.85 (3°, C-4), 151.54 (4°, C-8a), 157.55 (4°, C-2), 159.71 (4°, C-7), 201.41 (4°, 8-COCH₂CH₂CH₃). Anal. calcd. for C₁₉H₂₀O₄: C 73.06, H 6.45; found: C 73.05, H 6.48.

Compound 6f

Mp 64 °C. IR (cm⁻¹): 2952, 1735, 1718, 1611, 1570, 1491, 1434, 1408. ¹H NMR δ : 0.95 (t, J = 7.4 Hz, 3H, 8-COCH₂CH₂CH₃), 1.67–1.63 (br m, 2H, 6'-H₂), 1.71 (tq, J = 7.3 Hz, 7.3 Hz, 2H, 8-COCH₂CH₂CH₃), 1.92–1.86 (br m, 2H, 5'-H₂), 2.07–2.01 (br m, 2H, 4'-H₂), 2.36 (d, J = 1.0 Hz, 3H, 4-CH₃), 2.77 (t, J = 7.2 Hz, 2H, 8-COCH₂CH₂CH₂CH₃), 4.86 (br d, J = 2.0 Hz, 1H, 1'-H), 5.78 (br dt, J = 10.0 Hz, 2.7 Hz, 1H, 2'-H), 5.96 (br dt, J = 10.0 Hz, 3.2 Hz, 1H, 3'-H), 6.07 (q, J = 1.0 Hz, 1H, 3-H), 6.89 (d, J = 8.9 Hz, 1H, 6-H), 7.50 (d, J = 8.9 Hz, 1H, 5-H). Anal. calcd. for C₂₀H₂₂O₄: C 73.60, H 6.79; found: C 73.62, H 6.81.

Compound 6g

Mp 99 °C. IR (cm⁻¹): 2934, 1728, 1674, 1605, 1560, 1486, 1448, 1402. ¹H NMR δ : 1.43–1.36 (br m, 1H, 6-H'_{ax}), 1.76–1.66 (br m, 3H, 5'-H_{2, 6}'-H_{eq}), 1.90–1.85 (br m, 2H, 4'-H₂), 4.82 (br d, J = 3.3 Hz, 1H, 1'-H), 5.69 (br dt, J = 11.0 Hz, 3.5 Hz, 1.55 Hz, 1H, 2'-H), 5.83 (br dt, J =

10.2 Hz, 3.24 Hz, 1H, 3'-H), 5.85 (d, J = 9.5 Hz, 1H, 3-H), 6.20 (d, J = 8.7 Hz, 1H, 6-H), 7.38 (t, J = 7.4 Hz, 2H, 3'-H and 5''-H), 7.50 (d, J = 8.7 Hz, 1H, 5-H), 7.54 (br t, J = 7.5 Hz, 1H, 4''-H), 7.65 (d, J = 9.5 Hz, 1H, 4-H), 7.83 (br d, J = 7.18 Hz, 2H, 2''-H and 6''-H). Anal. calcd. for C₂₂H₁₈O₄: C 76.29, H 5.24; found: C 76.32, H 5.22.

Compound 6h

Mp 130 °C. IR (cm⁻¹): 3063, 2905, 1730, 1665, 1608, 1575, 1491, 1440, 1381. ¹H NMR δ: 1.46–1.41 (br m, 2H, 6'-H₂), 1.78–1.66 (br m, 2H, 5'-H₂), 1.88–2.00 (br m, 2H, 4'-H₂), 2.44 (d, J = 1.0 Hz, 3H, 4-CH₃), 4.86 (br s, 1H, 1'-H), 5.72 (br d, J = 9.8 Hz, 1H, 2'-H), 5.88 (br d, J = 9.9 Hz, 1H, 3'-H), 6.13 (q, J = 1.0 Hz, 1H, 3-H), 7.00 (d, J = 8.7 Hz, 1H, 6-H), 7.42 (t, J = 7.4 Hz, 2H, 3''-H and 5''-H), 7.57 (br t, J = 7.18 Hz, 1H, 4''-H), 7.64 (d, J = 8.7 Hz, 1H, 5-H), 7.83 (br d, J = 7.4 Hz, 2H, 2''-H and 6''-H). Anal. calcd. for C₂₃H₂₀O₄: C 76.65, H 5.59; found: C 76.68, H 5.58.

6-(Cyclohex-2'-ene-1'-yl)-7-hydroxy-8-coumarinyl ketones 7a-7h

General procedure

Pure and dry 7-(cyclohex-2'-ene-1'-yloxy)-8-coumarinyl ketones **6a–6h** (1.8 mmol) were taken in Ph₂O (10 mL) and refluxed for 10 min. The brown viscous liquid formed was less polar than the starting material (as shown by TLC experiment on using 5% EtOAc/benzene as developer). The brown liquid was then charged on a column of silica gel and eluted with petroleum ether and then with EtOAc/petroleum ether (1:9 v/v). The crystals of pure Claisen products **7a–7h** were obtained from the later eluate fraction.

Compound 7a

Mp 120 °C. IR (cm⁻¹): 3080, 2920, 1745, 1725, 1610, 1560, 1440, 1400, 1360. ¹H NMR & 1.62–1.48 (br m, 4H, 5'-H₂, 6'-H₂), 2.09–2.00 (br m, 2H, 4'-H₂), 2.95 (sharp s, 3H, 8-COCH₃), 3.86 (sextet, J = 2.8 Hz, 1H, 1'-H), 5.60 (br dt, J = 8 Hz, 2.7 Hz, 1H, 2'-H), 5.99 (br dt, J = 10.0 Hz, 2.1 Hz, 1H, 3'-H), 6.24 (br d, J = 9.5 Hz, 1H, 3-H), 7.42 (s, 1H, 5-H), 7.64 (d, J = 9.5 Hz, 1H, 4-H), 14.17 (s, 1H, 7-OH). ¹³C NMR & 20.40 (2°, C-5'), 25.10 (2°, C-4'), 29.36 (2°, C-6'), 33.57 (1°, 8-COCH₃), 33.64 (3°, C-1'), 108.87 (4°, C-4a), 110.27 (4°, C-8), 111.93 (3°, C-3), 128.67 (3°, C-2'), 129.94 (3°, C-5), 132.36 (4°, C-6), 133.19 (3°, C-3'), 144.24 (3°, C-4), 154.45 (4°, C-8a), 159.59 (4°, C-2), 165.03 (4°, C-7), 204.42 (4°, 8-COCH₃). MS *m*/*z*: 285.4 [M + H]⁺ Anal. calcd. for C₁₇H₁₆O₄: C 71.82, H 5.67; found: C 71.85, H 5.66.

Compound 7b

 A Mp 132 °C. IR (cm⁻¹): 3060, 2920, 1736, 1710, 1610, 1555, 1430, 1390, 1360. ¹H NMR δ: 1.53−1.44 (br m, 1H, 6'-H_{ax}), 1.62−1.54 (br m, 3H, 5'-H₂, 6'-H_{eq}), 2.1−1.99 (br m, 2H, 4'-H₂), 2.40 (d, *J* = 1.0 Hz, 3H, 4-CH₃), 2.93 (sharp s, 3H, 8-COCH₃), 3.89 (q, *J* = 3.0 Hz, 1H, 1'-H), 5.62 (br d, *J* = 8.1 Hz, 1H, 2'-H), 5.99 (br dd, *J* = 10.0 Hz, 2.2 Hz, 1H, 3'-H), 6.12 (q, *J* = 1.0 Hz, 1H, 3-H), 7.53 (s, 1H, 5-H), 14.70 (s, 1H, 7-OH). ¹³C NMR δ: 19.04 (1°, 4-CH₃), 20.53 (2°, C-5'), 25.05 (2°, C-4'), 29.46 (2°, C-6'), 33.87 (1°, 8-COCH₃), 33.97 (3°, C-1'), 108.93 (4°, C-4a), 110.96 (3°, C-3), 111.12 (4°, C-8), 128.76 (3°, C-2'), 129.60 (4°, C-6), 129.87 (3°, C-

5), 131.81 (3°, C-3'), 153.07 (4°, C-4), 153.80 (4°, C-8a), 159.45 (4°, C-2), 164.61 (4°, C-7), 200.00 (4°, 8-COCH₃). MS *m*/*z*: 299.2 [M + H]⁺, 321.1 [M + Na]. Anal. calcd. for $C_{18}H_{18}O_4$: C 72.47, H 6.08; found: C 72.45, H 6.09.

Compound 7c

Mp 132 °C. IR (cm⁻¹): 3020, 2975, 1735, 1715, 1610, 1560, 1445, 1400. ¹H NMR δ : 1.25 (t, J = 7 Hz, 3H, 8-COCH₂CH₃), 1.62–1.48 (br m, 4H, 6'-H₂, 5'-H₂), 2.09–1.99 (br m, 2H, 4'-H₂), 3.41 (q, J = 7.0 Hz, 2H, 8-COCH₂CH₃), 3.87 (q, J = 2.7 Hz, 1H, 1'-H), 5.62 (br dt, J = 7.7 Hz, 2.3 Hz, 1H, 2'-H), 6.00 (br dt, J = 10.0 Hz, 3.4 Hz, 1H, 3'-H), 6.25 (br d, J = 9.5 Hz, 1H, 3-H), 7.40 (s, 1H, 5-H) 7.64 (d, J = 9.5 Hz, 1H, 4-H), 14.28 (s, 1H, 7-OH). ¹³C NMR δ : 8.2 (1°, 8-COCH₂CH₃), 20.41 (2°, C-5'), 25.10 (2°, C-4'), 29.37 (2°, C-6'), 33.67 (3°, C-1'), 38.52 (2°, 8-COCH₂CH₃), 108.64 (4°, C-4a), 110.27 (4°, C-8), 111.61 (3°, C-3), 128.74 (3°, C-2'), 129.90 (3°, C-5), 132.44 (4°, C-6), 132.91 (3°, C-3'), 144.35 (3°, C-4), 154.35 (4°, C-8a), 159.64 (4°, C-2), 165.03 (4°, C-7), 207.63 (4°, 8-COCH₂CH₃). MS m/z: 299.2 $[M + H]^+$, 321.2 [M + Na]. Anal. calcd. for $C_{18}H_{18}O_4$: C 72.47, H 6.08; found: C 72.43, H 6.07.

Compound 7d

Mp 114 °C. IR (cm⁻¹): 3033, 2980, 1735, 1710, 1610, 1550, 1400, 1320. ¹H NMR δ : 1.24 (t, J = 7.0 Hz, 3H, 8- $COCH_2CH_3$), 1.49–1.44 (br m, 1H, 6'-H_{ax}), 1.66–1.51 (br m, 3H, 5'-H₂, 6'-H_{eq}), 2.09–2.03 (br m, 2H, 4'-H₂), 2.38 (d, J =1.0 Hz, 3H, 4- \dot{CH}_3), 3.41 (q, J = 7.0 Hz, 2H, 8- $COCH_2CH_3$), 3.89 (br s, 1H, 1'-H), 5.63 (br d, J = 9.0 Hz, 1H, 2'-H), 6.00 (br dt, J = 10.0 Hz, 2 Hz, 1H, 3'-H), 6.13 (sharp q, J =1.0 Hz, 1H, 3-H), 7.53 (s, 1H, 5-H), 14.20 (s, 1H, 7-OH). ¹³C NMR δ: 8.29 (1°, 8-COCH₂CH₃), 19.14 (1°, 4-CH₃), 20.57 (2°, C-5'), 25.10 (2°, C-4'), 29.51 (2°, C-6'), 33.92 (3°, C-1'), 38.67 (2°, 8-COCH₂CH₃), 108.47 (4°, C-4a), 110.93 (3°, C-3), 111.15 (4°, C-8), 128.86 (3°, C-2'), 129.34 (3°, C-5), 129.84 (4°, C-6), 131.92 (3°, C-3'), 153.19 (4°, C-4), 153.73 (4°, C-8a), 159.63 (4°, C-2), 164.64 (4°, C-7), 208.00 (4°, 8-COCH₂CH₃). MS-EI (70 eV) m/z: 312 (100, M), 283 (81.8), 258 (39), 229 (13.2), 215 (25.5), 203 (9.1), 187 (10), 128 (10), 115 (10), 91 (8.2), 77 (8.2). Anal. calcd. for C₁₉H₂₀O₄: C 73.06, H 6.45; found: C 73.09, H 6.46.

Compound 7e

Mp 114 °C. IR (cm⁻¹): 3040, 2970, 1730, 1715, 1610, 1550, 1445, 1405, 1310. ¹H NMR δ : 1.05 (t, J = 7.4 Hz, 3H, 8-COCH₂CH₂CH₃), 1.59–1.53 (br m, 1H, 6'-H_{ax}), 1.64–1.60 (br m, 3H, 5'-H₂, 6'-H_{eq}), 1.81 (tq, J = 7.2 Hz, 7.2 Hz, 2H, 8-COCH₂CH₂CH₃), 2.10–2.02 (br m, 2H, 4'-H₂), 3.35 (t, J = 7.0 Hz, 2H, 8-COCH₂CH₂CH₂CH₃), 3.86 (br d, J = 2.6 Hz, 1H, 1'-H), 5.62 (br dd, J = 10.0 Hz, 3.6 Hz, 1H, 2'-H), 5.99 (br dt, J = 10.2 Hz, 3.4 Hz, 1H, 3'-H), 6.25 (br d, J = 9.5 Hz, 1H, 3-H), 7.41 (s, 1H, 5-H), 7.64 (d, J = 9.5 Hz, 1H, 4-H), 14.00 (s, 1H, 7-OH). ¹³C NMR δ : 13.70 (1°, 8-COCH₂CH₂CH₃), 17.95 (2°, 8-COCH₂CH₂CH₃), 20.41 (2°, C-5'), 25.10 (2°, C-4'), 29.37 (2°, C-6'), 33.70 (3°, C-1'), 46.92 (2°, 8-COCH₂CH₂CH₃), 108.79 (4°, C-4a), 110.27 (4°, C-8), 111.88 (3°, C-3), 128.78 (3°, C-2'), 129.93 (3°, C-5), 132.46 (4°, C-6), 132.97 (3°, C-3'), 144.34 (3°, C-4), 154.32 (4°, C-8a), 159.60 (4°, C-2), 165.15 (4°, C-7), 207.28 (4°, 8-

 $COCH_2CH_2CH_3$). MS *m*/*z*: 313.6 [M + H]⁺ Anal. calcd. for $C_{19}H_{20}O_4$: C 73.06, H 6.45; found: C 73.05, H 6.44.

Compound 7f

Mp 89 °C. IR (cm⁻¹): 2958, 1724, 1711, 1603, 1563, 1490, 1448, 1372. ¹H NMR δ : 1.04 (t, J = 7.4 Hz, 3H, 8-COCH₂CH₂CH₃), 1.54–1.50 (br m, 1H, 6'-H_{ax}), 1.68–1.55 (br m, 3H, 5'-H₂, 6'-H_{eq}), 1.80 (tq, J = 7.0 Hz, 7.0 Hz, 2H, 8- $COCH_2CH_2CH_3$), 2.19–2.04 (br m, 2H, 4'-H₂), 2.40 (d, J = 1.0 Hz, 3H, 4-CH₃), 3.34 (t, J = 7.05 Hz, 2H, 8- $COCH_2CH_2CH_3$), 3.90 (br s, 1H, 1'-H), 5.63 (br d, J = 8.1 Hz, 1H, 2'-H), 6.01 (br dt, J = 8.0 Hz, 2.2 Hz, 1H, 3'-H), 6.14 (q, J = 1.0 Hz, 1H, 3-H), 7.54 (sharp s, 1H, 5-H), 14.17 (s, 1H, 7-OH). ¹³C NMR δ: 13.67 (1°, 8-COCH₂CH₂CH₃), 18.02 (2°, 8-COCH₂CH₂CH₃), 19.10 (1°, 4-CH₃), 20.60 (2°, C-5'), 25.12 (2°, C-4'), 29.54 (2°, C-6'), 47.04 (2°, 8-COCH₂CH₂CH₃), 108.94 (3°, C-1'), 108.95 (4°, C-4a), 111.00 (3°, C-3), 111.17 (4°, C-8), 128.91 (3°, C-2'), 129.36 (3°, C-5), 129.86 (3°, C-3'), 131.93 (4°, C-6), 153.09 (4°, C-4), 153.71 (4°, C-8a), 159.74 (4°, C-2), 164.71 (4°, C-7), 207.60 (4°, 8-COCH₂CH₂CH₃). MS *m/z*: 327.3 [M + H]⁺. Anal. calcd. for C₂₀H₂₂O₄: C 73.60, H 6.79; found: C 73.63, H 6.77.

Compound 7g

Mp 138 °C. IR (cm⁻¹): 3060, 2950, 1730, 1680, 1565, 1440, 1400, 1340. ¹H NMR δ : 1.67–1.54 (m, 3H, 5'-H₂, 6'-H_{ax}), 2.13–2.05 (br m, 3H, 6'-H_{eq}, 4'-H₂), 3.93 (br s, 1H, 1'-H), 5.69 (br d, J = 9.8 Hz, 1H, 2'-H), 6.04 (br dt, J = 10.1 Hz, 2.1 Hz, 1H, 3'-H), 6.16 (br d, J = 9.5 Hz, 1H, 3-H), 7.46 (t, J = 7.4 Hz, 2H, 3''-H and 5''-H), 7.46 (s, 1H, 5-H), 7.61 (br t, J = 7.3 Hz, 1H, 4''-H), 7.62 (d, J = 9.3 Hz, 1H, 4-H), 7.68 (br d, J = 7.3 Hz, 2H, 2''-H and 6''-H), 11.64 (s, 1H, 7-OH). MS *m*/*z*: 347.4 [M + H]⁺. Anal. calcd. for C₂₂H₁₈O₄: C 76.29, H 5.24; found: C 76.33, H 5.22.

Compound 7h

Mp 175 °C. IR (cm⁻¹): 3444, 2926, 1735, 1685, 1617, 1560, 1498, 1449, 1399. ¹H NMR δ : 1.84–1.62 (br m, 3H, 5'-H₂, 6'-H_{ax}), 2.29–2.15 (br m, 3H, 6'-H_{eq}, 4'-H₂), 2.43 (d, J = 1.0 Hz, 3H, 4-CH₃), 3.97 (br s, 1H, 1'-H), 5.73 (br d, J = 10.0 Hz, 1H, 2'-H), 6.07 (br d, J = 10.0 Hz, 1H, 3'-H), 6.16 (q, J = 1.0 Hz, 1H, 3-H), 7.48 (t, J = 7.4 Hz, 2H, 3''-H and 5''-H), 7.59 (s, 1H, 5-H), 7.61 (br t, J = 7.3 Hz, 1H, 4''-H), 7.70 (br d, J = 7.3 Hz, 2H, 2''-H and 6''-H), 11.39 (s, 1H, 7-OH). MS-EI (70 eV) *m*/*z*: 360 (100, M), 339 (12.7), 332 (14.1), 317 (10.9), 306 (22.7), 279 (13.6), 263 (63.6), 215 (8.2), 165 (8.2), 115 (10.4), 105 (38.2), 77 (34.1) Anal. calcd. for C₂₃H₂₀O₄: C 76.65, H 5.59; found: C 76.63, H 5.61.

Acknowledgement

Sincere thanks are accorded to the Department of Chemistry, J.U. for IR spectra, CAS Instrumentation Centre, Department of Chemistry, C.U. for various NMR spectra, Indian Institute of Chemical Biology, Kolkata 700032 for mass spectral data, and Indian Association for the Cultivation of Science, Kolkata 700032 for elemental analyses.

References

- (a) R.D.H. Murray. In Fortschritte der Chem. Org. Naturstoffe. Vol. 35. Edited by W. Herz, G.W. Kirby, and W.C. Steiglich. Springer-Verlag, Wien, Austria. 1978. p. 199; (b) R.D.H. Murray, J. Mendez, and S.A. Brown. In The natural coumarins, occurrence, chemistry and biochemistry. Wiley, New York. 1982; (c) R.D.H. Murray. In Fortschritte der Chem. Org. Naturstoffe. Vol. 58. Edited by W. Herz, G.W. Kirby, and W.C. Steiglich. Springer-Verlag, Wien, Austria. 1991. p. 83.
- 2. A.I. Gray and P.G. Waterman. Phytochemistry, 17, 845 (1975).
- 3. E. Späth. Ber. Deutsch. Chem. Ges. 70A, 83, (1937).
- (a) J.R. Johnson. In Organic reactions. Vol. 1. Edited by R. Adams. Wiley, London, UK. 1942. p. 210; (b) S. Sethna and R. Phadke. In Organic reactions. Vol. 7. Edited by R. Adams. Wiley, London. 1953; (c) G. Jones. In Organic reactions. Vol. 15. Edited by A.C. Cope. Wiley, London. 1967. p. 204.
- 5. J.A. Joule and K. Mills. *In* Heterocyclic chemistry. Blackwell Publishing, New York. 2000. p. 181.
- (a) H. Cairns, D. Cox, K.J. Gould, A.H. Ingall, and J.L. Suschitzky. J. Med. Chem. 28, 1832 (1958); (b) S.R. Paraskar and P.H. Ladwa. Indian J. Chem. 22B, 829 (1983).
- 7. S. Guchi and N. Utsugi. J. Pharm. Soc. Jpn. 73, 1292 (1953).
- E.J. Morris. Eur. Pat. Appl. EP 95-316. 30 Nov 1983. Chem. Abstr. 100, 174665u (1984).
- H. Nakayma, M. Ishikura, Y. Veda, K. Imai, M.Terajima, and A. Suzui. Jpn. Kokai Tokkoyo Koho JP03 48-674[91-48-6741]. 01 Mar 1991. Chem. Abstr. 115, 158968z (1991).
- M.M. Badran, A.K. El-Ansari, and S. El-Meligie. Egypt. J. Pharm. Sci. 30, 379 (1989).
- (a) L.N. Dutta, N.C. Sinha, and A.K. Sarkar. Indian J. Chem.
 30B, 1112, (1991); (b) L.N. Dutta, N.C. Sinha, and A.K. Sarkar. Indian J. Chem, **27B**, 801 (1988).
- (*a*) L.N. Dutta, M. Bhattacharyya, and A.K. Sarkar. Can. J. Chem. **73**, 1556 (1995); (*b*) L.N. Dutta and M. Bhattacharyya. J. Indian Chem. Soc. **80**, 953 (2003).
- 13. L.N. Dutta and P.K. De. J. Indian Chem. Soc. 75, 684 (1998).
- (*a*) R.D.H. Murray, M.M. Ballantyne, and K.P. Mathai. Tetrahedron Lett. **11**, 243 (1970); (*b*) R.D.H. Murray, M.M. Ballantyne, T.C. Hogg, and P.H. McCabe. Tetrahedron, **31**, 2960 (1975).
- (*a*) V.K. Ahluwalia, R.P. Singh, and S. Bala. Tetrahedron Lett.
 23, 2049 (1982); (*b*) V.K. Ahluwalia, C. Prakash, and R. Gupta. Synthesis, 48, 1 (1980).
- S.K. Ghantwal and S.D. Samant. Indian J. Chem. 38B, 1242 (1999).
- (a) K.C. Majumdar, A.T. Khan, and D.P. Das. Synth. Commun. **19**, 917 (1989); (b) K.C. Majumdar, A.T. Khan, A.K. Gupta, and K. Dey. Synth. Commun. **20**, 1249 (1990); (c) K.C. Majumdar and P. Chatterjee. Synth. Commun. **28**, 3633 (1998).
- 18. D.J. Clarke and R.S. Robinson. Tetrahedron, 58, 2831 (2002).
- S.K. Chattopadhyay, S. Maity, and S. Panja. Tetrahedron Lett. 43, 7781 (2002).
- K.C. Majumdar, P.K. Basu, and B. Roy. Synth. Commun. 33, 3621 (2003).
- A. Gerecs. In Friedel–Crafts and related reactions. Part I. Vol. 3. Edited by G.A. Olah. Wiley, New York. 1964. p. 499.
- 22. A. Patra, A.K. Mukhopadhyay, and A.K. Mitra. Indian J. Chem. **25B**, 1167 (1986).
- 23. G.C. Levy, R.L. Litcher, and G.L. Nelson. *In* Carbon-13 nuclear magnetic resonance for Organic Chemists. 2nd ed. Wiley, New York. 1980. p. 9.