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Abstract: N-Protected tropenone derivatives 3, prepared from the
respective pyrroles 5 and tetrabromoacetone (6), were used as start-
ing materials for desymmetrization by hydroboration of the C-C
double bond. Hydroboration of 3a with (-)-(Ipc),BH followed by
oxidation, however, gave the desired 6-hydroxylated product 4a
only in low yield due to byproduct formation. After acetalization of
the carbony! group in 3, the corresponding acetal s 8 were desymme-
trized with (Ipc),BH and oxidative workup to chiral alcohols 11 in
good yields with excellent enantiomeric excesses in most cases.
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Tropane akaloids represent a class of naturally occurring
compounds which have been intensively studied due to
their variety of pharmacological activity.! Among the
most prominent derivatives are atropine, cocaine and sco-
polamine, and well-known pharmaceuticals such as atro-
vent® and buscopan® are chemically related to the natural
products atropine and scopolamine. The synthesis of
tropane derivatives relied mostly on derivatization of the
natural compounds, e.g., scopolamine.? In contrast, de-
symmetrization of C.-symmetrical precursorssuchas1 or
3 have been only rarely used. One important example is
the enantioselective deprotonation and subsequent aldol
reaction of tropinone 1 developed by Simpkins using a
chiral lithium amide base as the key step (Scheme 1).3

We were interested to investigate if tropenone 3 could be
desymmetrized to the chiral alcohol 4 by using enantio-
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selective hydroboration. Up to now hydroboration has
been utilized for desymmetrization purposes only in one
case. Marchionni and Vogel realized the asymmetric syn-
thesis of complex tricyclic polypropanoates in this way.*
Thus, it was tempting to investigate desymmetrization via
hydroboration for meso alkaloids. The preliminary results
towards this goal are reported in this paper.

As shown in Scheme 2, N-protected tropenones 3 were
prepared via [4+3] cycloaddition from pyrroles 5 and
tetrabromoacetone (6).> The required oxyallyl cation was
generated from 6 following a methodology developed by
Mann.® In order to improve the yields, benzene was re-
placed by toluene as the solvent, and a twofold excess of
the oxyallyl component 6 was applied. This modification
resulted in decreased reaction temperatures (from 0 °C to
—12 °C). Derivatives 3a— were isolated in moderate
yields of 40-60%.

In aninitial attempt functionalization of the double bond
by hydroboration was investigated preliminary with the
tropenone derivative 3a (Scheme 2). However, hydrobo-
ration of carbamate-protected 3a with (—)-diisopino-
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campheylborane (Ipc),BH and subsequent oxidation with
H,0, in MeOH/NaOH’ afforded a mixture of the desired
alcohol 4a in only 9% yield, diastereomeric diols 7a as
major products (endo/exo = 96:4), and 18% of unreacted
starting material 3a. In contrast to Molander’s experi-
ments on acyclic B,y-unsaturated ketones® a hydrobora-
tion/intramolecul ar reduction sequence leading to the diol
7aisnot possiblefor steric reasons. However, an intermo-
lecular pathway might be conceivable, because Molander
demonstrated that alkenes react much faster with dialkyl-
boranes than ketones. The major diastereomer of 7a could
be separated from the minor one by recrystallization from
CHCI;, and after derivatization with (S)-(+)-Mosher’s
reagent, an enantiomeric excess of >96% was determined
for endo-7a by NMR spectroscopy.

To avoid the formation of byproducts 7, the carbonyl
group in 3 was protected prior to hydroboration. As out-
lined in Scheme 3, two different protection strategies, i.e.
acetalization and reduction/silylation were used. The ace-
talization of compound 3a with ethylene glycol in the
presence of catalytic amounts of p-TsOH in boiling ben-
zene under Dean—Stark conditions was accompanied by
side-reactions, giving the acetal 8a only in 17% yield.
Fortunately, clean acetalization of 3a—c was achieved
with pyridinium p-toluenesulfonate (PPTS) as a catalyst
in boiling benzene. Acetals 8a, 8b° and 8c were obtained
in high yields of 84-93%.

The reduction/silylation approach was studied for com-
pound 3b (Scheme 3). Reduction of ketone 3b with
NaBH, in MeOH*° and subsequent silylation with tert-bu-
tyldimethylchlorosilane (TBSCI) and imidazole gave the
derivatives 9b and 10b in 85% yield in a ratio of
9b:10b = 64:36, which could be separated by chromato-
graphy.

The protected tropenone derivatives 8a—c, 9b and 10b
were submitted to hydroboration with (Ipc),BH in THF at
—28 °C as depicted in Scheme 4. After oxidative hydroly-
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sisalcohols 11a, 11b*! and 11c and 12b, 13b were acces-
siblein good yields (72—96%). In the case of 11a and 11b
the ee-values were determined by GC on a chiral station-
ary phase.*? Compounds 11c, 12b and 13b were deriva-
tized with Mosher’s reagent,’® and their enantiomeric
excesses were determined by NMR spectroscopy and ad-
ditionally by GC of the diastereomers.2* The carbamate-
and Z-protected tropenone derivatives 11a,b and 12b gave
very high enantiosel ectivities (>99% ee). The enantiomer-
ic excess of compound 13b was somewhat decreased to
81%. In contrast, N-tosyl-protected tropenone 1ic dis-
played only very low enantiosel ectivity (21% ee). Apply-
ing Mosher's method, the absolute configuration of
alcohols 11-13 was determined to be (S).2% In case of 11c,
X-ray diffraction confirmed this assignment.™®

The decreased enantioselectivity in the case of the N-to-
syl-protected tropenone 8c is probably caused by steric
hindrance of the phenyl ring of the tosyl group, being ar-
ranged directly above the double bond, as can be seen
from the X-ray crystal structure of 8c (Figure 1).°

Figurel ORTEP view of the N-tosyl protected tropenone derivati-
ve 8c
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Thus, during attack of the bulky borane reagent from the
exo-face interactions with the tosyl group result in a de-
creased energy difference between diastereomeric transi-
tion states (i.e. attack at the Re carbon versus S carbon of
the double bond). It should be noted that the observed
conformation of the N-tosyl group in 8c is hot merely a
crystal packing effect, but it is also present in solution, as
evidenced by the significant high field shift of the olefinic
signasinthe'H NMR spectrum of the tosyl derivative 8c
(6 = 5.68 ppm) compared to the carbamate- and Z-protect-
ed compounds 8a (6 = 6.15 ppm) and 8b (6 = 6.09-6.22

ppm).
In conclusion, desymmetrization of tropenones using (-)-

diisopinocampheylborane followed by oxidation gave
convenient access to chiral tropinone derivatives.
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(-)-N-Benzyloxycar bonyl-6-exo-hydr oxy-{spir o-8-
azabicyclo[3.2.1]octane-3,2’-[1,3]dioxolane} (11b). A
solution of 8b (5.08 mg, 16.88 mmol) in absolute THF (8
mL) was added at —28 °C to crystalline (Ipc),BH (7.4 g,
25.96 mmol), and the reaction mixture stirred at —28 °C for
18 h. After hydrolysis of excess borane with MeOH (2.3
mL), a3 N NaOH solution (10 mL) and 30% H,0O, (10.7 mL)
were added and the reaction mixture heated to 55 °C with
vigorous stirring. EtOAc (100 mL) was added and the
solution washed with a NaCl solution (50 mL). The aqueous
layer was extracted with EtOAc (3 x 50 mL). The combined
organic layers were dried (Na,SO,) and concentrated.
Purification by flash chromatography on SiO, (EtOAc)
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(s,2H, CH,Ar), 7.28-7.37 (m, 5 H, Ar) ppm. B*CNMR (125
MHz, CDCl,): 8 = 38.1 (br, C-2), 39.7 (br, C-4), 40.3 (br, C-
7),53.3(CH,Ar), 62.3 (C-1), 63.4, 64.5 (OCH,), 67.0 (C-5),
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