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Asymmetric addition of arylboroxines to p-alkoxyacrylate esters
proceeded in the presence of a rhodium complex coordinated with
a chiral diene ligand to give high yields of -alkoxy-p-arylcarboxylic
acid esters with very high enantioselectivity.

Rhodium-catalyzed asymmetric addition of organoboron
reagents to o,B-unsaturated carbonyl compounds is a powerful
tool to construct a stereogenic carbon center,' because a wide
variety of aryl- and alkenyl groups can be introduced into the
B-position in high yields and high enantioselectivity.> Most
studies so far have focused on the addition to o,B-unsaturated
carbonyl compounds substituted with alkyl or aryl groups at
the B-position, while the addition to those substituted with
heteroatoms has been less developed.> The rhodium-catalyzed
addition of arylboronic acids to o,f-unsaturated carbonyl
compounds proceeds via an oxa-n-allylrhodium intermediate,
which then undergoes hydrolysis to give a hydroarylation
product T (Scheme 1).° On the other hand, in the addition
to o,B-unsaturated carbonyl compounds bearing a strongly
electronegative atom such as nitrogen or oxygen at the -position,
B-elimination from the oxa-m-allylrhodium intermediate giving a
substitution product II becomes a problem as a competitive
reaction,” and the preferential hydrolysis of the oxa-m-allyl-
rhodium intermediate is important for the selective formation
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Scheme 1 Rhodium-catalyzed addition to ao,B-unsaturated carbonyl
compounds.
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Scheme 2 Asymmetric addition to B-phthaliminoacrylate esters.

of the addition product. Recently, we reported rhodium-catalyzed
asymmetric addition of arylboronic acids to B-phthaliminoacry-
late esters (Scheme 2). The reaction was successfully carried out
by use of a hydroxorhodium/chiral diene catalyst giving B-aryl-
-N-phthaloylamino acid esters in high yields with high enantio-
selectivity, while elimination of phthalimide was observed in
the reaction with a bisphosphine ligand (binap) or KOH as
a base.®

Chiral B-hydroxy- and B-alkoxy carboxylic acid derivatives
are important structural components in natural products and
pharmaceuticals, and a number of methods to access -alkoxy
carbonyl compounds in a stereoselective manner have been
reported in the aldol reaction® and the oxa-Michael reaction.'®!!
Our straightforward approach to synthesize chiral B-alkoxy
carboxylic acid derivatives is focusing on the rhodium-catalyzed
asymmetric conjugate arylation of B-alkoxyacrylate esters. Here
we report the asymmetric addition of arylboroxines to -alkoxy-
acrylate esters, which are readily available from propiolic acid
esters and alcohols.”> The reaction giving chiral B-alkoxy-
B-arylcarboxylic acid esters with extremely high enantioselec-
tivity is realized by use of a rhodium/chiral diene catalyst.

We found that the catalytic activity of a rhodium complex
for the reaction of B-alkoxyacrylate esters is higher with a
diene ligand than with a bisphosphine ligand (Table 1). Thus,
treatment of fert-butyl 3-isopropoxypropenoate (la) with
phenylboroxine (2m) (2.5 equiv. of B) in the presence of
[Rh(OH)((R)-binap),® (3 mol% of Rh) in 1,4-dioxane/H,O
(9:1) at 30 °C for 3 h, which is one of the best catalytic
conditions in the asymmetric addition of arylboronic acids
to o,B-unsaturated carbonyl compounds,® gave the addition
product 3am in 6% yield, where most of the phenylboroxine
(2m) was consumed to give benzene by protodeborylation
(entry 1). The yield of the addition product 3am was low
(5%) even in the reaction in the presence of KOH (40 mol%)
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Table 1 Rhodium-catalyzed addition of phenylboroxine (2m) to 1¢

[Rh(OH)L]> e} Ph
)‘k/\ )\ +(PhBO); ———(—— (3 mol% Rh) MOJ\

solvent RO
am  30°C,3h 3
1a:R = t Bu (2.5 equiv. B) [¢] Ph
1b: R = Me )U\
1c:R = 2,6—M6206H3 RO Ph
1d: R = 2,6-(Me0),C¢H3 4

L2: (S8,S)-Fc-tfb*; R' = ferrocenyl
L3: (R,R)-Ph-tfb*; R' = Ph
L4: (R,R)-Bn-tfb*; R' = CH,Ph

L1: (R)-binap

Entry 1 L and conditions Conv.” (%) 3° (%)  4° (%) ec® (%)

d

1 la L1 A 8 6 (3am) <l  —

2¢ 1a L1 A 19 5@am) 26/ —1

3 la cod A 45 27 (3am) 12 —

4 la cod B 25 18 (3am) 3 —

5 la cod C 38 30 (3am) 2 —

6 la L2 C 92 82 (3am) 10 98

7 1b L2 C 89 86 (3bm) 2 >99.5
8 1c L2 C 100 90 (3cm) 10 >99.5
9 1d L2 C 100 97 (3dm) 3 >99.5
10 1d L3 C 91 78 (3dm) 11 99.2
11 1d L4 C 87 77 3dm) 9 94

12 1dL1 C <1 <1 (3dm) 0 —d
13 1d L2 C 100 96 (3dm) 3 >99.5

“ Reaction conditions: 1 (0.200 mmol), (PhBO); (2m) (0.167 mmol),
[Rh(OH)L], (3 mol% of Rh) at 30 °C for 3 h. Conditions A: the
reaction in dioxane/H>O (9:1; 0.8 mL). Conditions B: the reaction
in CH,Cl,/MeOH (1:1; 0.8 mL). Conditions C: the reaction in
CH,Cl,/MeOH (1:1; 0.8 mL) in the presence of Et;N (0.20 mmol).
5 A conversion of 1 and yields of 3 and 4 were determined by
"H NMR. ¢ The ee was determined by HPLC analysis with chiral
stationary phase columns. ¢ Not determined. ¢ Performed in the pre-
sence of KOH (40 mol%) at 60 °C./ The value in parentheses is an
yield of z-butyl cinnamate. ¢ PhB(OH), (0.50 mmol) was used instead
of (PhBO);; cod: cycloocta-1,5-diene.

at 60 °C (entry 2). The B-alkoxyacrylate ester was prone to
eliminate the alkoxy group during the present rhodium-
catalyzed reaction to give tert-butyl cinnamate (6%) and
tert-butyl 3,3-diphenylpropanoate (4am: 2%), which is the
phenylation product of tert-butyl cinnamate formed by
elimination of the isopropoxy group. On the other hand, the
use of [Rh(OH)(cod)], gave 27% yield of 3am and 12% of 4am
(entry 3). The selectivity giving the addition product 3am
was higher in the solvent system of CH,Cl,/MeOH (1:1)
(3am/4am = 18%/3%) (entry 4), and the addition of triethyl-
amine (1.0 equiv.) increased the chemoselectivity (3am/4am =
30%/2%) (entry 5). Chiral diene ligands'*!'* based on
tetrafluorobenzobarrelenes (tfb)'® displayed a high catalytic
activity and enantioselectivity. Thus, the reaction of 1a in the
presence of [Rh(OH)((S,S)-Fc-tfb* (L2))], (Fc; ferrocenyl)!>
(3 mol% of Rh) gave the 1,4-addition product 3am in 82%
yield, whose ee was 98% (entry 6). The formation of 10%
yield of the diphenylation product 4am was also observed. The
ester group of 1 had a significant influence on both the
reactivity and selectivity (entries 7-9). The addition to
methyl ester 1b gave the addition product 3bm in 86% yield

with over 99.5% ee and a small amount (2%) of methyl
3,3-diphenylpropanoate (4bm) (entry 7). The reactions of
2,6-dimethylphenyl ester 1¢ and 2,6-dimethoxyphenyl ester
1d proceeded with complete conversion to give the corres-
ponding addition products 3em and 3dm in 90 and 97% yield,
respectively (entries 8 and 9), where the chemoselectivity was
high in the reaction of 1d (3dm/4dm = 97%/3%) (entry 9).
The enantioselectivities observed for 3em and 3dm were
extremely high (>99.5% ee). The reaction was also catalyzed
by rhodium complexes coordinated with Ph-tfb* (L3) or Bn-tfb*
(L4), but their catalytic activities and stereoselectivities were lower
than those observed with the ferrocene-substituted diene L2
(entries 10 and 11). The reaction was not catalyzed at all by
[Rh(OH)(binap (L1))], under the same reaction conditions (entry
12). Phenylboronic acid can be used as well as phenylboroxine
(2m) to give 3dm with the same high chemo- and enantioselec-
tivity (entry 13). The absolute configuration of 3dm obtained with
(S,S)-L2 was assigned to be S by analogy with (S)-3im (vide infia).

The present catalytic system can be applied to the asym-
metric addition of several arylboroxines to B-alkoxyacrylates
with all extremely high enantioselectivity (Table 2). Aryl
groups (2m-2t) having a variety of substituents were success-
fully introduced at the B position of the B-isopropoxyacrylate
1d giving the corresponding addition products (3dm-3dt) in
high yields with over 99.5% ee (entries 1-8). The addition of
phenylboroxine (2m) to B-alkoxyacrylates where the alkoxy
groups are cyclohexyloxy (le), ethoxy (1f), methoxy (1g),
benzyloxy (1h), and p-methoxybenzyloxy (1i) gave the corres-
ponding addition products 3em-3im with over 99.5% ee
(entries 9-13).1°

The B-alkoxy-B-arylcarboxylic acid esters obtained here
with almost perfect enantioselectivity can be converted into

Table 2 Asymmetric addition of arylboroxine 2 to 1¢

0 [Rh(OH)(L2)]> o] Ar
(3 mol% Rh) M
ROMOR' * (AWBOk “EtN(10equiv) ro OR'
1 2 CH20|2/MSOH 3

R = 2,6-(MeO),CeHs (2.5 equiv. B)3C C: 3

1d: R' = j-Pr 19:R'= Me

1e: R'=cyclohexyl  1h: R' = benzyl

1f. R' = Et 1i: R' = p-methoxybenzyl
Entry 1 Ar (2) Yield” (%) ee’ (%)
1 1d Ph (2m) 95 (3dm) >99.5
2 1d 2-MeCgH, (2n) 91 (3dn) >99.5
3 1d 3-MeC¢Hy (20) 96 (3do) >99.5
4 1d 4-MeCgH, (2p) 94 (3dp) >99.5
54 1d 4-MeOCgH, (2q) 91 (3dq) >99.5
6° 1d 4-CIC¢H4 (2r) 90 (3dr) >99.5
7 1d 4-CF3CgH, (2s) 68 (3ds) >99.5
8 1d 2-Naphthyl (2t) 90 (3dt) >99.5
9 le Ph (2m) 92 (3em) >99.5
10 1f Ph (2m) 87 (3fm) >99.5
11 1g Ph (2m) 75 (3gm) >99.5
12 1h Ph (2m) 88 (3hm) >99.5
13 1i Ph (2m) 88 (3im) >99.5

“ Reaction conditions: 1 (0.200 mmol), (PhBO); (2) (0.167 mmol),
[Rh(OH)(L2)]; (3 mol% of Rh), Et;N (0.20 mmol), MeOH (0.40 mL),
CH,Cl, (0.40 mL) at 30 °C for 3 h. ? Isolated yield of 3. ¢ Determined
by HPLC analysis with chiral stationary phase columns. ¢ Performed
with (4-MeOCgH,4BO)5 (0.200 mmol). ¢ For 12 h.” For 24 h.
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some functionalized compounds without loss of their enantio-
meric purity (eqn (1)—(3)). Thus, basic hydrolysis of 3dm gave
the corresponding B-isopropoxycarboxylic acid 5 in 86%
yield (eqn (1)), and the reduction of 3dm by treatment with
(i-Bu),AlH gave alcohol 6 in 96% yield (eqn (2)). Treatment
of B-p-methoxybenzyloxycarboxylic acid ester 3im with 2,3-
dichloro-5,6-dicyano-p-benzoquinone (DDQ), followed by
basic hydrolysis gave B-hydroxycarboxylic acid (S)-8, whose
absolute configuration was determined by comparison of its
specific rotation with the value reported previously (eqn (3)).!”

R
R = 2,6-(MeO),CgHs
3dm (>99.5% ee)

o Ph
M /K . 6.5 h then H*
0 0

o Ph
LIOH-H,0 (3 equiv.) J\/'\ J\
THF/MeOHH,0  Ho o ™

5: 86%, >99.5% ee

(FBu),AIH (2.2 equiv.) /\/F'i )\(2)
CH,Cl, HO 0

o . +
0 °C, 15 min; then H 6: 96%, >99.5% ee

o  FBh O Ph
M DDQ (1.5 equiv.) M
. _ 5 3
RO OR CH,Clo/H,0 RO on @
R = 2,6-(Me0),CeH
R At mash 7: 90%, >99.5% ee
3im (>99.5% ee)
O Ph
LiOH-H,0 (3 equiv.) J\/L
SPTTTB 0 equv)
THF/MeOH/H,0 HO OH
rt, 3 h; then H* (S)-8: 77% [a]8° —20 (c 0.50, MeOH)

In summary, we have developed a rhodium-catalyzed asym-

metric addition of arylboroxines to B-alkoxyacrylate esters
giving B-alkoxy-B-arylcarboxylic acid esters in high yields with
very high enantioselectivity, which was realized by use of a
rhodium/chiral diene catalyst.
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