Cite this: Chem. Commun., 2011, 47, 10488-10490

www.rsc.org/chemcomm

COMMUNICATION

Rhodium-catalyzed asymmetric addition of arylboroxines to β -alkoxyacrylate esters \dagger

Takahiro Nishimura,* Atsuyuki Kasai, Makoto Nagaosa and Tamio Hayashi*

Received 11th July 2011, Accepted 29th July 2011 DOI: 10.1039/c1cc14150c

Asymmetric addition of arylboroxines to β -alkoxyacrylate esters proceeded in the presence of a rhodium complex coordinated with a chiral diene ligand to give high yields of β -alkoxy- β -arylcarboxylic acid esters with very high enantioselectivity.

Rhodium-catalyzed asymmetric addition of organoboron reagents to α . β -unsaturated carbonyl compounds is a powerful tool to construct a stereogenic carbon center,¹ because a wide variety of aryl- and alkenyl groups can be introduced into the β-position in high yields and high enantioselectivity.² Most studies so far have focused on the addition to α,β -unsaturated carbonyl compounds substituted with alkyl or aryl groups at the β -position, while the addition to those substituted with heteroatoms has been less developed.3-5 The rhodium-catalyzed addition of arylboronic acids to α,β -unsaturated carbonyl compounds proceeds via an $0xa-\pi$ -allylrhodium intermediate, which then undergoes hydrolysis to give a hydroarylation product I (Scheme 1).⁶ On the other hand, in the addition to α,β -unsaturated carbonyl compounds bearing a strongly electronegative atom such as nitrogen or oxygen at the β -position, β -elimination from the oxa- π -allylrhodium intermediate giving a substitution product II becomes a problem as a competitive reaction,⁷ and the preferential hydrolysis of the oxa- π -allylrhodium intermediate is important for the selective formation

Scheme 1 Rhodium-catalyzed addition to α , β -unsaturated carbonyl compounds.

Department of Chemistry, Graduate School of Science,

Scheme 2 Asymmetric addition to β -phthaliminoacrylate esters.

of the addition product. Recently, we reported rhodium-catalyzed asymmetric addition of arylboronic acids to β -phthaliminoacrylate esters (Scheme 2). The reaction was successfully carried out by use of a hydroxorhodium/chiral diene catalyst giving β -aryl- β -*N*-phthaloylamino acid esters in high yields with high enantioselectivity, while elimination of phthalimide was observed in the reaction with a bisphosphine ligand (binap) or KOH as a base.⁸

Chiral β -hydroxy- and β -alkoxy carboxylic acid derivatives are important structural components in natural products and pharmaceuticals, and a number of methods to access β -alkoxy carbonyl compounds in a stereoselective manner have been reported in the aldol reaction⁹ and the oxa-Michael reaction.^{10,11} Our straightforward approach to synthesize chiral β -alkoxy carboxylic acid derivatives is focusing on the rhodium-catalyzed asymmetric conjugate arylation of β -alkoxyacrylate esters. Here we report the asymmetric addition of arylboroxines to β -alkoxyacrylate esters, which are readily available from propiolic acid esters and alcohols.¹² The reaction giving chiral β -alkoxy- β -arylcarboxylic acid esters with extremely high enantioselectivity is realized by use of a rhodium/chiral diene catalyst.

We found that the catalytic activity of a rhodium complex for the reaction of β -alkoxyacrylate esters is higher with a diene ligand than with a bisphosphine ligand (Table 1). Thus, treatment of *tert*-butyl 3-isopropoxypropenoate (**1a**) with phenylboroxine (**2m**) (2.5 equiv. of B) in the presence of [Rh(OH)((*R*)-binap)]₂⁶ (3 mol% of Rh) in 1,4-dioxane/H₂O (9:1) at 30 °C for 3 h, which is one of the best catalytic conditions in the asymmetric addition of arylboronic acids to α , β -unsaturated carbonyl compounds,⁶ gave the addition product **3am** in 6% yield, where most of the phenylboroxine (**2m**) was consumed to give benzene by protodeborylation (entry 1). The yield of the addition product **3am** was low (5%) even in the reaction in the presence of KOH (40 mol%)

Kyoto University, Sakyo, Kyoto 606-8502, Japan.

E-mail: tnishi@kuchem.kyoto-u.ac.jp, thayashi@kuchem.kyoto-u.ac.jp; Fax: +81 75 753 3988; Tel: +81 75 753 3983

[†] Electronic supplementary information (ESI) available: Experimental procedures and compound characterization data. See DOI: 10.1039/ c1cc14150c

Table 1Rhodium-catalyzed addition of phenylboroxine (2m) to 1^a

1	1a	L1	А	8	6 (3am)	<1	d
2^e	1a	L1	Α	19	5 (3am)	$2(6)^{f}$	d
3	1a	cod	А	45	27 (3am)	12	
4	1a	cod	В	25	18 (3am)	3	
5	1a	cod	С	38	30 (3am)	2	
6	1a	L2	С	92	82 (3am)	10	98
7	1b	L2	С	89	86 (3bm)	2	>99.5
8	1c	L2	С	100	90 (3cm)	10	>99.5
9	1d	L2	С	100	97 (3dm)	3	>99.5
10	1d	L3	С	91	78 (3dm)	11	99.2
11	1d	L4	С	87	77 (3dm)	9	94
12	1d	L1	С	<1	<1 (3dm)	0	d
13 ^g	1d	L2	С	100	96 (3dm)	3	>99.5

^{*a*} Reaction conditions: **1** (0.200 mmol), (PhBO)₃ (**2m**) (0.167 mmol), [Rh(OH)L]₂ (3 mol% of Rh) at 30 °C for 3 h. Conditions A: the reaction in dioxane/H₂O (9:1; 0.8 mL). Conditions B: the reaction in CH₂Cl₂/MeOH (1:1; 0.8 mL). Conditions C: the reaction in CH₂Cl₂/MeOH (1:1; 0.8 mL) in the presence of Et₃N (0.20 mmol). ^{*b*} A conversion of **1** and yields of **3** and **4** were determined by ¹H NMR. ^{*c*} The ee was determined. ^{*b*} Performed in the presence of KOH (40 mol%) at 60 °C. ^{*f*} The value in parentheses is an yield of *t*-butyl cinnamate. ^{*g*} PhB(OH)₂ (0.50 mmol) was used instead of (PhBO)₃; cod: cycloocta-1,5-diene.

at 60 °C (entry 2). The β -alkoxyacrylate ester was prone to eliminate the alkoxy group during the present rhodiumcatalyzed reaction to give tert-butyl cinnamate (6%) and tert-butyl 3,3-diphenylpropanoate (4am: 2%), which is the phenylation product of *tert*-butyl cinnamate formed by elimination of the isopropoxy group. On the other hand, the use of [Rh(OH)(cod)]₂ gave 27% yield of 3am and 12% of 4am (entry 3). The selectivity giving the addition product 3am was higher in the solvent system of $CH_2Cl_2/MeOH$ (1:1) (3am/4am = 18%/3%) (entry 4), and the addition of triethylamine (1.0 equiv.) increased the chemoselectivity (3am/4am =30%/2%) (entry 5). Chiral diene ligands^{13,14} based on tetrafluorobenzobarrelenes (tfb)¹⁵ displayed a high catalytic activity and enantioselectivity. Thus, the reaction of 1a in the presence of $[Rh(OH)((S,S)-Fc-tfb^* (L2))]_2$ (Fc; ferrocenyl)^{15a} (3 mol% of Rh) gave the 1,4-addition product 3am in 82% yield, whose ee was 98% (entry 6). The formation of 10% yield of the diphenylation product 4am was also observed. The ester group of 1 had a significant influence on both the reactivity and selectivity (entries 7-9). The addition to methyl ester 1b gave the addition product 3bm in 86% yield

with over 99.5% ee and a small amount (2%) of methyl 3,3-diphenylpropanoate (4bm) (entry 7). The reactions of 2,6-dimethylphenyl ester 1c and 2,6-dimethoxyphenyl ester 1d proceeded with complete conversion to give the corresponding addition products 3cm and 3dm in 90 and 97% yield, respectively (entries 8 and 9), where the chemoselectivity was high in the reaction of 1d (3dm/4dm = 97%/3%) (entry 9). The enantioselectivities observed for 3cm and 3dm were extremely high (>99.5% ee). The reaction was also catalyzed by rhodium complexes coordinated with Ph-tfb* (L3) or Bn-tfb* (I.4), but their catalytic activities and stereoselectivities were lower than those observed with the ferrocene-substituted diene L2 (entries 10 and 11). The reaction was not catalyzed at all by [Rh(OH)(binap (L1))]₂ under the same reaction conditions (entry 12). Phenylboronic acid can be used as well as phenylboroxine (2m) to give 3dm with the same high chemo- and enantioselectivity (entry 13). The absolute configuration of 3dm obtained with (S,S)-L2 was assigned to be S by analogy with (S)-3im (vide infra).

The present catalytic system can be applied to the asymmetric addition of several arylboroxines to β -alkoxyacrylates with all extremely high enantioselectivity (Table 2). Aryl groups (**2m**-**2t**) having a variety of substituents were successfully introduced at the β position of the β -isopropoxyacrylate **1d** giving the corresponding addition products (**3dm**-**3dt**) in high yields with over 99.5% ee (entries 1–8). The addition of phenylboroxine (**2m**) to β -alkoxyacrylates where the alkoxy groups are cyclohexyloxy (**1e**), ethoxy (**1f**), methoxy (**1g**), benzyloxy (**1h**), and *p*-methoxybenzyloxy (**1i**) gave the corresponding addition products **3em**-**3im** with over 99.5% ee (entries 9–13).¹⁶

The β -alkoxy- β -arylcarboxylic acid esters obtained here with almost perfect enantioselectivity can be converted into

Table 2 Asymmetric addition of arylboroxine 2 to 1^a

Entry	1	Ar (2)	$\mathrm{Yield}^{b}\left(\%\right)$	ee^{c} (%)
1	1d	Ph (2m)	95 (3dm)	>99.5
2	1d	$2 - MeC_6H_4$ (2n)	91 (3dn)	>99.5
3	1d	$3-MeC_6H_4$ (20)	96 (3do)	>99.5
4	1d	$4 - MeC_6H_4$ (2p)	94 (3dp)	>99.5
5^d	1d	$4 - MeOC_6H_4$ (2q)	91 (3dq)	>99.5
6 ^e	1d	$4-ClC_6H_4(2r)$	90 (3dr)	>99.5
7 ^f	1d	$4-CF_{3}C_{6}H_{4}$ (2s)	68 (3ds)	>99.5
8	1d	2-Naphthyl (2t)	90 (3dt)	>99.5
9	1e	Ph (2m)	92 (3em)	>99.5
10	1f	Ph (2m)	87 (3fm)	>99.5
11	1g	Ph (2m)	75 (3gm)	>99.5
12	1ĥ	Ph (2m)	88 (3hm)	>99.5
13	1i	Ph (2m)	88 (3im)	>99.5

^{*a*} Reaction conditions: **1** (0.200 mmol), (PhBO)₃ (**2**) (0.167 mmol), [Rh(OH)(**L2**)]₂ (3 mol% of Rh), Et₃N (0.20 mmol), MeOH (0.40 mL), CH₂Cl₂ (0.40 mL) at 30 °C for 3 h. ^{*b*} Isolated yield of **3**. ^{*c*} Determined by HPLC analysis with chiral stationary phase columns. ^{*d*} Performed with (4-MeOC₆H₄BO)₃ (0.200 mmol). ^{*e*} For 12 h. ^{*f*} For 24 h.

some functionalized compounds without loss of their enantiomeric purity (eqn (1)–(3)). Thus, basic hydrolysis of **3dm** gave the corresponding β -isopropoxycarboxylic acid **5** in 86% yield (eqn (1)), and the reduction of **3dm** by treatment with (*i*-Bu)₂AlH gave alcohol **6** in 96% yield (eqn (2)). Treatment of β -*p*-methoxybenzyloxycarboxylic acid ester **3im** with 2,3dichloro-5,6-dicyano-*p*-benzoquinone (DDQ), followed by basic hydrolysis gave β -hydroxycarboxylic acid (*S*)-**8**, whose absolute configuration was determined by comparison of its specific rotation with the value reported previously (eqn (3)).¹⁷

In summary, we have developed a rhodium-catalyzed asymmetric addition of arylboroxines to β -alkoxyacrylate esters giving β -alkoxy- β -arylcarboxylic acid esters in high yields with very high enantioselectivity, which was realized by use of a rhodium/chiral diene catalyst.

Notes and references

- For reviews, see (a) M. P. Sibi and S. Manyem, *Tetrahedron*, 2000, 56, 8033; (b) N. Krause and A. Hoffmann-Röder, *Synthesis*, 2001, 171; (c) K. Fagnou and M. Lautens, *Chem. Rev.*, 2003, 103, 169; (d) T. Hayashi and K. Yamasaki, *Chem. Rev.*, 2003, 103, 2829; (e) S. Darses and J.-P. Genet, *Eur. J. Org. Chem.*, 2003, 4313; (f) J. Christoffers, G. Koripelly, A. Rosiak and M. Rössle, *Synthesis*, 2007, 1279; (g) G. Berthon and T. Hayashi, in *Catalytic Asymmetric Conjugate Reactions*, ed. A. Cordova, Wiley-VCH, Weinheim, 2010, p. 1.
- 2 (a) Y. Takaya, M. Ogasawara, T. Hayashi, M. Sakai and N. Miyaura, J. Am. Chem. Soc., 1998, **120**, 5579; (b) M. Sakai, H. Hayashi and N. Miyaura, Organometallics, 1997, **16**, 4229.
- 3 For examples of metal-catalyzed asymmetric 1,4-addition of organometallic reagents to β-silyl α,β-unsaturated carbonyl compounds, see: (a) R. Shintani, K. Okamoto and T. Hayashi, Org. Lett., 2005, 7, 4757; (b) M. A. Kacprzynski, S. A. Kazane, T. L. May and A. H. Hoveyda, Org. Lett., 2007, 9, 3187.
- 4 For examples of rhodium-catalyzed asymmetric 1,4-addition of organometallic reagents to dihydropyridones and quinolones, see: (a) R. Shintani, N. Tokunaga, H. Doi and T. Hayashi, J. Am. Chem. Soc., 2004, **126**, 6240; (b) R. Shintani, T. Yamagami, T. Kimura and T. Hayashi, Org. Lett., 2005, 7, 5317; (c) X. Zhang, J. Chen, F. Han, L. Cun and J. Liao, Eur. J. Org. Chem., 2011, 1443.
- 5 For examples of rhodium-catalyzed 1,4-addition of organoboron reagents to dihydropyranones and chromenones, see: (a) J. Ramnauth, O. Poulin, S. S. Bratovanov, S. Rakhit and S. P. Maddaford, Org. Lett., 2001, 3, 2571; (b) J. Chen, J. Chen, F. Lang, X. Zhang, L. Cun, J. Zhu, J. Deng and J. Liao, J. Am. Chem. Soc., 2010, 132, 4552.
- 6 T. Hayashi, M. Takahashi, Y. Takaya and M. Ogasawara, J. Am. Chem. Soc., 2002, 124, 5052.

- 7 In most examples of addition of carbon nucleophiles to β-alkoxy-α,β-unsaturated carbonyl compounds, the formation of substitution products or double addition products, which derived from the substitution products, is reported, see: (a) G. A. Molander and H. C. Brown, J. Org. Chem., 1977, 42, 3106; (b) M. G. Gorbunova, I. I. Germ and V. P. Kukhar, J. Fluorine Chem., 1999, 65, 25; (c) M. Bergdahl, M. Eriksson, M. Nilsson and T. Olsson, J. Org. Chem., 1993, 58, 7238; (d) N. Ito and T. Etoh, J. Chem. Soc., Perkin Trans. 1, 1996, 2397; (e) G. Bartoli, M. Bartolacci, M. Bosco, G. Foglia, A. Giuliani, E. Marcantoni, L. Sambri and E. Torregiani, J. Org. Chem., 2003, 68, 4594; (f) W. Wang and T. Ikemoto, Tetrahedron Lett., 2005, 46, 3875; (g) Y. Liu, K. Bakshi, P. Zavalij and M. P. Doyle, Org. Lett., 2010, 12, 4304.
- 8 T. Nishimura, J. Wang, M. Nagaosa, K. Okamoto, R. Shintani, F. Kwong, W. Yu, A. S. C. Chan and T. Hayashi, J. Am. Chem. Soc., 2010, 132, 464.
- 9 For recent reviews of the aldol reaction, see: (a) N. Kumagai, Chem. Pharm. Bull., 2011, 59, 1; (b) J. Li and D. Menche, Synthesis, 2009, 2293; (c) T. Brodmann, M. Lorenz, R. Schäckel, S. Simsek and M. Kalesse, Synlett, 2009, 174; (d) L. M. Geary and P. G. Hultin, Tetrahedron: Asymmetry, 2009, 20, 131; (e) G. Guillena, C. Nájera and D. J. Ramón, Tetrahedron: Asymmetry, 2007, 18, 2249; (f) B. Schetter and R. Mahrwald, Angew. Chem., Int. Ed., 2006, 45, 7506; (g) C. Palono, M. Oiarbide and J. M. García, Chem. Soc. Rev., 2004, 33, 65.
- 10 For a review, see: C. F. Nising and S. Bräse, *Chem. Soc. Rev.*, 2008, 37, 1218.
- 11 For selected examples of straightforward asymmetric synthesis of β-alkoxy carbonyl compounds, see: (a) T. Kano, Y. Tanaka and K. Maruoka, *Tetrahedron*, 2007, 63, 8658; (b) B. Checa, E. Gálvez, R. Parelló, M. Sau, P. Romea, F. Urpí, M. Font-Bardia and X. Solans, *Org. Lett.*, 2009, 11, 2193; (c) A. Cosp, P. Romea, F. Urpí and J. Vilarrasa, *Tetrahedron Lett.*, 2001, 42, 4629.
- 12 M.-J. Fan, G.-Q. Li and Y.-M. Liang, Tetrahedron, 2006, 62, 6782.
- 13 For reviews of chiral diene ligands, see: (a) R. Shintani and T. Hayashi, Aldrichimica Acta, 2009, 42, 31; (b) C. Defieber, H. Grützmacher and E. M. Carreira, Angew. Chem., Int. Ed., 2008, 47, 4482.
- 14 For selected examples, see: (a) T. Hayashi, K. Ueyama, N. Tokunaga and K. Yoshida, J. Am. Chem. Soc., 2003, 125, 11508; (b) Y. Otomaru, K. Okamoto, R. Shintani and T. Hayashi, J. Org. Chem., 2005, 70, 2503; (c) Y. Otomaru, A. Kina, R. Shintani and T. Hayashi, Tetrahedron: Asymmetry, 2005, 16, 1673; (d) K. Okamoto, T. Hayashi and V. H. Rawal, Chem. Commun., 2009, 4815; (e) J.-F. Paquin, C. Defieber, C. R. J. Stephenson and E. M. Carreira, J. Am. Chem. Soc., 2005, 127, 10850; (f) F. Läng, F. Breher, D. Stein and H. Grützmacher, Organometallics, 2005, 24, 2997; (g) S. Helbig, S. Sauer, N. Cramer, S. Laschat, A. Baro and W. Frey, Adv. Synth. Catal., 2007, 349, 2331; (h) Z.-Q. Wang, C.-G. Feng, M.-H. Xu and G.-Q. Lin, J. Am. Chem. Soc., 2007, 129, 5336; (i) T. Noël, K. Vandyck and J. Van der Eycken, Tetrahedron, 2007, 63, 12961; (j) T. Gendrineau, O. Chuzel, H. Eijsberg, J.-P. Genet and S. Darses, Angew. Chem., Int. Ed., 2008, 47, 7669; (k) X. Hu, M. Zhuang, Z. Cao and H. Du, Org. Lett., 2009, 11, 4744; (1) M. K. Brown and E. J. Corey, Org. Lett., 2010, 12, 172; (m) Y. Luo and A. J. Carnell, Angew. Chem., Int. Ed., 2010, 49, 2750; (n) G. Pattison, G. Piraux and H. W. Lam, J. Am. Chem. Soc., 2010. 132. 14373
- 15 (a) T. Nishimura, H. Kumamoto, M. Nagaosa and T. Hayashi, Chem. Commun., 2009, 5713; (b) T. Nishimura, Y. Ichikawa, T. Hayashi, N. Onishi, M. Shiotsuki and T. Masuda, Organometallics, 2009, 28, 4890; (c) T. Nishimura, T. Kawamoto, M. Nagaosa, H. Kumamoto and T. Hayashi, Angew. Chem., Int. Ed., 2010, 49, 1638; (d) R. Shintani, M. Takeda, T. Nishimura and T. Hayashi, Angew. Chem., Int. Ed., 2010, 49, 3969; (e) T. Nishimura, Y. Maeda and T. Hayashi, Angew. Chem., Int. Ed., 2010, 49, 7324; (f) T. Nishimura, Y. Yasuhara, T. Sawano and T. Hayashi, J. Am. Chem. Soc., 2010, 132, 7872; (g) T. Nishimura, H. Makino, M. Nagaosa and T. Hayashi, J. Am. Chem. Soc., 2010, 132, 12865.
- 16 The reaction of a β-aryloxyacrylate, 2,6-dimethoxyphenyl 3-(2-methylphenyloxy)propenoate, with phenylboroxine (2m) gave the cinnamate ester (14%) and diphenylpropanoate (85%) under the same reaction conditions.
- 17 O. Pàmiesa and J.-E. Bäckvall, Adv. Synth. Catal., 2002, 344, 947.