LETTERS TO THE EDITOR

Synthesis of Substituted Hydroxymethylene Diphosphonic Acids and Their Derivatives Containing Unsaturated Fragments

A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, and L. I. Livantsova

Lomonosov Moscow State University, Vorob'evy gory, Moscow, 119991 Russia e-mail: aprishchenko@yandex.ru

Received April 5, 2011

DOI: 10.1134/S1070363211080263

A variety of substituted hydroxymethylene diphosphonic acids derivatives comprises good complexones and the substances widely used in medicine [1]. Compounds containing hydrolytically stable hydroxymethylene diphosphonic fragment PCP are of interest as an unusual organophosphorus analogs of natural pyrophosphates [2]. We found that the reaction of trimethylsilyl esters of trivalent phosphorus with the readily accessible chlorides of unsaturated carboxylic

acids affords new hydroxymethylene diphosphonic compounds containing unsaturated fragments. They may be of interest as promising complexones and antioxidants.

An excess of alkylsilylphosphite in methylene chloride solution reacts readily with unsaturated carboxylic acids chlorides to form diphosphonates I—IV in a high yield [3].

The reaction of diphosphonates III–V with an excess of methanol gives rise to the substituted hydroxymethylenediphosphonic acids VI–VIII, which are thick oils. Note that the mild conditions of the methanolysis of trimethylsilyl esters III–V allow retaining unchanged the methylenediphosphonic fragments in the acids VI–VIII [3].

III-V
$$\xrightarrow{-5\text{Me}_{3}\text{SiOMe}} [(HO)_{2}P]_{2}CR$$

$$\parallel \mid \quad O \text{ OH }$$

$$VI-VIII$$

$$R = \text{CH=CHPh (VI), (CH=CH)}_{2}\text{Me (VII),}$$

$$(CH_{2})_{7} C = C (CH_{2})_{7}\text{CH}_{3}$$

$$WIII).$$

Tetraethyl (1,3-pentadien-1-yl)trimethylsiloxymethylene diphosphonate (I). To a solution of 21 g of diethyl(trimethylsilyl)phosphite in 20 ml of methylene chloride with stirring and cooling to 10°C was added a solution of 6 g of sorbinoyl chloride in 10 ml of methylene chloride. The mixture was stirred for 0.5 h and then heated to boiling. The solvent was distilled off in a vacuum; the residue was kept in a vacuum (0.5 mm Hg) for 1 h at 30°C. Yeld 19.5 g, 96%, oil. 1 H NMR spectrum, $\delta_{\rm H}$, ppm: 0.16 s (Me₃Si), 0.9–1.1 m (4MeCH₂OP), 1.37 d (C⁶H₃, $^{3}J_{\rm HH}$ 5.6 Hz), 3.6–3.8 m (4CH₂OP), 5.2–6.1 m (CH=CH). 13 C NMR spectrum, $\delta_{\rm C}$, ppm: 78.53 t (C¹, $^{1}J_{\rm PC}$ 155.9 Hz), 132.63 t (C², $^{2}J_{\rm PC}$ 10.1 Hz), 124.26 t (C³, $^{3}J_{\rm PC}$ 5.9 Hz), 130.36 (C⁴, C⁵), 17.37 (C⁶). 31 P NMR spectrum: $\delta_{\rm P}$ 15.59 ppm. Found, %: C 45.96; H 8.11. C_{17} H₃₆O₇P₂Si. Calculated, %: C 46.14; H 8.20.

Compounds **II–V** were obtained similarly.

Tetraethyl (8-heptadecen-1-yl)trimethylsiloxy-methylene diphosphonate (II). Yield 97%, oil. ¹H

NMR spectrum, δ_{H} , ppm: -0.06 s (Me₃Si), 0.9–1.1 m (5CH₃, 11CH₂), 1.25–1.40 m (C²H₂), 1.7–1.8 m (2CH₂C=), 3.8–4.0 m (4CH₂OP), 5.0–5.1 m (CH=CH). ¹³C NMR spectrum, δ_{C} , ppm: 78.66 t (C¹, ¹ J_{PC} 155.9 Hz), 23.33 t (C², ² J_{PC} 5 Hz), 31.58 and 35.03 (2CH₂CH=), 129.46 (CH=CH). ³¹P NMR spectrum: δ_{P} 19.16 ppm. Found, %: C 56.68; H 10.12. C₂₉H₆₂· O₇P₂Si. Calculated, %: C 56.84; H 10.20.

Tetra(trimethylsilyl) (2-phenylethyl-1-yl)trimethylsiloxymethylene diphosphonate (III). Yield 96%, oil. 1 H NMR spectrum, $δ_{\rm H}$, ppm: 0.5–1.0 m (Me₃Si), 6.19 d. t ($\rm C^{3}H$, $^{4}J_{\rm HH}$ 15.8, $^{4}J_{\rm PH}$ 6.2 Hz), 6.47 d. t ($\rm C^{2}H$, $^{3}J_{\rm HH}$ 15.8, $^{4}J_{\rm PH}$ 5.2 Hz), 6.8–7.1 m ($\rm C_{6}H_{5}$). 13 C NMR spectrum, $δ_{\rm C}$, ppm: 79.03 t ($\rm C^{1}$, $^{1}J_{\rm PC}$ 162.6 Hz), 130.37 t ($\rm C^{2}$, $^{2}J_{\rm PC}$ 10 Hz), 126.34 t ($\rm C^{3}$, $^{3}J_{\rm PC}$ 5.8 Hz), 136.22 t ($\rm C^{4}$, $^{4}J_{\rm PC}$ < 1 Hz), 128.43 and 126.04 ($\rm C^{5}$, $\rm C^{6}$), 127.32 ($\rm C^{7}$), 2.46 (Me₃SiOC), 0.95 d (Me₃SiOP, $^{3}J_{\rm PC}$ 5.9 Hz). 31 P NMR spectrum 31 P: $δ_{\rm P}$ –2.58 ppm. Found, %: C 43.89; H 7.91. $\rm C_{24}H_{52}O_{7}P_{2}Si_{5}$. Calculated, %: C 44.01; H 8.00.

Tetra(trimethylsilyl) (1,3-pentadien-1-yl)trimethylsiloxymethylene diphosphonate (IV). Yield 96%, oil. ¹H NMR spectrum, $\delta_{\rm H}$, ppm: -0.2-0.3 m (Me₃Si), 1.22 d (C⁶H₃, ³J_{HH} 6 Hz), 5.1-5.8 m (CH=CH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 78.30 t (C¹, ¹J_{PC} 162.6 Hz), 131.01 t (C², ²J_{PC} 10.9 Hz), 126.69 t (C³, ³J_{PC} 5.9 Hz), 130.28 t (C⁴, ³J_{PC} < 1 Hz), 129.13 (C⁵), 17.55 (C⁶), 2.12 (Me₃SiOC), 0.64 d (Me₃SiOP, ³J_{PC} 5.8 Hz). ³¹P NMR spectrum: $\delta_{\rm P}$ -2.46 ppm. Found, %: C 40.61; H 8.40. C₂₁H₅₂O₇P₂Si₅. Calculated, %: C 40.75; H 8.47.

Tetra(trimethylsilyl) (8-heptadecen-1-yl)trimethylsiloxymethylene diphosphonate (V). Yield 97%, oil. ¹H NMR spectrum, $\delta_{\rm H}$, ppm: -0.1-0.0 s (Me₃Si), 0.97 t (CH₃, ³ $J_{\rm HH}$ 6.4 Hz), 1.4-1.5 m (11CH₂), 1.62-1.72 m (C²H₂), 2.05-2.15 m (2CH₂C=), 5.35-5.45 m (CH=CH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 77.89 t (C¹, ¹ $J_{\rm PC}$ 164.6 Hz), 23.37 t (C², ² $J_{\rm PC}$ 5.9 Hz), 129.29 and 129.46 (CH=CH), 31.56 and 35.20 (2CH₂C=), 22.31-29.91 m (11CH₂), 13.73 (CH₃), 2.45 (Me₃SiOC), 0.96 d (Me₃SiOP, ³ $J_{\rm PC}$ 5.1 Hz),). ³¹P NMR spectrum: $\delta_{\rm P}$ 1.80 ppm. Found, %: C 50.03; H 9.88. C₃₃H₇₈O₇P₂Si₅. Calculated, %: C 50.21; H 9.96.

(2-Phenylethyl-1-yl)hydroxymethylene diphosphonic acid (VI). To 30 ml of methanol at 10°C under stirring was added a solution of 11 g of diphosphonate III in 10 ml of diethyl ether. The mixture was heated to boiling, the solvent was distilled off, the residue was kept in a vacuum (1 mm Hg) for 1 h. Yield 4.8 g, 98%, oil. 1 H NMR spectrum, $\delta_{\rm H}$, ppm: 6.95 d.t (2 H, $^{3}J_{\rm HH}$

15.4, ${}^{3}J_{PH}$ 4.8 Hz), 6.67 d t (C ${}^{3}H$, ${}^{3}J_{HH}$ 15.4, ${}^{4}J_{PH}$ < 1 Hz), 7.2–7.5 m (C ${}_{6}H_{5}$). ${}^{13}C$ NMR spectrum, δ_C, ppm: 75.79 t (C 1 , ${}^{1}J_{PC}$ 149.2 Hz), 130.96 t (C 2 , ${}^{2}J_{PC}$ 10 Hz), 123.47 t (C 3 , ${}^{3}J_{PC}$ < 1 Hz), 136.57 (C 4), 126.45 and 128.50 (C 5 , C 6), 127.69 (C 7). ${}^{31}P$ NMR spectrum: δ_P 16.12 ppm. Found, %: C 36.64; H 4.07. C₉H₁₂O₇P₂. Calculated, %: C 36.75; H 4.11.

Compound VII, VIII were obtained similarly.

(1,3-Pentadien-1-yl)hydroxymethylene diphosphonic acid (VII). Yield 97%, oil. 1 H NMR spectrum, δ_{H} , ppm: 5.5–6.6 m (CH=CH), 1.75 (C 6 H₃). 13 C NMR spectrum, δ_{C} , ppm: 75.25 t (C 1 , $^{1}J_{PC}$ 149.6 Hz), 131.35 t (C 2 , $^{2}J_{PC}$ < 1 Hz), 129.58 t (C 3 , $^{3}J_{PC}$ < 1 Hz), 131.07 (C 4), 124.27 (C 5), 17.41 (C 6). 31 P NMR spectrum: δ_{P} 16.27 ppm. Found, %: C 27.78; H 4.59. C_{6} H₁₂O₇P₂. Calculated, %: C 27.92; H 4.68.

(8-Heptadecen-1-yl)hydroxymethylene diphosphonic acid (VIII). Yield 96%, oil. 1 H NMR spectrum, $δ_H$, ppm: 5.5–6.6 m (CH=CH), 2.0–2.2 m (2CH₂C=), 1.6–1.8 m (2 H₂), 1.1–1.4 m (11 CH₂), 0.89 t (CH₃, 3 J_{HH} 6.2 Hz). 13 C NMR spectrum, $δ_C$, ppm: 73.18 t (1 , 1 J_{PC} 147.1 Hz), 23.30 t (2 , 2 J_{PC} < 1 Hz), 129.39 and 129.60 (CH=CH), 30.39 and 31.84 (2CH₂CH=), 22.53–29.65 m (11CH₂), 13.62 (CH₃). 31 P NMR spectrum: $δ_P$ 20.35 ppm. Found, %: C 50.26; H 8.86. C_{18} H₃₈ O_7 P₂. Calculated, %: C 50.46; H 8.94.

The NMR spectra were recorded on a Bruker Avance-400 spectrometer in CDCl₃ (**I–V**) and CD₃OD (**VI–VIII**), internal reference TMS (1 H, 13 C) and external reference 85% phosphoric acid solution in D₂O (31 P).

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (grant no. 11-03-00402).

REFERENCES

- Ebetino, F.H., *Phosphorus, Sulfur, Silicon, Relat. Elem.*, 1999, vol. 144–146, p. 9; Matkovskaya, T.A., Popov, K.I., and Yur'yeva, E.A., *Bisfosfonaty. Svoistva, stroyeniye i primeneniye v meditsine* (Bisphosphonates. Properties, Structure and Use in Medicine), Moscow: Khimiya, 2001.
- Tarusova, N.B., Novikova, Z.S., Prishchenko, A.A., Yakovleva, G.M., and Khomutov, R.M., *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1982, no. 2, p. 402.
- 3. Prishchenko, A.A., Livantsov, M.V., Novikova, O.P., Livantsova, L.I., Maryashkin, A.V., Milaeva, E.R., *Zh. Obshch. Khim.*, 2007, vol. 77, no. 8, p. 1397; Sekine, M. and Hata, T., *Chem. Commun.*, 1978, p. 285.