Vibrational spectra and possible conformers of dimethylmethylphosphonate by normal mode analysis

R. M. MORAVIE, † F. FROMENT and J. CORSET

Laboratoire de Spectrochimie Infrarouge et Raman, CNRS, 2 rue Henri Dunant, 94320 Thiais, France; and *UFR Sciences Exactes et Naturelles, Université des Antilles et de la Guyanne, BP 592, 97167 Pointe-à-Pitre Cedex, France

(Received 1 November 1988; in final form 31 March 1989; accepted 5 April 1989)

Abstract—A careful assignment of the i.r. and Raman spectra of $CH_3P(O)(OCH_3)_2$, $CD_3P(O)(OCH_3)_2$, $CH_3P(O)(OCD_3)_2$ and $CD_3P(O)(OCD_3)_2$ and a comparison with those of the parent molecules $CH_3OP(O)Cl_2$ and $CD_3OP(O)Cl_2$ suggest that only one conformer exists in the liquid state. This conformer is probably close to the most stable one calculated by CNDO/2 and *ab initio* STO-3G methods, with one CH_3O group *trans* and the other *cis* to the P=O group. The characteristic modes of the $CP(O)(OC)_2$ skeleton are analysed through a force field calculation. It is shown that the stretching vibrations of the single bonds PC and PO are strongly coupled. As already observed for carboxylic esters, it is shown that only mixed skeletal modes and mostly the bending modes are sensitive to the conformation of the methoxy groups around the P-O single bond. On the other hand the v(P=O) mode does not vary for the different conformers, and the extra components appearing in its vicinity, as well as in that of the v(P-C) main vibrational mode, are best understood as being due to Fermi resonances with harmonic or combination tones coupling with these modes.

INTRODUCTION

It is well known that for the esters of carboxylic acids, the s-cis conformation of the R-O group is usually the more stable one [1]. Nevertheless, when the R group is bulky, an equilibrium between the s-cis and s-trans conformers may be observed, as for tertiobutyl formate [2, 3]. Existence of conformers for phosphonic esters is still questioned, and splittings of the i.r. and Raman bands, v(P=O) for tributylphosphate [4] or v(P=O) and v(P-C) for dimethylmethylphosphonate [5-7] are often assumed to reflect the presence of such conformers. As we have done for the carboxylic esters [2], a careful assignment of the spectra and a normal mode analysis allows us the possibility of detecting such conformers through vibrational spectroscopy.

As we are interested in obtaining a good understanding of the vibrational spectra of the substituted phosphonates $(RO)_2P(O)CH_2Y$, which are used both as extractants—mainly when $Y = -CONR'_2$ [8]—and as Wittig-Horner reagents [9], we have undertaken a normal mode analysis of the model compound dimethylmethylphosphonate $(CH_3O)_2P(O)CH_3$. In the course of this study we shall discuss the possibility of observing conformers for this compound through vibrational spectroscopy.

EXPERIMENTAL

Dimethylmethylphosphonate (D_0) and its deuterated homologues, $CD_3P(O)$ $(OCH_3)_2$ (D_3) , $CH_3P(O)$ $(OCD_3)_2$ (D_6) and $CD_3P(O)$ $(OCD_3)_2$ (D_9) , were carefully distilled before use. The (D_9) compound has been prepared by an Arbusov reaction of the trimethylphosphite $(CD_3O)_3P$ in the presence of CD_3I [10] The trimethylphosphite is obtained from the reaction of CD_3OD over PCl₃. The (D_6) compound is obtained from the action of SOCl₂ over the (D_0) compound to give $CH_3P(O)Cl_2$ [11] which reacts with CD_3ONa in CD_3OH [12]. The (D₃) compound is obtained in a similar way from the (D₉) compound.

Raman spectra were obtained using a PH0 Coderg of T800 Coderg modified Raman spectrometer. The 514.5 nm exciting radiation was provided by an argon ion laser (Spectra-Physics 164) with 200 mW power measured at the sample position. The slit width was 3 cm^{-1} . The calibration of the spectrometers has been checked with reference to emission lines.

RESULTS AND DISCUSSION

Structure of dimethylmethylphosphonate

The structure of dimethylmethylphosphonate has not been measured by X-ray or electron diffraction. It may show different conformations by a rotation of the two methoxy groups around the P-O(C) bond, and in order to get an insight into this conformational behaviour, VAN DER VEKEN and HERMAN have undertaken a theoretical calculation at the CNDO/2 level of approximation [13] which has further been confirmed by an *ab initio* calculation using a STO-3G basis [14]. The cis positions of the two methoxy groups (the methyl eclipsing the phosphoryl oxygen) define the origin of the dihedral angles ϕ_1 and ϕ_2 of the (O)PO and POC planes, describing their orientation.* Six energetically different minima have been determined on the conformation map, and only four of them (I, II, IV and V) have ϕ_1 and ϕ_2 values which are close to the ideal positions $\phi_1 = 60n_1$, $\phi_2 = 60n_2$, the most stable conformation (I), being that where one of the methoxy group is trans and the other gauche ($\phi_1 = 189.0^\circ, \phi_2$ $= 50.5^{\circ}$ [13]. In what follows we shall assume that the dimethylmethylphosphonate has this structure and consequently has no symmetry element except for the

^{*}The rotation is counted positive when starting from the origin to the direction of the methyl substituant.

Fig. 1. The geometry of dimethylmethylphosphonate.

identity. We will further consider what changes may be expected for the vibrational spectra of the II, IV and V conformers close to the ideal positions.

Assignment of spectra

Dimethylmethylphosphonate has 16 atoms, and no symmetry. Its 42 fundamental vibrations may be expected to be both i.r. and Raman active. The vibrational spectra of the compound D_0 and of its deuterated homologues D_3 , D_6 , D_9 have already been reported and analysed [5] but the Raman data were obtained with a slit width of only 8 cm⁻¹ which is too large for a precise measure of close vibrational modes. Our Raman frequencies are in rather good agreement with i.r. ones (Table 1), as expected, but they sometimes show differences of some cm⁻¹ from those of the previous authors [5]. These small differences may be due both to the calibration of the spectrometer and to the low resolution used by these authors [5].

The synthesis procedure that we have used allows a slight exchange of the hydrogen or deuterium atoms of the CX_3P group (X = H or D) with the solvent (methanol): small amounts (< 10%) of CH₂DP and CD_2HP were observed in compound D_6 and a very small amount of CD₂HP is observed in compound D₃. These isotopic impurities were easily identified through ¹HNMR spectra, the CH₃P, CH₂DP and CD₂HP groups having been characterized by a doublet, a triplet and a quintuplet, respectively, with chemical shifts relative to TMS of 1.447, 1.432 and 1.417 ppm. The coupling constants are J = 17.38 Hz and J = 2.20 Hz. Their corresponding i.r. and Raman bands are not seen in the spectra of VAN DER VEKEN et al. and are thus easily identified (Table 1). On the other hand, our D₉ compound does not show visible CH bands due to incomplete deuteration. These extra bands are easily assigned, mainly to the stretching or rocking vibrations of the CH₂DP or CD₂HP groups. by comparison with the observed frequencies for such groups in partially deuterated ethane [15]. Only the

most intense symmetric stretching and parallel rocking modes are observed in the spectra of VAN DER VEKEN and HERMAN [5] for D_9 and in our spectra for D_3 and D_6 .

Our assignments for different isotopic compounds are supported by comparison with the assignment of the CH₃P group in CH₃P(O)Cl₂ [16] or in CH₃PO₃ [17], and with those of the CH₃OP or CD₃OP groups in CH₃OP(O)Cl₂ and CD₃OP(O)Cl₂ [14]. All the bands observed for these groups in (CH₃O)₂P(O)CH₃ and its isotopic homologue are, indeed, very close to those observed in the previous molecules where these group vibrations are well separated from the low frequency vibrations of the PCl₂ group. The O₂P(O)C skeleton vibrations are assigned by comparison with the spectra of the (CH₃O)₃P(O) molecule [18].

Our assignments are in general agreement with those of VAN DER VEKEN and HERMAN [5], except for the $\delta_s(OCH_3)$ or $\delta_s(OCD_3)$ vibrations and for the deformation vibration of the POC angles. We assign the band at 500 cm⁻¹ in D₀ to a rocking PO₂ mode rather than to a POC mode, in agreement with the absence of isotopic ¹³C/¹²C shift when the substitution is on the (OCH₃) groups [5].

Normal mode frequency calculation

The spectra of the four compounds show two v(C-O) stretching vibrations with frequencies very close to those found for the *trans* and *gauche* conformers of CH₃OP(O)Cl₂ and CD₃OP(O)Cl₂ respectively [14], this seems in agreement with the existence of only one conformer for this molecule with probably one methoxy group *trans* and the other *gauche*. It is for this reason that the normal mode calculation has been done for the ideal conformation $\phi_1 = 180^\circ$ and $\phi_2 = 60^\circ$ which is very close to the most stable conformer I as calculated by the CNDO/2 method [13].

The exact geometry of dimethylmethylphosphonate is unknown, and so to establish the G matrix, we have used the bond lengths and angles already selected by VAN DER VEKEN [13] and summarized in Table 2. Valence angle and bond coordinates have been used, except for the CP(O)O₂ skeleton where group coordinates individualizing the PO₂ group have been introduced (Table 3). For the methyl group, usual group coordinates have been employed (see for instance [19] and [20] for the torsional frequencies).

The initial set of force constants has been transferred from molecules having similar groups, viz. $CH_3P(O)(OCH_3)_2[21], CH_3PO_3^{-1}[17], HCOOCH_3$ [22] and the calculations were performed using the GMAT and VBN programs [23]. The calculated frequencies for the four isotopic molecules and potential energy distributions are summarized in Table 4. Most of the 93 observed frequencies are reproduced very accurately, using only 38 interaction force constants, supplemented by 29 diagonal force constants. The diagonal force constants have been assumed to be the same for the two OCH₃ groups and are given in Table 5 with the initial force field. The

	1011	1. 00001 VU	ווות ווכלתכווכוכי מוו	u assignmenter iu	uniternymiernyipn	ospiionate		
Compound Assignment	D ₀ R	ir.	R ₃	ir.	D, R	i.r.	D,	ir.
v ₄ (CH ₂)(PCH ₂ D) v ₄ (CH ₃)(PCH ₃) v ₄ (CH ₃)(OCH ₃)	2992 S 2955 S	2992 w 2957 m	3002 vw 2955 vS	2058 m	2998 m	2996 m		
v _s (CH ₂)(PCH ₂ D)	2			III 00/7	2949 wp*	2949 vw*		
VCII)(FCD2II) V_(CH3)(PCH3)	2926 vSp	2926 w	- dw 0667		2926 Sp	2927 m		
204,(CH ₃)(OCH ₃) v ₆ (CH ₃)(OCH ₃)	2851 Sp	2914 e 2852 m	2851 vSp	2912 sh 2851 m				
$\delta_{a}(CH_{3}) + \delta_{a}(CH_{3})(PCH_{3})$ w(CD ₂)(PCD ₂ H)	2819 vw				2820 vwp 2265 vwdp*		{ 2265 shdp	
$v_{a}(UC) + \rho(CH_{3}) (OCH_{3})$ $v(OC) + \rho(CH_{3}) (OCH_{3})$		{ 2232 vw	7246 mdp	2244 w	2244 vwdp	2248 mw	(2245 mdp	2247 mS
v(CD ₂)(PCD ₂ H) v(CD)(PCH ₂ D)		MA 7177 \	2205 vwp* 2165 shp*	2199 vw* 2164 sh*	2165 mp*			
v(CD ₂)(PCD ₂ H) v ₆ (CD ₃)(PCD ₃)			2149 vSp	2150 w	2147 shp*	2141 m*	2147 mp	2146 w
$w(P=0) + \rho(CD_3)(OCD_3)$ $w(P=0) + \rho(CH_3)(PCH_3)$		2132 vw			2132 mp		2137 sh	
v,(CD3)(OCD3)					2079 vS	2080 S	2079 vS	2079 mS
v(P=0) + v(PO)		2076 vwp 2025 vw	2071 vwp 2042 w	2078 vw 2043 vw	2037 vw		2036 vw	
%(OC)+ <i>Q</i> (PO ₂) <i>δ.</i> (CH.)(PCH.)	WV UCCI					1407 two		
&_(CH_3)(OCH_3) &_(CH_3)(OCH_3)	1467 mSdp 1452 e	1465 w 1450 sh	1467 mw { 1450 sh }	1464 mS 1449 sh				
$\delta'_{4}(CH_{3})(PCH_{3})$ $2\omega(PO_{2}) + \delta(PO_{2})$ or $\delta''DO_{1} + \delta''DO_{2}$) or	1422 mwdp	1419 vw	MA7761 \	1397 vw	1421 wdp	1420 m 1397 vw		
$\omega(PO_2) + 2\rho(PO_2)$ $\omega(PO_2) + \rho(PO_2) + \delta(CPO)$			1347 vw					
o ₄ (CH ₃)(PCH ₃) ν(P-O) + ρ(PO ₂)	1313 vwp 1260 shdp	1317 S	1261 shdp		1320 vwp	1320 S	1248 wn	1253 sh
қ(Р=О) ⊮Р–О) + Ѧ(СРО)	1240 Sp	1242 vs	1244 mw	1246 vS	1250 mwp	1249 vS	2. : : :	1263 S
ρ ₁ (CH ₃)(OCH ₃) ρ ₁ (CH ₃)(OCH ₃)	1187 wp 1162 vwdp	1186 m	1187 wp 1164 vw	1186 mS	MA (171	118 6171		
$\rho_{\rm H}(\rm CD_3 + \delta(\rm POC))$					1098.5 wp		1096 w	1100 w
δ ₄ (CD ₃)(OCD ₃) Dots - grading			1076		1066 mwdp	SV 2/01	10/4 sn 1064 wdp	1083 S
VrU)+ArUC) V(OC)	1058 mwp	1058 vS	1065 mwp 1058 sh	1051 vS		1049 vS		1053 S

Table 1. Observed band frequencies and assignments for dimethylmethylphosphonate

1017

Compound Assignment	°0 M	ir.	R D	ir.	D, R	ir.	D, R	ir.
v(PO) + δ(POC) δ(CD ₃)(OCD ₃)			1043 sh		1042 vw		1036 mwdp	
v(rC)a(rUC) + t(LU3) v(OC) 2a(PO3)	1033 mwdp	1034 vS	1033 mwdp	1030 vS 965 vw			1027 sh	1028 sh
ω(PO ₂)+δ(CPO) ρ (CH ₃)(PCH ₃) Δ(CD ₂ H)(PCD ₂ H)	916 sh 897 mwp	916 vS 896 sh		015 w*	wv 006	897 S		
ρ _{ll} (CD ₃)(OCD ₃) ρ ₁ (CD ₃)(OCD ₃)					924.5 mp 900 vwdp	928 S	921 mp 899 vw	926 m 902 vw
ю(PU ₂) + <i>စ</i> (CPU) v(PO) 35/CPO)	820 mwdp	822 vS	843 wdp	892 w 844 S	806 Sdp	804 vS	803 wdp	805 mS
v(P-O)	789 mwdp	789 vS	800 mp	802 m	ł			
ACH2D)(FCH2D) v(P-O) ACD H)(PCD H)			130	*	720 -1 *	756 mS	776 mp	779 mS
$p_{\rm ll}(\rm CD_3)(\rm PCD_3)$			713 vSp	714 m	+ US 07/	+ MA (7)	708 mSp	711 S
ω(PO ₂)+δ(POC) "(P)	705 mp	211 110	703 sh		710 mw	713 mw	672 vwdp	676 vw
$\omega(PO_2) + \delta(POC)$	dette		dettio	III 1/0	679 vSp	1007 111	deveto	
ρ(CH ₂ D)(PCH ₂ D) t(CH ₃) + δ(POC)				501 sh	656 Sp*	659 w*		
$\omega(PO_2)$	500 w	500 S	484 Sdp	484 m	489 mSdp	491 S	471 S	475 m
$\rho(PO_2)$	467 mwdp	467 m	460 wdp	459 mw	475 sh	478 sh	445 wdp	450 w
6(CPO)	415 mw	446 SII 413 mw	410 wdp	409 m	424 dp 404 Sdp	405 S	399 wdp	424 vw 401 mw
28(POC)	399 wdp	402	391 w Î	395 w	•		4	
o(POC) + t(CD ₃) t(CH ₃)(PCH ₃)	306 mdp	310 m			386 vw 295 wdp	393 297 w	379 vw	384 w
t(CH ₃) (OCH ₃)			287 mwdp	291 mS	•			
&(POC)+y(POC)(OCD ₃) 2y(POC)(OCD ₃)					280 sh	278 vw	274 mdp 260 shdp	279 vw
δ(POC)(OCH ₃) δ(POC) OCD.)	233 shdp		222 sh	,				
((CD ₃)(OCD ₃)			TO1	~~	210 shdp	- • -	206 shdp	
δ(POC)(OCD ₃)	dnw111 +07		dpw / 61		186 mwdp		174 vwdp	
Intervite of the Londo is since.			-		-			

Table 1. (continued)

1018

R. M. MORAVIE et al.

Intensity of the bands is given: S, strong; vS, very strong; m, mean; w, weak; mw, medium weak or vw, very weak. Polarization state is given: p, polarized; dp, depolarized. sh indicates a shoulder. *Bands due to traces of CD_2HP and CDH_2P (see text).

Table 2. Angle and bond distances used for CH₃P(O) (OCH₃)₂

Bonds	d (Å or 10 ² pm)	Angle	s (°)
P=O	1.488	POC	116
P-O	1.560	ϕ_1	180
P-C	1.788	ϕ_{2}	60
0-C	1.450	• •	
C-H	1.110		

For the selection of values see Ref. [13]. The other valence angles around P or C atoms have been taken to be tetrahedral. For the definition of the torsional ϕ_1 and ϕ_2 angle between the COP and OPC planes, see the text.

different conformations of the two OCH₃ groups $(\phi_1 = 180^\circ, \phi_2 = 60^\circ)$ are reproduced using only three different interaction force constants: $v(OC) - \delta(PO_2)$, $\delta(PO_2) - \delta(POC)$ and $t(PO_2) - t(OCH_3)$, two of them having opposite signs. These opposite signs may be partly compared with the behaviour observed for the interaction force constant $v(C=O) - \delta(COC)$ found in tertiobutylformate [2] in which a change of sign is seen when going from the *cis* to the *trans* conformation relative to the C-O single bond. This fact has been interpreted as a change of sign of the dipole-dipole interaction due to the angle variations [3].

It may be noticed (Table 5) that the most relevant diagonal and off-diagonal force constants remain close to those initially proposed for similar groups in other molecules. The diagonal force constants of the methoxy groups, which were those of carboxylic esters in set I, are all lowered in the phosphonic ester (set II) in agreement with the electron withdrawing effect of the phosphorus atom. Low intensity bands, both in i.r. and Raman, appearing between 402 and 379 cm⁻¹ for compounds D_0 , D_3 , D_6 and D_9 could not be calculated as a $t(PO_2)$ mode (which is strongly mixed with the δ (CPO) and ρ (PO₂) modes); we suggest that these bands are overtones or combinations involving mainly the $\delta(POC)$ mode which can be in resonance with the δ (CPO) mode located between 400 and 410 cm⁻¹ (Tables 1 and 4).

Calculated and observed frequencies for different conformations

The possible conformers for the dimethylmethylphosphonate are related to the rotation of the OCH₃ group around the P-O(C) bonds. As for the esters [2] we expected that only the skeleton vibration modes and mainly those involving the angle deformation be sensitive to the conformation. We have calculated the frequencies for the three other conformations which have been shown to be close to the ideal positions: II $(\phi_1 = -60^\circ, \phi_2 = 180^\circ)$, IV $(\phi_1 = -60^\circ, \phi_2 = 60^\circ)$, V $(\phi_1 = 60^\circ, \phi_2 = 60^\circ)$. As expected the normal modes involving the CH₃ and OCH₃ groups (as well as the v(P=O)) vary very little with the conformation. We have summarized in Table 6 the calculated frequencies for the four different conformations of the D_0 isotopic species using the same force field as for conformer I. The calculated frequencies for the D₀ species are shown in Table 6 and similar results have been obtained for the species D_3 , D_6 and D_9 . While the conformations I and II differ only by their bending skeleton vibrations, the conformations IV and V may be distinguished from the others by a change in the skeleton stretching mode frequencies, related to the changes in the PO and OC mixing.

Splittings of bands in the v(P=O) and v(P-C) region

Solvent or temperature changes may both lead to a variation in the relative intensities of the two components of a vibrationat mode, related to changes in the position of the equilibrium between two conformers of the same product. Temperature [24] or solvent [25] effects may also induce small variations of the relative positions of the levels involved in a Fermi resonance, producing a similar intensity evolution. Isotopic substitution, which changes the form of some normal modes, may lead to the disappearance of certain resonances, as well as to the appearance of others, while the existence of two conformers must preserve the existence of two components for the vibrational modes at least when the nature of the normal coordinate does not change.

The calculation of the v(P=O) frequencies for the four different conformations (Table 6) shows that this

Table 3. Group coordinates of the skeleton modes used for the force field calculation

v(P=O)	$= D_1$	δ (CPO)	$=1/\sqrt{30}(5\alpha-\beta_1-\beta_2-\delta-\gamma_1-\gamma_2)$
v(P-C)	$= D_2$	$\delta(PO_2)$	$= \frac{1}{\sqrt{20}} (4\delta - \gamma_1 - \gamma_2 - \beta_1 - \beta_2)$
$v(P=O_5)$ $v(P=O_6)$	$= D_3$ $= D_4$	$\rho(PO_2)$	$= 1/2(\beta_1 + \beta_2 - \gamma_1 - \gamma_2) = 1/2(\beta_1 - \beta_2 + \gamma_1 - \gamma_2)$
$v(O_5-C)$	$= D_5$	$t(PO_2)$	$= \frac{1}{2}(\beta_1 - \beta_2 - \gamma_1 + \gamma_2)$
$W(O_6-C)$	$= D_6$	$\delta(PO_5C)$	$=\vartheta_2$ $=\vartheta_2$
		γ(PO ₅ C)	$=\phi_2$
		γ(PO ₆ C)	$=\phi_1$

For simplicity D, α , β , γ , δ , ϑ , ϕ have been written for their variation. For their definitions see Fig. 1. The symbols for the group vibrations ν , δ , ... have been used to indicate in this table the corresponding coordinates.

iD (%)				$+28\rho_{\perp}(OCD_3)$	$+29\rho_1(OCD_3)$		+ 10v(PO) + 16v(PC)	+ 29v(PO)	+ 16v(PO)	+ 34δ _a (OCD ₃)	+ 35δ _a (OCD ₃) + 32δ _a (OCD ₃)
PE	28 28 28 28 28 28	88 86 67 88 86 66	67	95 52	51 95	92 92 75	53 84	90 51	63	53	51 68
Calc.	2242 2242 2239 2239	2209 2200 2103 2080	2080	1089 1049	1050 1042	1043 1037 1002	984 1028	1250 951	942	921	924 1055
D, obs.	{ 2245	2147 5 2078		1064		1036	1027	1248		∫ 926i.ı.) 1053 ^{i.r.}
PED (%)	98 98 93	93 99 100	57	$100 \\ 62 + 28\rho_{\perp}(\text{OCD}_3)$	60 + 28 <i>ρ</i> _⊥ (OCD ₃) 94	95 100 73+9v(PO)	52 + 11v(PO) 87 + 10v(P=O)	80 + 13δ ₄ (Ch ₃) 40 + 26v(PO) + 10δ ₋ (OCD ₃)	55 + 18v(PO) + 11 $\rho_{\parallel}(CH_3)$	48 + 34ô _a (OCD ₃)	48 + 328 (OCD ₃) 70 + 30 8 (OCD ₃)
calc.	2242 2242 3001 2209	2209 2948 2924 2080	2080	1491 1049	1050 1042	1042 1422 1003	987 1315	1239 956	947	926	922 1056
D ₆ obs.	{ 2244	2949 2926 2770		1497) 1066	- 1042	{ 1421	1320	1250		∫ 928 ^{i.r.}	ر 1049 ^{ند.}
PED (%)	96 98 86 66	99 99 95	95	97 67 + 22 ρ_{1} (OCH ₃)	$67 + 23\rho_{\perp}(OCH_3)$ $90 + 10\rho_{\parallel}(OCH_3)$	$90 + 10\rho_{\parallel} (\text{OCH}_3)$ 100	100 53 + 37v(OC) + 11v(PC)	85	70	64 + 328 _a (OCH ₃)	63 + 325,(OCH ₃) 50 + 335,(CD ₃) + 12v(PC)
calc.	3005 3005 2239 2957	2957 2200 2103 2883	2883	1088 1471	1472 1451	1451 1037 13 49	1348 1031	1253 1186	1193	1164	1166 1023
D3 obs.	{ 3002 2246 5555	2205 2149 2149	7167	5771	<pre>1450 </pre>	<pre>{ 1347</pre>		1244	1187) 1164	ر 1030 ^{نارر}
PED (%)	93 99 96	% 80 90 90 90	66	100 $76 + 22\rho_{\perp}(\text{OCH}_3)$	76 + 22ρ _⊥ (OCH ₃) 90	06 001 001 001	100 87 + 10 μ (P = O)	73 + 13δ _s (CH ₃) 72	70	64 + 32δ _a (OCH ₃)	63 + 328 ₄ (OCH ₃) 83 + 11v(PO)
calc. cm ⁻¹	3005 3005 3001 2957	2957 2948 2924 2883	2883	1491 1471	1472 1451	1451 1422 1349	1348 1315	1242 1185	1193	1164	1165 1029
D _o obs. cm ⁻¹	2992	2926	+167	511	140	1422	1313	1240	1187	J 1162	(1034 ^{i.r.}
	v.(OCH ₃) v.(OCH ₃) v.(CH ₃) v.(CH ₃)	v ₄ (OCH ₃) v ₄ (CH ₃) v ₄ (OCH ₃)	v _s (OCH ₃)	δ ₄ (CH ₃) δ ₄ (OCH ₃)	%(OCH3) %(OCH3) %(OCH3) ∫	&(OCH ₃) &(CH ₃) &(OCH ₃)	δ _s (OCH ₃) δ _s (CH ₃)	ν(P=O) ρ (OCH ₃)	$\rho_{\parallel}(\text{OCH}_3)$	$\rho_{\perp}(\text{OCH}_3)$	ρ_(OCH3) ν(OC)

Table 4. Observed and calculated frequencies and potential energy distribution* for dimethylmethylphosphonate. (conformer I)

R. M. MORAVIE et al.

$\mu(OC)$ $\rho_{\parallel}(CH_3)$	1058 1058 916	ولد 105 إلت عال	59 17	71 + 14v(PO) 90	1057 ^{i.r.} 713	1058 701	71 + 13v(PO) $61 + 9\omega(PO_2)$	1072 ^{i.e.} 897 ^{i.e.}	1081 909	74+25δ _s (OCD ₃) 73	1083 ^{i.r.} 708	1081 697	73 + 24 <i>δ</i> ₅(OCD₃) 78
$\rho_{\perp}(CH_3)$	140	6	19	77		629	83		906	$76 + 12\rho_{\parallel}(OCD_3)$		655	83
ν(PO) ν _{III}	820) 82	24	41+22v(PC)	843	848	$60 + 13\rho(PO_2)$	687	681	30+23v(PC)	803	799	$29 + 28\rho_{\parallel}(OCD_3)$
и(РО) и _п	789	64 (57	4 + 18ν(PC)	800	796	+ 11v(OC) 42 + 18v(PC	754	765	$31 + 15\rho_{\parallel}(OCD_3)$	776	765	$+11\nu(OC) + 11\rho(PO_2)$ 15 + 25 $\nu(PC)$
v(PC) vı	714	1 10	60	+ 11v(OC) 35 + 20v(PO)	671	668	+ 13v(OC) 22 + 32 <i>p</i> ∥(CD ₃)	806	795	+ 9v(OC) 44 + 17v(PO) + 13 <i>0</i> (OCD ₄)	643	650	+ 13w(OC) + 96(CPO) 28 + 16ρ(CD ₃) + 13v(PO)
$\omega(\mathrm{PO}_2)$	200	20	10	28 + 16 <i>p</i> (PO ₂) + 13v(PC) + 12ð(POC)	460	469	26 + 22ð(PO ₂) + 10ð(CPO)	489	487	33 + 156(CPO) + 134(PC) + 12p(PO ₂)	445	456	$21 + 17(PO_2) + 14\rho(PO_2) + 118(PO_2) + 118(PO_2)$
p(PO2)	467	41	73	$18 + 16\omega(PO_2)$ + $15i(PO_2) + 15\delta(PO_2)$	484	487	$28 + 140(O_2)$ + $130(PO_2)$ + $110(PC)$	454	460	29 + 211(PO ₂) + 14δ(CPO) + 9δ(POC)	471	473	+ 140(CPO) 24 + 19ω(PO ₂) + 12м(PC) + 11t(PO ₂)
δ(PO ₂)	455	5 45	50	+ 130(CPU) + 100(POC) 37 + 14v(PO) + 10x(CPO) + 102(PO)	436 ^{i.r.}	442	+ 196(POC) 32 + 126(PC) + 11420() + 10420)		431	42 + 14v(PC) + 0&(CPO)	424 ^{i.r.}	426	44 + 12v(PO)
ð(CPO)	415	5 42	21	+ 100(CEO) + 100(EO) 40 + 30(PO ₂)	410	396	$40 + 251(PO_2)$	404	414	$37 + 284(PO_2)$ + 17.0(PO_1) + 108(PO_1)	399	388	$43 + 21t(PO_2)$ + $15_{co}(PO_2)$
t(PO ₂)		37	78	+ 1440(FO2) 29 + 15p(PO2) - 138/CPO1		358	+ 100(FO2) 20 + 178(CPO) + 172(PO)		362	$+ 1.00(FO_2) + 100(FO_2)$ 37 + 18 $\rho(PO_2)$ + $0.8(CPO)$		341	$\frac{1}{30} + 100(102)$ $30 + 16\rho(PO_2)$ $+ 10\delta(CPO)$
t(CH ₃)	306	; 30	05	+ 100/cr -0) 84		201	42 + 318(POC)	295	302	97		204	43 + 42t(OCD ₃)
t(OCH ₃)		29	90) 61		292	$\frac{+90(\GammaO_2)}{89 + 11\delta(POC)}$		203	81	206	201	54 + 138(POC)
t(OCH ₃)		28	81	83	287	280	83	210	221	41378(POC)		233	+ 104(CD ₃) 36 + 36t(CD ₃) + 13xPOC
&(POC)	233	3 24	40	62 + 15p(PO ₂)	222	236	40 + 191(CD ₃)	186	181	+ 14/(FO2) 34 + 35((OCD ₃) - 17500 > 1 0400 >	174	179	+ 126(10C) 36 + 28(0CD ₃) + 128(PO)
&(POC)	204	1 21	11	$51 + 13\delta(PO_2)$	197	218	+ 1/p(FO ₂) 28 + 37t(CD ₃) - 13t(PO)	210	226	+ 120(CD ₃) + 24(C-1) 48 + 30(OCD ₃)	206	219	$44 + 27t(OCD_3)$
y(POC) y(POC)		14 13	1 4 E	+ 24(FO2) 100 100		132 132	120 July 120		117 125	94 100		116 124	95 100

*Only contributions larger than 8% have been given.

Normal mode analysis of dimethylmethyl phosphonate

Vibrational							
mode	Coordinate	Set I	Set II	Fundamental	Coordinate	Set I	Set II
v(P=O)	S ₁	9.27*	9.150	δ _e (OCH ₃)	S , S	0.62 -0.648**	0.585
$v(\mathbf{P}-\mathbf{C})$	S_2	3.50*†	3.290	$\delta'_{4}(OCH_{3})$	S 22, S 24	0.548**	0.535
v(P-O)	S_{3}, S_{4}	3.92*	4.240	$\rho_{\parallel}(\text{OCH}_3)$	S25, S26	0.769**-0.871	0.870
v(O-C)	S5,S6	4.82*-4.85**	4.519	$v_{a}(CH_{3})$	S ₂₇	4.71¶-4.788§	4.750
$v_{s}(CH_{3})$	S ₇	4.80†–4.788§	4.890	$v_{a}(OCH_{3})$	S28, S29	4.82 4.903*	4.765
$v'_{s}(CH_{3})$	S ₈	4.78*§	4.585	$\rho(PO_2)$	S ₃₀	0.50	1.420
$v_{s}(OCH_{3})$	S_{9}, S_{11}	5.033**-5.091	4.730	t(PO ₂)	S ₃₁	0.50	1.540
$v'_{s}(OCH_{3})$	S_{10}, S_{12}	4.78-4.919	4.610	$\delta_a(C\bar{H}_3)$	S ₃₂	0.50†–0.54¶	0.599
δ (CPO)	S ₁₃	0.50	1.600	$\rho_1(CH_3)$	S ₃₃	0.63†	0.536
$\delta(PO_2)$	S_{14}	0.50‡	1.920	$\delta_a(OCH_3)$	S34, S35	0.517 -0.554**	0.499
$\omega(PO_2)$	S ₁₅	0.50	1.478	$\rho_{\perp}(\text{OCH}_3)$	S_{36}, S_{37}	0.842**-0.871	0.923
$\delta(POC)$	S16.S17	0.50	0.895	t(CH ₃)	S	0.131	0.168
δ.(CH ₁)	S_{18}	0.483+-0.519§	0.510	t(OCH ₄)	S	0.03 -0.035**	0.158
$\delta'_{s}(CH_{3})$ $\rho_{\parallel}(CH_{3})$	S_{19}^{10} S_{20}^{10}	0.50†–0.58¶ 0.63†	0.541 0.555	γ(POC)	S_{41}, S_{42}	0.03	0.230

Table 5A. Diagonal force constants

Stretching force constants: mdyn Å⁻¹ (or 10^{-2} N m⁻¹). Bending force constants: mdyn Å rad⁻² (or 10^{18} J rad⁻²) *[21], †[17], ‡[27], §[28], ||[22], ¶[2], ** [29].

The initial force constants are those of Set I.

Table 5B. Off diagonal force constan

Coordinates	Set I	Set II	Coordinates	Set I	Set II	Coordinates	Set I	Set II
$S_1 \times S_2$		0.010	$\int S_3 \times S_{20}$		-0.100	$\cdot \int S_{22} \times S_{25}$		-0.030
$\int S_1 \times S_3$		0.120	$(S_4 \times S_{20})$			$l_{S_{24}} \times S_{26}$		
$l S_1 \times S_4$			$\int S_3 \times S_{25}$		0.080	$S_{30} \times S_{31}$		0.200
$S_1 \times S_{15}$		0.150	$l S_4 \times S_{26}$			$S_{30} \times S_{32}$		-0.020
$S_{1} \times S_{18}$		0.105	$\int S_5 \times S_{14}$		0.030	$S_{30} \times S_{33}$		-0.050
$S_1 \times S_{20}$		0.120	$\int S_6 \times S_{14}$		0.120	$S_{31} \times S_{39}$		-0.100
$\int S_2 \times S_3$		0.290	$\int S_5 \times S_{21}$	-0.539†	-0.500	$S_{31} \times S_{40}$		0.030
$S_2 \times S_4$			$\int S_6 \times S_{23}$			$(S_{31} \times S_{41})$		0.050
$S_2 \times S_{15}$		-0.180	$\{S_5 \times 25\}$	-0.022†	-0.150	$(S_{31} \times S_{42})$		
$S_{2} \times S_{18}$	-0.13*	0.200	$S_6 \times S_{26}$			$S_{32} \times S_{33}$		0.080
$S_2 \times S_{20}$		0.100	$\begin{cases} S_9 \times S_{21} \end{cases}$		-0.080	$\int S_{34} \times S_{36}$		-0.030
$S_3 \times S_4$		0.310	$(S_{11} \times S_{23})$			$S_{35} \times S_{37}$		
$\int S_3 \times S_5$		0.150	$S_{13} \times S_{14}$		0.250	$\int S_{34} \times S_{41}$		0.020
$S_4 \times S_6$			$S_{13} \times S_{20}$		-0.050	$S_{35} \times S_{42}$		
$\int S_3 \times S_{15}$		0.110	$S_{14} \times S_{16}$		-0.040	$\int S_{36} \times S_{41}$		0.115
$C_{4} \times S_{15}$			$S_{14} \times S_{17}$		0.030	$(S_{37} \times S_{42})$		
$\begin{cases} S_3 \times S_{16} \end{cases}$		0.220	$\int S_{16} \times S_{22}$		-0.040	$(S_{39} \times S_{41})$		0.040
$S_4 \times S_{17}$			$(S_{17} \times S_{24})$			$(S_{40} \times S_{42})$		
			$S_{19} \times S_{20}$		-0.070	70 72		

Stretch-bend interactions force constants: mdyn rad⁻¹ (or 10^8 N rad⁻¹). *[17], +[29].

mode varies only slightly with the conformation. The very close position observed for the i.r. and Raman components in the pure liquid indicates small aggregation effects due to a centrosymmetric dipolar coupling, as is usually observed in other polar solvents [26]. The v(P=O) main band frequency increases by $8-10 \text{ cm}^{-1}$ when comparing the polar pure liquid spectra to those of the same compounds diluted in an apolar solvent like CS₂ [5]. This upward shift due to the local field effect of the surroundings is only observed for the D₀, D₃ and D₆ compounds. For the D₉ compound the main component is observed at the same frequency (1263 cm⁻¹) in the i.r. spectra of the pure liquid and of the dilute CS₂ solution. The other component appears at different frequencies in the pure

liquid (1248 cm⁻¹ in Raman and 1253 sh in i.r.) and in the CS₂ solution (1280 sh in i.r.). This particular behaviour in the D₉ compound is explained by a Fermi resonance with different combination tones having a small anharmonic coupling with the v(P=O)mode for the pure liquid and the CS₂ solution. In the pure liquid the $v(P-O) + \rho(PO_2)$ combination is expected at 471 + 776 = 1247 cm⁻¹ in the Raman and at 475 + 779 = 1254 cm⁻¹ in the i.r. spectra. The unperturbed v(P=O) level may be estimated from the solution frequency at 1263-8 = 1255 cm⁻¹, which explains the repulsion of the observed levels at 1248 and 1263 cm⁻¹. The combination is expected at 473 + 778 = 1251 cm⁻¹ in CS₂ solution, and the energy exchange and repulsion between levels is very small

Vibrations modes	obs.	$I(\phi_1 = 180^\circ, \phi_2 = 60^\circ)$ calc.	$II(\phi_1 = -60^{\circ}, \phi_2 = 180^{\circ})$ calc.	$IV(\phi_1) = -60^\circ, \phi_2 = 60^\circ)$ calc.	$V(\phi_1 = 60^\circ, \phi_2 = 60^\circ)$ calc.
v(P=O)	1240	1242	1242	1243	1247
WOC)	1058	1059	1052	1047	1055
WOC	1034	1029	1028	1036	1027
v(PO)	820	824	830	841	823
w(PO)	789	797	798	786	814
v(PC)	714	709	709	704	690
$\omega(PO_3)$	500	501	508	505	494
$\rho(\mathbf{PO}_{2})$	467	473	494	489	463
$\delta(PO_{1})$	455	450	471	441	443
δ(CPŐ)	415	421	433	419	427
t(PO ₂)		378	378	388	403
$\hat{\delta}(\mathbf{POC})$	233	240	236	243	246
$\delta(POC)$	204	211	209	194	202
γ(POC)		141	140	169	140
γ(ΡΟϹ)		133	131	116	132

Table 6. Calculated frequencies for the skeleton modes of four CH₃P(O) (OCH₃)₂ conformers

Fig. 2. Raman spectra in the v(P=O) region of compounds $D_0, D_3, D_6. (---)D_0, (----)D_3, (----)D_6.$

due to a small anharmonic coupling term. The shoulder seen at 1280 cm⁻¹ in the D₉ compound and at 1295 cm⁻¹ in the D₆ compound is assigned to another combination $v(PO) + \omega(PO_2)$, expected at 806 + 473 = 1279 cm⁻¹ and 806 + 491 = 1297 cm⁻¹ in the D₉ and D₆ compounds respectively. The shoulders observed at 1260 and 1261 cm⁻¹ in the Raman spectra of the pure liquid D₀ and D₃ compounds corresponds to the $v(P-O) + \rho(PO_2)$ combination expected at 789 + 467 = 1256 cm⁻¹ and 800 + 460 = 1260 cm⁻¹ respectively.

For the bands observed in the v(P-C) region, the solvent effects observed on the frequencies [5] are negligible, and the lowering of the temperature from room temperature to liquid nitrogen temperature for

Fig. 3. Raman spectra in the v(PC) region of compounds D_0 , D_3 , D_6 . $(----)D_0$, $(----)D_3$, $(----)D_6$.

the D_0 and D_9 compounds gives only a slight band frequency increase of 3-4 cm⁻¹. The calculation shows that the PO and PC vibration coordinates are strongly mixed. These normal modes also involve the $\rho(CD_3)$ coordinate in the D_3 and D_9 compounds and the ρ_{\parallel} (OCD₃) coordinate in the D_6 and D_9 compounds (Table 4). This mixing satisfactorily explains the frequency variations of the intense Raman $\nu(PC)$ band. On the other hand, changes of the conformation (Table 6) give only small frequency variations of this normal mode which is calculated at 709, 668, 681 and 650 cm⁻¹ for the D_0 , D_3 , D_6 and D_9 compounds respectively. We note (Table 4) that the $\omega(PO_2)$ mode partly involves the v(PC) and $\delta(POC)$ coordinates. Non-negligible anharmonic coupling terms between the v(PC) fundamental modes and the combination mode $\omega(PO_2) + \delta(POC)$ may be assumed [25]. This combination is calculated from the fundamentals at $500 + 204 = 704 \text{ cm}^{-1}, 484 + 222 = 706 \text{ cm}^{-1}, 489$ $+210 = 699 \text{ cm}^{-1}$ and $489 + 186 = 675 \text{ cm}^{-1}$, 445 $+219 = 664 \text{ cm}^{-1}$ for the D₀, D₃, D₆ and D₉ compounds respectively. They fit very well the two components observed mainly in Raman spectra (Fig. 3) for the D_0 , D_3 and D_9 compounds and for the three components observed from the D₆ compound, taking into account the slight repulsion and energy exchange of the levels due to the resonance. Although other combinations may be found, this one, taking into account all the components or shoulders for the four isotopic compounds in agreement with the calculation, seems the more convincing.

Acknowledgements—The authors thank M. F. LAUTIÉ and N. RATOVELOMANANA for the synthesis of the labelled compounds and C. COUPRY for their NMR analysis.

REFERENCES

- [1] N. L. OWEN, J. molec. Struct. 18, 1 (1973).
- [2] Y. OMURA, J. CORSET and R. M. MORAVIE, J. molec. Struct. 52, 175 (1979).
- [3] Y. OMURA, J. CORSET and P. BONNET, J. molec. Struct. 66, 83 (1980).
- [4] F. S. MORTIMER, Spectrochim. Acta 9, 270 (1957).
- [5] B. J. VAN DER VEKEN and M. A. HERMAN, Phosphorus Sulfur 10, 357 (1981).
- [6] A. J. BARNES, S. LOMAX and B. J. VAN DER VEKEN, J. molec. Struct. 99, 137 (1983).
- [7] B. J. VAN DER VEKEN and A. J. BARNES, J. molec. Struct. 99, 187 (1983).
- [8] S. M. BOWEN, E. N. DUESLER and R. T. PAINE, Inorg. Chim. Acta 61, 165 (1982); ibid., 24, 4441 (1985); ibid., 24, 4626 (1985); J. P. BRUNETTE, L. JURDY, M. J. F. LEROY and B. ALLARD, Spectrochim. Acta 37A, 991 (1981).

- [9] W. S. WODSWORTH, Org. React. 25, 73 (1978); T. BOT-TIN-STRZALKO, J. CORSET; F. FROMENT, M. J. POUET, J. SEYDEN-PENNE and M. P. SIMONNIN, J. org. Chem. 45, 1270 (1980).
- [10] S. R. LANDAUER and H. N. RYDON, J. chem. Soc. 2224 (1953).
- [11] K. MOEDRITZER and R. E. MILLER, Synth. React. inorg. Met. org. Chem. 4, 417 (1974).
- [12] E. GRYSZKIEWIEZ-TROCHINOWSKI, M. BOUSQUET and J. QUINCHON, Bull. Soc. chim. Fr. 1222 (1961).
- [13] B. J. VAN DER VEKEN and M. A. HERMAN, J. molec. Struct. 42, 161 (1977).
- [14] G. H. PIETERS, B. J. VAN DER VEKEN and M. A. HERMAN, J. molec. Struct. 102, 27 (1983).
- [15] L. M. SVERDLOV, M. A. KOVNER and E. P. KRAINOV, Vibrational Spectra of Polyatomic Molecules, p. 184. Halsted Press, John Wiley & Sons (1974).
- [16] J. R. DURIG, F. BLOCK and I. W. LEVIN, Spectrochim. Acta 21, 1105 (1965).
- [17] M. T. FOREL, C. DESTRADE and C. GARRIGOU-LA-GRANGE, J. Chim. phys. 66, 1991 (1969).
- [18] V. VON HORNUNG, O. ABOUL WAFA, A. LENTZ and J. GOUBEAU, Z. Anorg. allg. Chem. 380, 137 (1971).
- [19] M. T. FOREL and M. FOUASSIER, J. Chim. phys. 67, 1132 (1970).
- [20] G. CHASSAING, J. CORSET and J. LIMOUZI, Spectrochim. Acta 37A, 721 (1981).
- [21] W. D. VON BURKHARDT, E. G. HOHN and J. GOUBEAU, Z. anorg. allg. Chem. 442, 19 (1978).
- [22] H. SUSI and J. R. SCHERER, Spectrochim. Acta 25, 1243 (1969).
- [23] J. H. SCHACHTSCHNEIDER and R. D. SNYDER, Spectrochim. Acta 19, 117 (1963).
- [24] J. CORSET and F. FROMENT, C. r. hebd. Séanc. Acad. Sci., Paris B 280, 125 (1975).
- [25] R. M. MORAVIE, J. CORSET and A. BURNEAU, J. Chim. phys. 79, 119 (1982).
- [26] P. BONNET, A. BURNEAU, J. CORSET and M. L. JOSIEN, C. r. hebd. Séanc. Acad. Sci., Paris C 281, 797 (1975), and references therein.
- [27] J. HILBRAND and G. KAUFMANN, Spectrochim. Acta 26, 1407 (1970).
- [28] J. R. DURIG, H. G. HUDSON, M. R. JALILIAN and Y. S. LI, J. chem. Phys. 74, 772 (1981).
- [29] P. CAILLET and M. T. FOREL, J. Chim. phys. 72, 522 (1975).