

Tetrahedron Letters 44 (2003) 6779-6780

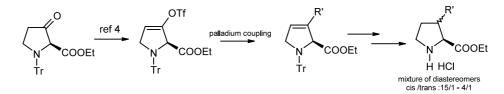
TETRAHEDRON LETTERS

Rapid access to *cis* 3-substituted prolines

Nadia Pellegrini, Martine Schmitt* and Jean-Jacques Bourguignon

Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR 7081 CNRS/ULP, Université Louis Pasteur, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch Cedex, France

Received 6 June 2003; revised 12 June 2003; accepted 14 June 2003

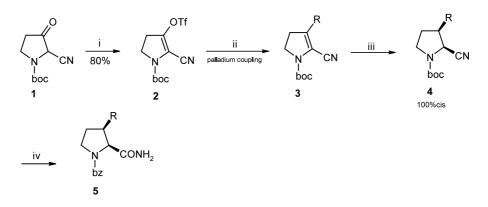

Abstract—The *O*-triflate of 2-cyano-3-oxopyrrolidine was obtained and used in a palladium coupling reaction. The resulting Δ^2 -pyrrolidine derivatives allowed diastereocontrol at C2 and C3 after catalytic hydrogenation and led to chiral 3-substituted prolines as conformationally constrained amino acids.

© 2003 Elsevier Ltd. All rights reserved.

The introduction of a proline ring into bioactive peptides restricts their conformational flexibility. This approach helps to study specific conformational requirements for small peptidic ligands for binding.^{1,2} Recent efforts in our laboratory focused on new strategies towards proline derivatives as conformationally constrained amino acids.³ More recently 2-cyano-3-oxo pyrrolidine was used in a Wittig reaction for the preparation of glutamate and arginine semi-rigid compounds.³ In this work, the 3-OTf of 2-cyano-3-oxo pyrrolidine was used as an efficient intermediate for typical Pd coupling reactions.

More recently, an enantioselective approach to 3-substituted prolines has been reported by Kamenecka et al. by palladium-mediated coupling using the corresponding enol triflate obtained after oxidation of the available 3-(R)-hydroxy-2-(S)-proline ethyl ester (Scheme 1).⁴ However, the enol intermediate presented a double bond between C3 and C4 and catalytic hydrogenation of corresponding products resulting from coupling reactions provided final products with only good to modest diastereoselectivity.⁴ Because of the presence in the O-Tf 2 of the more electron-withdrawing group (cyano group) combined with N-Boc protection when compared to carboxylate,⁴ the prototropic rearrangement led to a quantitative migration of the double bond between C2 and C3. By catalytic hydrogenation, the pure *cis* isomer could be obtained as a racemate mixture.

Boc-protected 3-oxo-2-cyanopyrrolidine **1** was obtained in good yield by the procedure described previously (Scheme 2).³ The triflate **2** was prepared using a conventional procedure (triflic anhydride, triethylamine and a catalytic amount of DMAP).⁵ This enol triflate was submitted to various palladium coupling reactions as indicated in Table 1.⁶ Catalytic hydrogenation of dihydropyrroles **3** afforded 2,3-*cis* substituted derivatives **4**.⁷ After deprotection of Boc protecting group and *N*-benzoylation, the cyano group could be converted into an amide by TMSCl and H₂O,⁸ or into an ester as previously described.³ These compounds constitute semi-rigid derivatives of phenylalanine (**5a**, R = Ph) or tyrosine (**5c**, R = *p*-MeOPh).



Scheme 1.

Keywords: prolines; Pd coupling; peptidomimetics.

^{*} Corresponding author. Tel.: +33 390 24 42 31; fax: +33 390 24 43; e-mail: 10schmitt@pharma.u-strasbg.fr

^{0040-4039/\$ -} see front matter @ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0040-4039(03)01476-X

Scheme 2. *Reagents and conditions*: (i) Tf₂O, TEA, DMAP, CH₂Cl₂; (ii) a. PdCl₂(dppf), K₂CO₃, toluene/MeOH (9/1), rt, b. PdCl₂, PPh₃, CuI, TEA, CH₃CN, rt; (iii) H₂, Pd/C, EtOH; (iv) 1. HCl/EtOAc, 2. PhCOCl, TEA, DCM, 3. TMSCl, H₂O.

Table 1.

R	Cpd 3 (%)	Cpd 4 (%)	Cpd 5 (%)
C ₆ H ₅	3a (78)	4a (80)	5a (71)
3-MeO-C ₆ H ₄	3b (62)	4b (87)	5b (63)
4-MeO-C ₆ H ₄	3c (60)	4c (75)	5c (65)
 —сн₂он	3d (50)	_	_
-CH ₂ NHBoc	3e (81)	4e (67)	_

Yields are not optimized.

Taking into account the easy transformation of the cyano group into carboxylate³ or carboxamide,⁸ this approach using 2-cyano-3-OTriflate pyrrolidine is useful for building new proline derivatives. Moreover it may be also applied to building new bicyclic nitrogencontaining alkaloids with a *cis* junction.

References

- 1. Hirschmann, R.; Veber, D. F. Bioorg. Chem. 1978, 7, 447.
- 2. Toniolo, C. Int. J. Protein Res. 1990, 35, 287 and references cited therein.
- 3. Pellegrini, N.; Schmitt, M.; Guerry, S.; Bourguignon, J. J. *Tetrahedron Lett.* **2002**, *43*, 3243–3246.
- Kamenecka, T. M.; Park, Y. J.; Lin, L. S.; Lanza, T.; Hagmann, W. K. *Tetrahedron Lett.* 2001, 42, 8571–8573.
- Davis, F. A.; Fang, T.; Goswami, R. Org. Lett. 2002, 4, 1599–1602.
- Typical procedure: (a) To a solution of 0.3 mmol of 3 and 0.45 mmol of boronic acid in toluene/methanol (10/1, v/v, 8 ml) was added 0.06 g (0.45 mmol) of K₂CO₃ and 12 mg (5 mol%) of PdCl₂(dppf). The reaction mixture was stirred

at 85°C for 9 h, cooled, concentrated and purified by silica gel chromatography. ¹H NMR (300 MHz, CDCl₃) of **3b**: 1.57 (s, 9H, Boc), 3.15 (t, 2H, CH₂), 3.85 (s, 3H, OMe), 3.91 (t, 2H, CH₂N), 6.45–6.5 (m, 1H, Har.), 6.9–6.95 (m, 1H, Har.), 7.1–7.3 (m, 2H, Har.).

(b) To a solution of 0.3 mmol of **3** and 0.45 mmol of alkyne in acetonitrile (8 ml) was added 16 mg (0.06 mmol) of PPh₃, 6 mg (0.03 mmol) of CuI, 0.06 ml (0.45 mmol) of TEA and 6 mg (0.03 mmol) of PdCl₂. The reaction mixture was stirred at room temperature for 9 h, concentrated and purified by silica gel chromatography. ¹H NMR (300 MHz, CDCl₃) of **3e**: 1.55 (s, 9H, Boc), 2.80, (t, 2H, CH₂), 3.90 (t, 2H, CH₂N), 4.20 (d, 2H, CH₂-NHBoc), 4.8–7.0 (s, 1H, NH).

- 7. All compounds 4 are characterized by an AB system (H2 and H3) in their ¹H NMR spectrum. For example, compound 4c: ¹H NMR A part of AB system (300 MHz, CDCl₃): 4.70 (d, 0.6H, H2), 4.84 (d, 0.4H, H2). (300 MHz, d_6 -DMSO): 4.10 (d, 1H, H2). As expected for tertiary amides, two different isomers could be identified in the 300 MHz NMR spectrum (CDCl₃) of 4c: The C2–H methine appeared at 4.70 (60%) and 4.84 ppm (40%) as a part of an AB system, whereas only one isomer was identified in d_6 -DMSO solution. This observation confirmed the presence of two isomers, but only one 2,3-*cis* diastereoisomer.
- Basu, M. K. Luo, F. T. *Tetrahedron Lett.* **1998**, *39*, 3005–3006. Typical procedure: 2 equiv. of TMSCl is added to 1 equiv. of nitrile at 0°C and followed by the drop wise addition of 2 equiv. of water and allowed to warm up to 25°C in 2 h. The reaction mixture is neutralized with saturated bicarbonate solution at 0–5°C and extracted with dichloromethane, dried over MgSO₄, concentrated and purified by silica gel chromatography. ¹H NMR (200 MHz, CDCl₃) of **5c**: 1.9–2.1 (m, 2H, CH₂), 2.2–2.4 (m, 1H, H1), 3.6–3.8 (m, 2H, CH₂N), 3.8 (s, 3H, OMe), 4.7 (d, 1H, H2), 5.6 (s, 1H, NH₂), 6.7 (s, 1H, NH₂), 6.9 (d, 2H, Har.), 7.1–7.6 (m, 7H, Har.).