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Abstract: The base-promoted reaction of ammonium ylide 1a,
which forms a cyclic hemiacetal structure, is shown to afford the
anti-hemiacetal 3a in high diastereopurity, via the Stevens re-
arrangement followed by efficient thermodynamic epimerization.
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The Stevens rearrangement is a general class of the 1,2-
alkyl shift from nitrogen or sulfur to carbon on a quater-
nary ylide system.1 This type of rearrangement is now
well recognized to proceed via a radical dissociation–re-
combination mechanism (Scheme 1).1,2

Scheme 1

Despite the long history of the Stevens rearrangement, its
synthetic application as a diastereoselective approach to
chiral amines is limited due to the difficulty of stereocon-
trol at the a-amino position.3 Herein we wish to report a
novel Stevens rearrangement system using the hemiacetal
A (a tautomer of a hydroxy ketone A¢) as a substrate
which provides the a-amino ketone B and its tautomer,
acetal B¢, in good yield with excellent diastereoselectivity
(Scheme 2).

Scheme 2

During the course of our study on acetal and hemiaminal
chemistry,4 we were interested in studying the rearrange-
ment of a hemiacetal A that has an ammonium ylide

moiety at the b-position. An alkoxide C derived from
hemiacetal A will isomerize to acyclic form D, which has
an alkoxide on the migrating group (Scheme 3). This
alkoxide moiety could act as the intramolecular base and/
or chelation counterpart in the rearrangement step and/or
the post-rearrangement step. Thus, it was expected that
the stereochemistry at the a-amino position of rearrange-
ment product B could be controlled by these intramolecu-
lar alkoxide effects.

Scheme 3

Based on this hypothesis, we designed the ammonium salt
1a (racemic) for the rearrangement substrate, and it was
readily prepared from phenylglycinol in two steps: N-me-
thylation followed by treatment with bromoacetophenone
(Scheme 4).5 According to the 1H NMR, 13C NMR, H-H
COSY NMR and HMQC NMR analyses and NOE experi-
ment, it was confirmed that the resulting salt 1a exists pre-
dominantly as a cyclic hemiacetal form.6

Scheme 4

A rearrangement of hemiacetal 1a was performed by
treatment with potassium tert-butoxide (2 equiv) in
ethanol at 0 °C to r.t.7,8 The reaction gave the expected
hydroxy ketone 2a5 in 35% yield as a single diastereomer
(>95% dr, anti) along with a hemiacetal 3a5 in 40%
yield also as a single diastereomer (>95% dr, anti,syn).9
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Furthermore, it was observed that the thus-obtained hy-
droxy ketone 2a easily tautomerized to a hemiacetal 3a on
silica gel (Scheme 5). These results reveal that the present
hemiacetal rearrangement provides the single diastereo-
mer of the product as expected.

To clarify the intramolecular alkoxide effect in the stereo-
control of the rearrangement, next we examined a similar
rearrangement of hydroxyl-protected derivative of 1a. In
sharp contrast to the above-mentioned result, the reactions
of methyl ether 1b and silyl ether 1c provide only a 1:1
diastereomer mixture of products 2b and 2c, respectively
(Scheme 6). However, interestingly enough, desilylation
of a diastereomer mixture of 2c with TBAF (2 equiv) gave
a mixture of anti-2a (17%) and its tautomer anti,syn-3a
(58%), did not give the syn-isomer.

Scheme 6

Furthermore, we found that a similar reaction of g-hy-
droxy homologue 4 gave poor diastereoselectivity. Name-
ly, the Stevens rearrangement of ammonium salt 4, which
exists as an acyclic hydroxy ketone, provides a diastereo-
mer mixture of d-hydroxy ketone 5 and a hemiacetal
anti,syn-6,10 tautomer of anti-5 (Scheme 7).

Scheme 7

These results strongly suggest that the high level of dia-
stereoslectivity observed in the reaction of 1a is a result of
the base-catalyzed epimerization of the product, and the
properly positioned alkoxide is essential for this stereo-

control. The stereochemical outcome of the rearrange-
ment of 1a is explicable as a result of the efficient
thermodynamic control in the post-rearrangement step
that includes the base-catalyzed epimerization at the a-
amino position and the hydroxy ketone/hemiacetal tau-
tomerization. To evaluate the thermodynamic stability of
possible products, the potential energies were examined
by semiempirical calculation.11 As shown in Scheme 8,
the calculation predicted that anti,syn-3a (tautomer of
anti-2a) is favored over other isomers (>4.58 kcal/mol).
This result and experimental facts indicate that the forma-
tion of a stable cyclic acetal plays the key role in attaining
high stereoselectivity.

Scheme 8

Next, we examined an asymmetric variant of the present
Stevens rearrangement using an optically active hemiace-
tal (2R,5R)-1a.12 The reaction performed in ethanol at
room temperature provides a mixture of (2S,3R)-2a and
(2S,3R,4R)-3a in 56% ee (Scheme 9). In contrast, when
water was used as a solvent, the enantiopurity of products
was raised to 72–82% ee. These results show that the
rearrangement proceeds predominantly with retention of
configuration at the migrating carbon13 and the degree
of asymmetric transmission is highly dependent on the
solvent used.14

Scheme 9

In summary, we have described a highly diastereoselec-
tive approach to the chiral hemiacetal, tautomer of b-
chiral a-amino ketone, based on a novel Stevens rear-
rangement of a cyclic hemiacetal system.

Scheme 5
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