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Abstract: Reductive cyclization of sulfur-containing substrates 1
and 5 with samarium diiodide afforded the corresponding thiochro-
man derivatives with excellent diastereoselectivities. Cyclization of
1 is facilitated by geminal dimethyl substitution, which accelerates
the reductive coupling and prevents samarium diiodide induced de-
halogenation. Bromo-substituted dihydrothiochroman derivative 8
was further functionalized in subsequent reactions. Analogously,
bromo-substituted hexahydroquinoline derivative 10 was diastereo-
selectively prepared in satisfying yield.
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Samarium diiodide is known as a very efficient reagent in
organic synthesis triggering the formation of new carbon–
carbon bonds.1 Our group is interested in the application
of samarium diiodide in the reductive cyclizations of (het-
ero)aryl ketones that deliver functionalized dearomatized
products with excellent diastereoselectivity.1e,i A broad
spectrum of substrates such as ketones with (substituted)
phenyl,2,3 naphthyl,4 aniline,5 indole, pyrrole6 and
quinoline7 moieties in γ-position were successfully used
as precursors. In the course of these studies we also inves-
tigated the influence of geminal disubstitution on these re-
ductive cyclizations of (substituted) phenyl ketones2h,i and
now present our results applying substrates containing a
sulfur or nitrogen atom in the linker unit. Compounds
such as 1 are easily prepared by conjugate addition of the
corresponding thiophenol derivative to mesityl oxide
(Scheme 1)8 and they are excellent precursors for the
preparation of unusually substituted thiochroman deriva-
tives.9

Scheme 2 summarizes our results on reductive cycliza-
tions.10 The attempted reductive cyclization of ketone 2,
bearing a thioether in the linker but no geminal dimethyl
unit, did not lead to a satisfying conversion. Along with

small amounts of bicyclic product 3 we mainly isolated
secondary alcohol 4 as a result of samarium diiodide me-
diated reduction of the carbonyl group. In contrast, pre-
cursor 5 bearing two methyl groups in the linker unit
underwent smooth reductive cyclization and furnished a
mixture of the desired bicyclic compound 6 and the con-
jugated diene 7 in satisfying yield. It should be noted that
similar mixtures of regioisomers are regularly isolated
when substrates without additional substituents at the phe-
nyl ring are applied as precursors.2g,h The origin of the low
regioselectivity is still under investigation, but prelimi-
nary results indicate that a kinetically controlled unselec-
tive protonation of an anionic intermediate is responsible
for the generation of product mixtures.11 The relative con-
figuration of these compounds was established by NMR
spectroscopy and is analogous to that of cyclization prod-
ucts previously reported.2,5,6

Comparison of the results of precursors 2 and 5 suggests
that geminal dialkyl substitution is very beneficial for ef-
ficient cyclizations. We therefore examined the conver-
sion of para-bromo-substituted precursor 1 and were
delighted to observe that the cyclization proceeds cleanly
and rapidly even at a lower temperature affording bromo-
substituted thiochroman derivative 8 in good yield.12 No
evidence was found for the generation of compounds 6 or
7, possible products of a reductive removal of the bromo
substituent. Thus, for the first time a bromo-substituted
aryl ketone was successfully applied in the samarium di-
iodide induced ketyl–aryl coupling process. Previous in-
vestigations towards cyclization of aryl ketones with a
para-chloro substituent predominantly led to dechlorinat-
ed products due to a fast reduction of the carbon–halogen
bond.2g Apparently, the geminal dimethyl substitution of
compound 1 strongly accelerates the cyclization and de-
halogenation does not occur.

We also explored the related para-bromoaniline-derived
ketone 9 as substrate and smoothly obtained hexahydro-
quinoline derivative 10 albeit in moderate yield (Scheme
3). Substrates without a bromo substituent and without the
dimethyl unit had been investigated previously and fur-
nished cyclization products in excellent diastereoselectiv-
ities.5 An attempt to cyclize the iodo analogue of 9 led to
a more complex product mixture containing only small
amounts of the desired cyclization products.11,13 The relat-
ed precursors with an oxygen atom in the linker unit were
not suitable with the reductive ketyl–aryl coupling as only
small amounts of cyclization products could be obtained.

Thiochroman derivatives such as 8 are promising candi-
dates for subsequent transformations, e.g. transition-met-

Scheme 1 Preparation of bromo-substituted γ-aryl ketone 1 by conju-
gate addition
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al-catalyzed cross couplings or oxidations at the sulfur
atom. Our exemplary results are illustrated in Scheme 4.
Sonogashira reaction of 8 with TIPS–acetylene as cou-
pling partner afforded alkyne 11 in very good yield,
whereas a Heck coupling with tert-butyl acrylate required
high temperatures and long reaction times to furnish re-
aromatized thiochroman derivative 12 in modest yield.
Suzuki–Miyaura coupling of 8 and phenyl boronic acid
under standard conditions afforded compound 13 in mod-
erate yield. Sulfone 14 was obtained by oxidation of 8
with m-CPBA under mild conditions with no evidence for

the generation of epoxides.14 Nevertheless, the low yield
for this transformation indicates the formation of side
products.

Scheme 4  Subsequent transformations of bromo-substituted com-
pound 8 leading to new thiochroman derivatives 11–14

In summary, we could demonstrate that the samarium di-
iodide induced cyclization of sulfur-containing precursors
constitutes a new and valuable approach to thiochroman
derivatives which are formed diastereoselectively. We
again could show that geminal dialkyl substitution of the
linker unit is essential to attain acceptable yields. This al-
lows the use of bromo-substituted precursors and hence
subsequent transformations utilizing this functional group
leading to a variety of new highly substituted thiochroman
derivatives.
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51.9 (t, C-3), 57.2 (s, C-2), 72.9 (s, C-4), 118.8 (s, C-6), 
125.5 (d, C-5), 132.8 (s, C-8a), 135.2 (d, C-8). IR (film): 
3480 (O–H), 2990–2855 (=C–H, C–H), 1130 (S=O) cm–1. 

HRMS (ESI–TOF–MS): m/z [M + Na]+ calcd for 
C12H17BrO3SNa: 342.9979; found: 342.9977. 
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