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Abstract: A highly efficient protocol for Arndt–Eistert chain
elongation of the base-labile fluorenylmethoxycarbonyl (Fmoc)
protected a-amino acids by Ag+-catalyzed, ultrasound-promoted
Wolff rearrangement of the corresponding a-diazo ketones at
room temperature is described. The enantiomeric purity of the
products was examined by capillary zone electrophoresis with
chiral buffer systems.

Key words: Fmoc-b-homoamino acids, Wolff rearrangement,
sonochemistry, capillary zone electrophoresis

The homologation of a-amino acids is an important strat-
egy for the asymmetric synthesis of b-homoamino acids,2

as well as addition of nitrogen nucleophiles to a,b-unsat-
urated esters,3 enolate additions to imines, and hydrogena-
tion reactions of b-enamino esters.

The Arndt–Eistert approach towards b-homoamino acids
via Wolff rearrangement of diazo ketones derived from N-
phthaloyl-,4 N-tosyl-,5 or N-Cbo/Boc-protected6 a-amino
acids has been utilized since the early 1950s.7, 8 Recently,
this protocol was reinvestigated thoroughly with respect
to possible epimerization of the chiral center9 and to the
potential synthetic utility of the ketene intermediate.10

The Wolff rearrangement of a-diazo ketones can be ac-
complished thermally, photochemically, or by metal ion
(Ag+) catalysis and has been shown to proceed with com-
plete retention of the configuration.9, 11 Epimerization (ap-
proximately 10%) occurs only in the case of carbamate-
protected phenylglycine, presumably during carboxylic
group activation.9, 12

There has been a growing interest in the structural features
of peptides containing b-homoamino acids. However,
only peptides containing b-alanine together with a-amino
acids,13 a few peptides containing exclusively or mainly
b-homoamino acids14 or poly[(a-alkyl)-b-L-aspartate]s15

have been examined until now. Peptides containing b-ho-
moamino acids are often characterized by lower rates of
metabolic degradation.8

We have developed routes for the asymmetric synthesis of
b-homoamino acids by Michael addition of homochiral
amidocuprates to a,b-unsaturated esters and of a-deuterio
b-homoamino acids or a-alkyl b-homoamino acids by
tandem Michael addition/ester enolate trapping.16 In the
course of our investigation into secondary structure ele-
ments caused by the replacement of single a-amino acids
by enantiomerically pure b-homoamino acids in physio-
logically active peptides, we required Fmoc-protected b-
homoamino acids17 for solid phase peptide synthesis
(SPPS).18 For simple derivatives, the chain elongation of

a-amino acids according to the Arndt–Eistert procedure
giving standard b-homoamino acids in only two steps
nicely complements the synthetic repertoire.

Silver oxide catalysis usually involves a heterogeneous
reaction at higher temperatures. This procedure has often
been replaced by the Newman–Beal protocol6 consisting
of a homogeneous, Ag+-catalyzed decomposition, in the
presence of several equivalents of a tertiary base, proceed-
ing at considerably lower temperature.9 A SET-initiated
radical chain mechanism has been postulated.19 Alterna-
tively, a diazo ketone–Ag(NEt3)n complex may be in-
volved, which is formed upon deprotonation of the diazo
ketone. The presence of a base has, therefore, often been
assumed to be inevitable for the reaction progress.19 How-
ever, the reaction results in low yield in the case of Fmoc-
protected amino acids because of the eminent sensitivity
of the Fmoc group towards basic conditions.

While this manuscript was in preparation, a publication
described a base-free, silver ion catalyzed Wolff rear-
rangement of Fmoc-protected b-amino acids.20 This reac-
tion proceeds at elevated temperatures and the possible
epimerization has been examined only in the case of
(2S,3S)-isoleucine using 13C NMR spectroscopy, which is
intrinsically too insensitive for this purpose.20

The Ag+/base-catalyzed reaction of simple diazo ketones
(e.g. diazoacetophenone) is reported to be promoted sub-
stantially by sonication.21 We found that a base-free, Ag+-
catalyzed Wolff rearrangement of 2 proceeds smoothly
within minutes at room temperature on sonication using
an ultrasound cleaning bath.

The Fmoc-protected a-amino acids are activated as mixed
anhydrides using ethyl chloroformate. Reaction with a
sufficiently high excess of diazomethane (approx. 3

Synthesis of Fmoc-bb-Homoamino Acids by Ultrasound-Promoted Wolff 
Rearrangement1

Annett Müller,a Carla Vogt,b Norbert Sewald*a

a Institut für Organische Chemie der Universität Leipzig, Talstraße 35, D-04103 Leipzig, Germany
E-mail: sewald@organik.orgchem.uni-leipzig.de
b Institut für Analytische Chemie der Universität Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany

Received 11 August 1997; revised 18 November 1997

Dedicated to Prof. Dr. Klaus Burger on the occasion of his 60th birthday

Scheme

D
ow

nl
oa

de
d 

by
: S

im
on

 F
ra

se
r 

U
ni

ve
rs

ity
 L

ib
ra

ry
. C

op
yr

ig
ht

ed
 m

at
er

ia
l.



equiv) secures complete conversion into the diazo ketone,
although it has been reported that the application of this
protocol to Fmoc-protected substrates does not give satis-
factory results.20 The diazo ketones do not require further
purification. Methyl esters of the starting material or other
byproducts have not been observed by 1H NMR spectro-
scopy. Sonication of the diazo ketone in 1,4-dioxane in
the presence of silver benzoate and a suitable hetero nu-
cleophile (water, alcohols, etc.) results in a clean forma-
tion of the b-amino acid derivative. The 1H NMR spectra
and HPLC profiles of the crude reaction mixtures reveal
that no significant byproducts are formed. b-Amino acids
obtained via this route can be used for peptide synthesis
without further purification. Literature precedence9 and

the mild, base-free reaction conditions of our sonochemi-
cal procedure let us conclude that no substantial epimer-
ization should occur (except for phenylglycine).

Nevertheless, we examined the degree of racemization us-
ing capillary zone electrophoresis (CZE) with chiral buff-
er systems. As expected according to previous findings,9

considerable racemization (9–10%) is observed in the
case of 3a (Figure 2), because phenylglycine is prone to
epimerization when the carboxy group is being activated
as mixed anhydride. Figure 1 displays the separation of ra-
cemic 3a.

Both enantiomers of b-homophenylalanine have been ex-
amined as representatives for the other Fmoc-protected b-
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Table 1. Physical Data of Fmoc-Protected b-Amino Acids 3

Compound22 CIP23 ee Yielda mp [a]D Molecular
(%) (%) (°C) (°C, c, Solvent) Formulac

Fmoc-D-b-HPhg-OH (3a) S 80.5 70 184 –22.2 (24, 1.0, C24H21NO4
[Fmoc-D-b-Phe-OH] CZE DMF) (387.44) · 0.5 H2O

Fmoc-D-b-HPhe-OH (3b) R 82 (Lit. 4620) 127 (Lit. oil20) +26.9 (28, 0.6, C25H23NO4
MeOH) (401.46)

Fmoc-L-b-HPhe-OH (3b) S >99 76 125 –25.0 (28, 0.6,
CZE MeOH)

Fmoc-L-b-HVal-OH (3c) R 70 (Lit. 77,20 157 (Lit. 153–154,20 +8.0 (27, 0.5, C21H23NO4
[Fmoc-L-b-Leu-OH] 6124) 154–15524) MeOH)h (353.42) · 0.5 H2O

Fmoc-L-b-HLeu-OH (3d) S 77 (Lit. 7920) 99 (Lit. 108–11020) –12.0 (26, 1.0, C22H25NO4
MeOH) (367.44)

Fmoc-L-b-HIle-OH (3e) R 65 (Lit. 6420) 138 (Lit. 99–l0020) +3.7 (28, 4.0, C22H25NO4
MeOH) (367.44) · 0.5 H2O

Fmoc-L-b-HAsp(O-tBu)-OH (3f) R 80 88 +0.3 (28, 1.9, C24H27NO6
[Fmoc-L-b-Glu(O-tBu)-OH] MeOH) (425.48)

a Overall yield starting from Fmoc-a-amino acids.
b [a]D

27 –17.9 (0.6, CHCl3); Lit.24 [a]D
27 –21.5 (0.46, CHCl3).

c Elemental analysis C ± 0.49, H ± 0.47, N ± 0.40.

Figure 1. CZE analysis of racemic 3a. Figure 2. CZE analysis of of D-3a.
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amino acid derivatives synthesized; they are obtained
enantiomerically pure as shown in Figure 4 (L-3b). The
trace given in Figure 3 arises from a sample obtained by
arbitrarily mixing both enantiomers of 3b. Further addi-
tion of D-3b to the mixture causes an increase in intensity
of the first peak. Hence, D-b-homophenylalanine migrates
faster than L-b-homophenylalanine. Therefore, even
small quantities of the D enantiomer would inevitably
have been detected on CZE of L-3b.

297 K and were calibrated against internal standards (TMS and/or
solvent). Optical rotation indices were obtained with a Polartronic-D
polarimeter (Schmidt & Haensch); FT-IR spectra were recorded on an
ATI Genesis spectrometer using KBr pellets, the data are given in
wavenumbers (cm–1). FAB mass spectra were recorded on a VG
ZAB-HSQ and EI MS was done on a VG 12-250 instrument (70eV).
Microanalyses were performed by the faculty’s microanalytical labo-
ratory on a Heraeus CHN-O-RAPID elemental analyzer. A Beckman
P/ACE 2100 instrument with a fixed wavelength detector (214 nm,
5 Hz) was used for capillary zone electrophoresis. Racemic b-phenyl-
alanine was commercially available (Aldrich).

Synthesis of Fmoc-Protected bb-Homoamino Acids; General Pro-
cedure:
The Fmoc-protected a-amino acid derivative (5–l5 mmol) was dis-
solved in anhyd THF (5 mL/mmol). NEt3 (1 equiv) and ethyl chloro-
formate (1 equiv) were added sequentially at –15°C. Stirring was
continued for 15 min at the same temperature, then the solution was
warmed up to 0°C. A solution of diazomethane (3 equiv, CAUTION)
in Et2O was added slowly at 0°C. The slightly yellow solution was al-
lowed to reach r.t. and was stirred for a further 3 h. Excess diazo-
methane was decomposed by dropwise addition of HOAc. The
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Figure 3. CZE analysis of scalemic 3b (arbitrary DL mixture). The D
enantiomer migrates faster than the L enantiomer.

Figure 4. CZE analysis of L-3b.

An ultrasound cleaning bath Bandelin Sonorex RK 510 H was used
for the sonochemically promoted Wolff rearrangement. Analytical
TLC was performed using silica gel 60 F254 plates on aluminum foil;
silica gel 60 (32–60 mm) was used for flash chromatography. The pu-
rity of the Fmoc-protected b-amino acids was checked by HPLC
(MeCN/water/TFA gradient on RP-l8 column). Mps were deter-
mined with an apparatus according to Tottoli and are uncorrected.
NMR spectra were recorded on Varian Gemini 200 or Gemini 2000
instruments, in acetone-d6 at 200 MHz (1H) and 50 MHz (13C), at

Table 2. 1H NMR Data for Fmoc-Protected b-Amino Acids 3

Product 1H NMR d, J (Hz)

3a 2.80 (dd, J = 6.6, 15.5, 1H, Ha), 2.91 (dd, J = 7.8, 15.5, 1H, Ha), 4.13–4.31 (m, 3H, Fmoc CH2, CH), 5.17 (dd, J = 6.6, 7.8,
1H, Hb), 7.20–7.42 (m, 9H, Har), 7.62 (m, 2H, Ha), 7.78 (m, 2H, Har)

3b 2.55 (m, 2H, Ha), 2.91 (m, 2H, Hg), 4.1 4–4.31 (m, 4H, Hb, Fmoc CH2, CH), 6.52 (br, 1H, NH), 7.16–7.45 (m, 9H, Har), 7.65
(m, 2H, Har), 7.86 (m, 2H, Har)

3c 0.94 (d, J= 6.7, 6H, Hd), 1.88 (m, 1H, Hg), 2.47 (dd, J= 8.0, 15.4, 1H, Ha), 2.58 (dd, J = 5.5, 15.4, 1H, Ha), 3.90 (m, 1H, Hb),
4.17–4.33 (m, 3H, Fmoc CH2, CH), 6.43 (br d, J = 10.0, 1H, NH), 7.27–7.46 (m, 4H, Har), 7.68 (m, 2H, Har), 7.85 (m, 2H, Har)

3d 0.95 (d, J= 6.7, 3H, He), 0.97 (d, J = 6.7, 3H, He), 1.38 (ddd, J = 4.5, 9.2, 13.7, 1H, Hg), 1.60 (ddd, J = 4.4, 9.3, 13.7, 1H, Hg),
1.75 (m, 1H, Hd), 2.50 (dd, J = 6.9, 15.4, 1H, Ha), 2.56 (dd, J = 6.6, 15.4, 1H, Ha), 4.13 (m, 1H, Hb), 4.26–4.37 (m, 3H, Fmoc
CH2, CH), 6.40 (d, J = 8.8, 1H, NH), 7.33–7.47 (m, 4H, Har), 7.72 (m, 2H, Har), 7.89 (m, 2H, Har)

3e 0.92 (t, J = 6.8, 3H, He), 0.93 (d, J = 6.4, 3H, CH3), 1.22 (m, 1H, Hd), 1.57 (m, 1H, Hd), 1.66 (m, 1H, Hg), 2.46 (dd, J = 8.0,
15.3, 1H, Ha), 2.56 (dd, J = 5.0, 15.3, 1H, Ha), 4.00 (m, 1H, Hb), 4.13–4.34 (m, 3H, Fmoc CH2, CH), 6.46 (d, J = 8.8, 1H,
NH), 7.25–7.44 (m, 4H, Har), 7.69 (m, 2H, Har), 7.85 (m, 2H, Har)

3f 1.43 (s, 9H, OtBu), 2.57–2.67 (m, 4H, Ha, Hg), 4.22–4.41 (m, 4H, Hb, Fmoc CH2, CH), 6.55 (br, 1H, NH), 7.27–7.45 (m, 4H,
Har), 7.68 (m, 2H), 7.85 (m, 2H, Har)
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mixture was washed with sat. NaHCO3, sat. NH4Cl, and brine. The
organic layer was dried (MgSO4) and evaporated in vacuo. The result-
ing diazo ketone was dissolved in dioxane/water (5:1, v/v, 50 mL/
mmol). After addition of silver benzoate (0.1 equiv) the mixture was
sonicated using an ultrasound cleaning bath for ca. 30 min. The reac-
tion progress could be monitored by TLC (EtOAc/petroleum ether
l :1). When the reaction had reached completion, the solution was
acidified to pH 2 with 1 M HCl and extracted with Et2O (4 ´ 30 mL).
The organic layers were pooled, dried (MgSO4) and evaporated in
vacuo. The resulting residue was purified by flash chromatography
(CHCl3/MeOH 20:1 + 1% HOAc).
The enantiomeric purity of the Fmoc-protected b-amino acid deriva-
tives 3a,b was determined by capillary zone electrophoresis. The
sample was dissolved without using organic solvent in 60 mM SDS/
25 mM borate buffer (pH 8.0) and injected by 2 s or 8 s pressure in-
jection (equivalent to 1–5 nL). The separations were performed at
22°C and 20 kV in a fused silica capillary (70/77 cm, 50 mm i.d.) us-
ing 60 mM sodium dodecyl sulfate (SDS), 50 mM borate buffer (pH
8.0), and 20 mM g-cyclodextrin (for 3a) or 30 mM g-cyclodextrin (for
3b).
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