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Abstract

Development of highly selective method for simultaneous introduction of different heteroatom functions into carbon–carbon unsat-
urated bonds is of special interest. When a mixture of tetraphenyldiphosphine (Ph2P)2, diphenyl disulfide (PhS)2, and phenylacetylene in
CDCl3 was irradiated with a xenon lamp through Pyrex at ambient temperature, a highly regioselective addition of phosphino and thio
groups into carbon–carbon triple bond took place simultaneously to give the corresponding thiophosphination product in high yield.
� 2008 Elsevier Ltd. All rights reserved.
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Radical addition of heteroatom compounds to carbon–
carbon unsaturated bonds based on the photoinduced
homolytic cleavage of heteroatom–heteroatom linkage is
one of the most useful and highly atom-economical meth-
ods for the selective introduction of heteroatom functions
into organic molecules.1 In particular, the development of
a highly selective method for simultaneous introduction
of different heteroatom functions into carbon–carbon
unsaturated bonds is of special interest.2,3

Herein we report a highly regioselective photoinduced
thiophosphination of alkynes using a novel diphosphine-
disulfide binary system (Eq. 1).4,5 It has become apparent
for this methodology that the present thiophosphination
proceeds smoothly at room temperature using commer-
cially available (Ph2P)2 and (PhS)2 as the starting reagents
with excellent E-selectivity and can be applied to internal
alkynes.

When a mixture of tetraphenyldiphosphine (1 mmol),
diphenyl disulfide (1 mmol), and 1-bromo-4-ethynyl-ben-
zene (0.5 mmol) in CDCl3 (0.6 mL) was irradiated with a
xenon lamp through Pyrex for 2 h at ambient temperature,
a novel highly regioselective thiophosphination took place
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doi:10.1016/j.tetlet.2008.04.068

* Corresponding authors.
E-mail address: ogawa@chem.osakafu-u.ac.jp (A. Ogawa).
to give the corresponding thiophosphination product (4a).
The present thiophosphination proceeded smoothly with-
out a decrease in the yield of 4a, even when stoichiometric
(or slightly excess) amounts of (Ph2P)2 (0.6 mmol) and
(PhS)2 (0.6 mmol) were employed. A consequent air-oxida-
tion of 4a afforded the corresponding oxide (5a)
in high isolated yield.6,7 Interestingly, in this thiophos-
phination using a (PhS)2/(Ph2P)2 binary system, neither
bisphosphination product nor bisthiolation product was
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Fig. 2. UV–visible spectra of (Ph2P)2 (- - -), (PhS)2 (– � –) and Ph2PSPh (—).

Table 1
Photoinduced thiophosphination of alkynes

R (Ph2P)2 (PhS)2+ +
CDCl3, r.t.

hν (> 350 nm)
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formed. When the reaction was conducted in the dark,
thiophosphination did not proceed.

Compound 5a was recrystallized from EtOH to obtain a
single crystal suitable for X-ray analysis. The regio- and
stereochemistries of the major product ((E)-5a) were fully
determined by the X-ray crystallographic analysis (Fig. 1).7

A possible reaction pathway for the thiophosphination
is as follows (Scheme 1). Figure 2 indicates UV–visible
spectra of (Ph2P)2, (PhS)2, and thiophoshine (6) (Fig. 2).
The absorption based on the n-r* transition of (Ph2P)2,
(PhS)2, and thiophoshine (6) reaches 330 nm, 375 nm,
and 370 nm, respectively.8 Therefore, irradiation with the
light of wavelength over 350 nm induces preferential cleav-
age of S–S single bond, generating PhS�, which adds to
alkynes to form vinylic radical (7) (Scheme 1). PhS� also
attacks (Ph2P)2 to give thiophosphine (6)9 and Ph2P�, the
former of which captures the vinylic radical (7) to afford
the thiophosphinated product (4) regioselectively.10

Similar conditions can be employed with several acetyl-
enes (3b–g) (Table 1). In the case of aromatic acetylenes
Fig. 1. Molecular structure of (E)-5a by X-ray crystallographic studies.
Space group: C2/c (#15), Z = 8, R = 0.0665, Rw = 0.0729, GOF = 1.075,
Selected bond lengths (Å) and angles (�): C(1)–C(2) = 1.331(7), P–C(1) =
1.796(4), S–C(2) = 1.736(4), C(1)–C(3) = 1.480(6), P–C(1)–C(2) =
121.7(3), S–C(2)–C(1) = 122.4(3).
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Scheme 1. A possible pathway for thiophosphination.
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Entry Alkyne Time (h) Yield (%) (E/Z)

4a 5b

1 MeO (3b) 1 91 [91/9] 61

2 nC5H11 (3c) 1 90 [91/9] 60

3 (3d) 2 87 [90/10] 73

4c nC6H13 (3e) 27 77 [94/6] 57

5c Ph
(3f) 20 61 [93/7] 41

6c (3g) 48 80 [75/25] 67 [71/29]d

a 1H NMR yield.
b Isolated yield of E-isomer.
c Sulfurization with S8 instead of air-oxidation.
d Obtained as a mixture of E- and Z-isomers.
(entries 1 and 2), the thiophosphination proceeded
smoothly and E isomers (5b and 5c) were obtained as the
major product. The thiophosphination of enyne (3d) pro-
ceeded on the triple bond selectively (entry 3). Aliphatic
alkynes also underwent regioselective thiophosphination,
although a prolonged irradiation was required (entries 4
and 5).11 Noteworthy is that the thiophosphination of 1-
phenyl-1-pentyne (3g) as an internal alkyne also proceeded
regioselectively in good yields (entry 6).12

As an extention of the current (Ph2P)2–(PhS)2 binary
system, the thiophosphination reaction of an enyne via
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Scheme 2. Photoinduced thiophosphination of enyne.
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5-exo radical cyclization13 was demonstrated (Scheme 2).
The photoirradiated reaction of diethyl allylpropargylmal-
onate (3h) with (Ph2P)2 and (PhS)2 successfully afforded the
corresponding five-membered cyclic product (5h) bearing
phenylthio and diphenylphosphino groups at both the
terminal positions regioselectively.14,15

In conclusion, we have developed a new method for the
simultaneous introduction of phosphino and thio groups
into carbon–carbon triple bonds with excellent regio- and
stereoselectivities by using a (Ph2P)2/(PhS)2 binary system
via photoirradiation under mild reaction conditions. We
are currently investigating its detailed mechanism and its
further application to other substrates.
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