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ABSTRACT

Functionalized allylic electrophilic reagents such as chiral 2-iodo-1-cyclohexenyl and -cyclopentenyl phosphates undergo highly stereoselective
anti-SN2′-allylic substitution reactions with a wide range of organozinc reagents (R2Zn and RZnI) leading to chiral products with a transfer of
the chiral information >95%. The use of functionalized organozinc iodides allows preparation of the bicyclic enones 8 and 9 in g93% ee.

Functionalized allylic electrophiles are useful multicoupling
reagents1 for the expeditive formation of carbon-carbon
bonds in a selective way. A variety of organometallic
compounds undergo nucleophilic substitutions on allylic
systems. Especially interesting are organocopper compounds2

which are known to undergo SN2′ substitutions with various
allylic electrophiles with highanti-selectivity.3,4 Although
catalytic allylic substitutions have also been reported,5 the
transfer of chirality with use of chiral allylic precursors has
the advantage of being highly predictable. The required

allylic alcohols are readily available by a range of asymmetric
syntheses.6,7 In the allylation reactions zinc-based organo-
coppers show high SN2′ selectivities.8,9 Herein, we wish to
report a highly anti-SN2′ substitution of chiral 2-iodo-
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cycloallylic alcohol derivatives of type1 or 2 (n ) 1, 2)
with various functionalized zinc reagents (FG-R)2Zn or FG-
RZnI)10 in the presence of CuCN‚2LiCl11 leading to products
of type3 which can be converted to chiral bicyclic products
of type 4 with g93% ee, if the functional group FG is an
ester or nitrile (Scheme 1).

First, we have studied the substitution reaction using
various unfunctionalized diorganozinc reagents (R2Zn).
Chiral (R)-2-iodocyclopentenol (5, 94% ee) and (R)-2-
iodocyclohexenol (6, 94% ee) were converted into the
corresponding phosphates1 (76%) and2a (87%), which give
SN2′ products when reacting with organocoppers.12 The
alcohol6 was also converted into the pentafluorobenzoate
2b in 93% yield (Scheme 2).

Both the allylic phosphates and pentafluorobenzoates (1,
2) reacted with diorganozincs in the presence of CuCN‚2LiCl
(1.1 equiv) in a 3:1 mixture of THF:N-methylpyrrolidinone
(NMP)13 at -30 to-10 °C in 14 h furnishing theanti-SN2′
products3a-e. Primary as well as secondary diorganozincs
undergo the substitution reaction in good yields (70-91%,
Table 1).

The enantiomeric excess (% ee) determined by capillary
GC (see Supporting Information) was 91-94% ee, showing
a high transfer of the stereochemical information.14 Theanti-
selectivity was determined by converting vinylic iodide3a
into ketone7 of known configuration (Scheme 2).15

Thus, the reaction of3a with t-BuLi (2 equiv, THF,-78
°C, 20 min) followed by reaction with CuCN‚2LiCl (1.0
equiv, THF, 0°C, 10 min) and CH3COCl (2 equiv, 0°C, 30
min) furnishes ketone7 in 95% yield and 94% ee. Com-
parison with the optical rotation of7 and the literature
indicates that ananti-SN2′ substitution has taken place. The
complete transfer of the stereochemical information from1
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Scheme 1

Scheme 2

Table 1. Products3a-e Obtained by the Reaction of
Diorganozincs (R2Zn) with the Chiral Allylic Derivatives1 and
2a,b

a Yield of analytically pure product.b The enantiomeric excess was
determined by capillary GC analysis on products3 or derivatives of them
(see Supporting Information).c The reaction was performed in THF at-50
°C for 16 h.
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to 3a shows also that neither asyn-SN2′ substitution nor an
SN2 substitution had occurred since these reaction pathways
would lower the enantiomeric purity of3a. Remarkably, a
range of functionalized zinc reagents undergo the SN2′
substitution with comparable selectivities and yields (Table
2).

Only zinc-copper reagents made from equimolecular
amounts of zinc reagents and copper salts have been
examined.16

Thus, the reaction of 3-carboethoxypropylzinc iodide (2
equiv) with 1 (or 2a) in the presence of CuCN‚2LiCl (2
equiv) proceeds in THF:NMP (3:1) at-30 to 25°C within
12 h affording the functionalized substituted products3f and
3g respectively in 81% and 68% yield and 93-94% ee
(entries 1 and 2 of Table 2). Similarly the reaction of allylic
phosphates1 and 2a with 3-acetoxypropylzinc iodide
provides the products3h and3i respectively in 91% (94%
ee) and 84% (97.8% ee) (entries 3 and 4). Organozincs
bearing an acetal function (entries 5 and 6) or a nitrile (entries
7 and 8) react with highanti-SN2′ selectivity affording the
products3j-m in 91-97% ee and 62-90% yield (entries
5-8). The functionalized cyclohexenyl iodides3g and3m

can be converted into bicyclic ketones817 and918 respectively
in 75 and 52% yield and 93-95% ee by reaction withn-BuLi
(1.2 equiv) and TMSCl (1.5 equiv) in THF at-70 °C for 2
h (Scheme 3).

In summary, we have described highly enantioselective
anti-SN2′-allylic substitutions of cyclic 2-iodoallylic alcohols
with a wide range of zinc-copper reagents and have shown
their utility for preparing chiral bicyclic ketones such as8
and9 in g93% ee. Applications to the preparation of natural
products are currently underway.19
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mmol, 2.0 equiv) and cooled to-30 °C. The freshly prepared alkylzinc
halide reagent (1.5 M solution in THF, 1.2 mL, 1.7 mmol, 2.0 equiv) was
added dropwise and the resulting mixture was stirred 0.5 h at-30 °C. Then
(R)-2-iodo-2-cyclopenten-1-yl diethyl phosphate1 (94% ee; 0.300 g, 0.87
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give an overall ratio of THF:NMP of 3:1) and the reaction mixture was
allowed to stir for 16 h while warming up to 25°C. Saturated aqueous
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solution (1 mL), then the reaction mixture was stirred at 25°C until the
copper salts had dissolved. The mixture was extracted with Et2O (3 × 20
mL). The combined extracts were washed with brine and dried over Na2-
SO4. Evaporation of the solvents and purification by column chromatography
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colorless oil.

Table 2. Products3f-m Obtained by Reaction of
Functionalized Organozinc Halides with the Chiral Phosphates1
and2a

a Yield of analytically pure product.b The enantiomeric excess was
determined by capillary GC analysis on3 (see Supporting Information).
c Enantiomeric excess of1. d Enantiomeric excess of2a.

Scheme 3

Org. Lett., Vol. 5, No. 7, 2003 1061

http://dontstartme.literatumonline.com/action/showImage?doi=10.1021/ol0340742&iName=master.img-004.png&w=238&h=265
http://dontstartme.literatumonline.com/action/showImage?doi=10.1021/ol0340742&iName=master.img-005.png&w=169&h=120

