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This study details a modular and general synthesis of a new clasf A B
of molecules {) consisting of two perpendicularly disposed
m-systems. Once formed, these rigid compounds assemble int@
ordered monolayer films that orient their bis-oxazole subunits
upright from the surface. This orientation is useful in molecular
electronics test structures that require a path of conjugation
perpendicular to the metallic electrode surface.Molecules “OOR
typically used in these devices are linear aromatics that terminatd o _~ ., O N
. . S 12H2s O 2
in surface-active endgroup8.The molecules shown in Figure 1
have orthogonal terphenyl and bis-phenyloxazole arms. The crowd
ing in the central ring forces the external phenyl substituents out
of the ring plane, thereby preventing the prone conformation inft1aX=y=H 1eX=H, Y=CHO prevents the prone
self-assembled monolayer (SAMilms. hX=Y=8Ac " If X=COoMe, Y=5As conformation

S _ 1c X=Y=CHySAc 1gX=H,Y=COpH
The 6,5-ring junction between the phenyl and benzoxazole rings ,: X =Y:CN2 g ©2

is utilized in these studies because polymers with this linkage have rig,re 1. (a) Cruciformz-systems: terphenyl (red) and bis-phenyloxazoles
been shown to be flat and conjugafedilso, these polymers have  (black); (b) CPK molecular model showing the out-of-plane twist of the
been shown to be of high tensile strenftlesistant to oxidatiof, phenyl side chains blocking the prone position (carbon, gray; nitrogen, blue;
and conductivé-® The typical reaction conditions used to make ©XYgen. red; sulfur, yellow).
phenyl oxazoles are haf$hand do not allow the formation of Scheme 1 @
oligomers with sensitive groups such as acetate-protected thiols.
Shown in Scheme 1 is a new synthesis of a variety of substituted
bis-phenyloxazoles that affords these unusually shaped molecules
through an unprecedentédiouble Staudinger cyclizatiéhof bis-
azide 3. The unpurified reaction mixtures do not show any [Br (a)
significant byproducts and can be easily purified by a simple
filtration if polymer-bound triphenylphosphine is us€d.

The azides are remarkably stable and easily introduced into this
crowded ring structure through a Michael addition/elimination on

the bis-bromoquinon&. Sodium dithionite reduction of the bis- R 012"'25 0

azidoquinones to its hydroquinone form, followed by an in situ da—t

coupling with either carboxylic acids or the acid chlorides produces 3 Reagems and conditions: (a) NaNb) i, NaS:0s, H:0, ii, see the
the Staudinger precursorda—f. For 4e and 4f, differential Supporting Information: (c) RR-polystyrene.

substitution of the hydroquinone was successful through sequential
introduction of two different activated benzoic acids. Moreover, The XPS-derived film thickness is in good agreement with the 1.9
the monoaldehydéde can be cleanly oxidized through Lindgren  + 0.1 nm determined from ellipsometry from a monolayerlbf

conditiong“ to yield the monocarboxylic acitig. Some of the bis- on gold.

oxazoles in Scheme 1 were synthesized to carry surface-active Shown in Figure 2b are the IR spectra fbirin a monolayer

groups such as thioestersb( 1f),3 carboxylic acids 1g),'° and and in bulk. Similar spectra were acquired for monolayergof

nitriles (1d).16 on gold films. Loss of the 1693 cmh carbonyl stretch in the
To test for monolayer formation and structulds and 1f were monolayer indicates that the thioacetate is cle&bdthe oxazole

deposited, by the method of Tour et #&.pnto films of gold. vO—C=N stretch (at ca. 1613 cmt), whose transition dipole is

Likewise, 1gwas chemisorbed onto a native aluminum oxide layer. parallel to the axis of conjugation, has a higher relative intensity
For 1f, monitoring the binding energy of the,sScore electron at in the monolayer-in agreement with the XPS and ellipsometry data
ca. 162 eV shows the characteristic transition and peakshape for a&hat the bis-oxazole is upright from the substrate.

thiolate bound to gold’ For monolayers of alkane thiols, XPS has On going from the bulk to the SAM, the 1495 ci(vC=C

given close estimates as to the thickness of the organic layer byaromatic stretch) increases and the 1470 ch{0CH, scissoring)
using a two-layer modép By this method, monolayers daf were decreases in relative intensity. This change is an indication that
estimated to be 2.19 0.05 nm thick. In an upright configuration  the aliphatic side chains are anisotropic as in Figure 2a. Advancing
on gold, as shown in Figure 2a, molecular models predict the and receding water contact angle measurements of monolayers of
distance between the terminal carbon, and the attached gold atomif were found to be 86and 76 + 2°, respectively, similar to what

is 2.26 nm, implying that the molecule has a ca’ fii angle!® would be expected from a surface that is presenting a methyféster.
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