

Stereocontrolled Synthesis of Bicyclic Lactone Derivatives via Tungsten-Mediated [3 + 2] Cycloaddition of Epoxides with a Tethered Alkynyl Group

Reniguntala J. Madhushaw,[†] Chien-Le Li,[†] Haw-Lih Su,[†] Chu-Chen Hu,[†] Shie-Fu Lush,[‡] and Rai-Shung Liu^{*,†}

Department of Chemistry, National Tsing-Hua University, Hsinchu 30043, Taiwan, ROC, and Department of Medical Technology, Yuanpei Institute of Science and Technology, Hsinchu, Taiwan, ROC

rsliu@mx.nthu.edu.tw

Received October 24, 2002

In the presence of $BF_3 \cdot Et_2O$, alkynyltungsten complexes underwent [3 + 2] cycloaddition with tethered epoxides to give bicyclic γ -lactones efficiently. Only one diastereomeric product was formed despite the presence of three stereogenic centers. A mechanism is proposed that involves formation of a tungsten-vinylidenium species via an $S_N 2$ attack of the epoxide carbon by an alkynyltungsten group to give a tungsten-enol ether species via counterattack at the central tungsten-vinylidenium carbon by the OBF₃⁻ terminus. Most of the tungsten enol ether species were too unstable for isolation and underwent hydrolysis to give only *cis*-fused γ -bicyclic lactones. This cyclization works for both *cis*- and *trans*-epoxides and tolerates various functional groups. In the case of *trans*-phenyl epoxide, the reaction led to an addition product via a 6-endo attack of epoxide by the tungsten fragment. This method provides a simple enantiospecific synthesis of complex bicyclic lactones if a chiral epoxide is used in the cyclization. It is also applicable to the one-pot synthesis of bicyclic unsaturated γ -lactones if a suitable alkynyltungsten functionality is used.

Introduction

[3 + 2] Cycloaddition of epoxides with alkynes and alkenes is a direct and efficient method for the synthesis of furan derivatives.^{1,2} This cycloaddition can be achieved by cleavage of either the C–C bond³ or C–O bond.⁴ The former process is performed by either photochemical or thermal activation to give an oxonium ylide intermediate that can be trapped by electron-deficient olefins and alkynes by 1,3-dipolar cycloaddition (Scheme 1, eq 1).³ This pathway proceeds with high diastereoselectivity,

SCHEME 1

since rotation of the C-C bond normally follows Woodward-Hoffmann rules. This system has been thoroughly studied and is useful in organic synthesis. An alternative method involves the use of a Lewis acid to cleave the

[†] National Tsing-Hua University.

[‡] Yuanpei Institute of Science and Technology.

 ^{(1) (}a) Gothelf, K. V.; Jorgensen, K. A. *Chem. Rev.* **1998**, *98*, 863.
(b) Tufariello, J. J. In *1,3-Dipolar Cycloaddition Chemistry*, Padwa, A., Ed.; John Wiley & Sons: Chichester, 1984; Vol. 2, p 83.

^{(2) (}a) Carruthers, W. Cycloaddition in Organic Synthesis; Pergamon: Oxford, 1990. (b) Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. **1993**, 93, 741. (c) Togni, A.; Venanzi, L. M. Angew. Chem., Intl. Ed. Engl. **1994**, 33, 497.

⁽³⁾ Cycloaddition of aziridine with olefin and alkyne with cleavage of the C-C bond; see, for example: (a) Sisko, J.; Weinreb, S. M. J. Org. Chem. **1991**, 56, 3211. (b) Takano, S.; Iwabuchi, Y.; Ogasawara, K. J. Am. Chem. Soc. **1987**, 109, 5523. (c) DeShong, P.; Kell. D. A.; Sidler, D. R. J. Org. Chem. **1985**, 50, 2309. (d) Metra, P.; Hemelin, J. J. Chem. Soc., Chem. Commun. **1980**, 1038. (e) Gaebert, C.; Siegner, C.; Mattay J.; Toubartz, M.; Steenken, S. J. Chem. Soc., Perkin Trans. 2 **1998**, 2735. (f) Domingo, L. R. J. Org. Chem. **1999**, 64, 3922. (g) Chou, W.-N.; White, J. B. Tetrahedron Lett. **1991**, 32, 7637. (b) Gaebert, C.; Mattaay, J. Tetrahedron **1997**, 53, 14297. (h) Palomino, E.; Schaap, A. P.; Heeg, M. J. Tetrahedron Lett. **1989**. 30, 6801.

⁽⁴⁾ For cycloaddition of aziridine or epoxide with alkene with cleavage of the C-X bond, see: (a) Bergmeier, S. C.; Fundy, S. L.; Seth, P. P. Tetrahedron 1999, 55, 8025. (b) Schneider, M. R.; Mann, A.; Taddei, M. Tetrahedron Lett. 1996, 37, 8493. (c) Nakagawa, M.; Kawahara, M. Org. Lett. 2000, 2, 953. (e) Sugita, Y.; Kimura, Y.; Yokoe, I. Tetrahedron Lett. 1999, 40, 5877.

C-O bond of the epoxide to yield a zwitterionic intermediate (Scheme 1, eq 2).⁴ This process is not widespread, and only a few cases of special olefins have been reported.⁴ Treatment of epoxides with electron-rich olefins normally gives addition products.^{5,6} To the best of our knowledge, the cycloaddition of epoxides with alkynes has not yet been reported.

Previously, we reported that alkynyltungsten complexes reacted with aldehydes to generate tungsten vinylidenium intermediate, which undergoes hydrolysis to give acyltungsten complexes^{7,8} (Scheme 1, eq 3). The central carbon of metal vinylidenium species is highly electrophilic and suitable for [3 + 2] cycloaddition if epoxides are cleaved with a suitable acid (Scheme 1, eq 4). In this study,⁹ we report a new [3 + 2] cycloaddition of alkynyltungsten complexes with epoxides based on this reaction protocol.

Results and Discussion

Cycloaddition of alkynyltungsten species with its tether epoxide appears to be a direct and efficient synthesis of bicyclic lactone because the expected cycloadducttungsten enol ethers **B** are prone to hydrolysis to liberate bicyclic lactone efficiently. A representative protocol is shown in Scheme 2. Alkynyltungsten species 2 was synthesized in 78% yield by metalation with CpW(CO)₃Cl (1.1 equiv) and CuI (3 mol %) in Et₂NH.^{7a} Treatment of complex 2 with $BF_3 \cdot Et_2O$ (25 mol %) in CH_2Cl_2 (-40 °C, 8 h) caused the disappearance of complex 2 as shown by monitoring the reaction chromatographically (SiO₂ TLC plate). Subsequent treatment of this mixture with H₂O gave the lactone 3 in 86% yield. The three stereogenic protons of lactone 3 are mutually cis to one another according to proton NOE spectra (see the Experimental Section). Such a stereochemical outcome suggests that ring opening of the epoxide is caused by $S_N 2$ attack of the alkynyltungsten fragment to give tungsten-vinylidenium intermediate $A^{.7a}$ The enol ether B^{10} is highly sensitive to the presence of protons, which accelerate its

catalytic conversion to tungsten-oxacarbenium C^{7a} and finally gives *cis*-fused bicyclic lactone **3** in the presence of water.

This one-pot operation provides an easy and stereocontrolled synthesis of bicyclic lactones with three stereogenic centers. We prepared the substrates 4-15 to examine the generality of this new approach. In a typical procedure, the alkynyltungsten complex was treated with BF₃·Et₂O (25 mol %) in cold CH₂Cl₂ (-40 °C) for 4-12 h before water was added. Entries 1 and 2 show cyclizations of *trans*- and *cis*-epoxides 4 and 5; the products 16 and **17** have a *cis*-fused bicyclic ring bearing *cis*-methyl and *trans*-propyl groups (entries 1 and 2), respectively. The structures of lactones **16** and **17** are determined by ¹H NOE effects (see the Supporting Information). This reaction also works for gem-disubstituted epoxide 6 to give the corresponding lactone 18 in 83% yield. This method was successfully extended to the synthesis of cisfused γ -lactone **19** and **20** bearing a different pyranyl group. It is also applicable to functionalized lactone 21, which contains an acetate group. Entry 7 shows an additional example for the efficient formation of γ -lactone fused with a pyrrolidinyl ring. Similarly, cyclization of functionalized cis- and trans-epoxides 11 and 12 led to formation of the corresponding cis-fused lactones 23 and 24, which contain *trans*-methoxymethyl and *cis*-hydroxymethyl groups, respectively. Entry 10 shows the formation of γ -lactone **25** bearing a piperidinyl group. Both cis- and trans-fused isomers were obtained and separated on a silica column. The presence of an ester functionality in compounds 14 and 15 did not inhibit cyclization, and bicyclic lactones 26 and 27 were obtained in good yields.

The hybridization of epoxide lies between sp² and sp^{3,11} and both endo and exo attack in Scheme 3 are likely to occur. The results in Table 1 indicate that the cyclizations exclusively follow *exo*-mode to give [3 + 2] cycloadducts.

⁽⁵⁾ For review papers, see: (a) Tanner, D. Angew. Chem., Int. Ed. *Engl.* **1994**, *33*, 599. (b) Yamamoto, Y.; Asao N. *Chem. Rev.* **1993**, 2207. (6) See, for example: (a) Dubiois, S.; Mehta, A.; Toureet, E.; Dodd,

R. H. J. Org. Chem. **1994**, 59. 434. (b) Sato, K.; Kozikowski, A. P. Tetrahedron Lett. **1989**, 30, 4073.(c) Bennani, Y. L.; Zhu, G. D.; Freeman, J. C. Synlett **1998**, 754. (d) Marson, C. M.; McGregor, J.; Khan, A. J. Org. Chem. 1998, 63, 7833.

^{(7) (}a) Liang, K.-W.; Li, W.-T.; Lee, G.-H.; Peng, S.-Mi.; Liu, R.-S. J. Am. Chem. Soc. 1997, 119, 4404. (b) Liang, K.-W.; Chandrasekharam, M.; Li, C.-L.; Liu, R.-S. *J. Org. Chem.* **1998**, *63*, 7289. (c) Li, W.-T.; Pan, M.-H.; Wu, Y.-R.; Wang, S.-L.; Liao, F.-L.; Liu, R.-S. *J. Org. Chem.* **2000**, *65*, 6362. (c) Chen, M.-J.; Lo, C.-Y.; Liu, R.-S. Synlett **2000**, 1300. (8) Li, C.-L.; Liu, R.-S. Chem. Rev. 2000, 100, 3127.

SCHEME 3

⁽⁹⁾ Madhushaw, R.-J.; Li, C.-L.; Shen, K.-H.; Hu, C.-C.; Liu, R.-S. J. Am. Chem. Soc. 2002, 123, 7427.

⁽¹⁰⁾ McDonald, F. E.; Schults, C. C. J. Am. Chem. Soc. 1994, 169, 9363.

⁽¹¹⁾ Nicolaou, K. C.; Duggan, M. E.; Huang, C.-K.; Somers, P. K. J. Chem. Soc., Chem. Commun. 1985, 1359.

 a W = CpW(CO)₃, BF₃·Et₂O (25 mol %), CH₂Cl₂, -40 °C. b Yields were reported after purification from preparative silica TLC plates.

To examine the possibility of endo attack to form a sixmembered ring, we prepared various phenyl-substituted epoxides, which are expected to favor endo-attack with the formation of a benzyl carbocation upon opening of the epoxide with BF₃·Et₂O. The results in Scheme 3 reveal that cis-epoxide 28 led to the formation of cycloadduct 31, whereas trans-epoxides 29 and 30 gave sixmembered heterocyclic derivatives 32 and 33 in good yields. The structure of 33 was confirmed by an X-ray diffraction study.¹² The preferred *exo*-attack of compound **28** can be explained by steric hindrance as the alkynyltungsten group approaches the phenyl carbon in S_N2mode. The cis-phenyl group makes it difficult for the alkynyl to align with the σ^* -orbital of the PhC–O bond. Oxidative demetalation of compound **32** with I_2 in MeOH (0 °C, 8 h) gave trisubstituted pyrane derivative 34 in 96% yield.

We also prepared chiral epoxides allowing for a conclusive study of enantiospecific cycloaddition. Epoxides **40**, **42**, and **43** (>92% ee) were prepared with high enantiopurity according to Sharpless asymmetric epoxidation,¹³ and the synthetic procedures are provided in the Supporting Information. Scheme 4 shows the synthetic protocol of chiral epoxide **39**. Asymmetric dihydroxylation of enyne **35** produced chiral diol in 86% yield with 75% ee. Recrystallization of this solid from ether and hexane increased its enantiopurity to 87% with a final 56% yield. The diol **36** was transformed to tosylate

derivative **37** (78%), and then to epoxide **38** (84%), and finally metalated to give alkynyltungsten species **39**. Before cyclization, HPLC analysis of the epoxide **38** showed an enantiopurity of ca. 87%. A small decrease in the ee value is observed for bicyclic lactone **44** (91% ee) derived form the epoxide **40** (97% ee). The [α] value of compound **44** is consistent with that of an authentic sample.¹⁴ A considerable decrease in ee value is found for lactone **45** (65% ee) obtained from chiral *gem*disubstituted epoxide **41** (87% ee), which suggests the formation of a tertiary carbocation during the opening of the epoxide. In the cyclization of trans-epoxides **42** (94% ee) and **43** (94% ee), no loss of enantiopurity is observed for the resulting products **46** (93% ee) and **47** (93% ee).

This new method was also applicable to the synthesis of various bicyclic unsaturated γ -lactones, and the results are given in Scheme 5. The starting alkynyltungsten complexes 52-55 were prepared according to conventional methods. A synthetic protocol for 54 is shown in Scheme 4. Epoxide 51 was prepared with high enantiopurity via a fructose-based catalytic asymmetric epoxidation¹⁵ and each acetate diastereomer showed 90% ee according to HPLC-analysis. This fructose-based epoxidation was also used to prepare chiral epoxide 55 and both of the acetate diastereomers showed 94% ee. The working hypothesis shown in eq 2 involves cleavage of the OAc⁻ group of the tungsten-enol ether species to form bicyclic unsaturated tungsten-carbenium, which gives the desired lactone **56** (61% yield) upon hydrolysis in air. This approach works well for *cis*-epoxide **53** to give an unsaturated lactone 57 bearing a *trans*-hexyl group. In the cyclization of chiral epoxides 54 and 55, the resulting lactones 58 and 59 were produced in reasonable yields without loss of enantiopurity. The primary product from alkynyltungsten species 55, being unstable in reaction medium, was converted to naphthalene derivative 59 upon subsequent oxidation.

In summary, we reported a BF_3 -promoted intramolecular [3 + 2] cycloaddition of alkynyltungsten com-

⁽¹²⁾ X-ray diffraction data of compound **33** is provided in the Supporting Information.

⁽¹³⁾ Hanson, R. M.; Sharpless, K. B. J. Org. Chem. 1986, 51, 1922.

⁽¹⁴⁾ Petit, F.; Furstoss, R. *Tetrahedron: Asymmetry* **1993**, *4*, 1341. (15) Wang, Z.-X.; Yong, T.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. **1997**, *119*, 11224.

plexes with tethered epoxides. This cycloaddition tolerating various functionalities proceeds with high diastereoselectivity to afford, in reasonable yields, bicyclic γ -lactones. The stereochemical outcome of the products suggests that ring-opening of epoxide is initiated by S_N-2 attack of alkynyltungsten group. In most cases, 5-*exo* mode for the attack at epoxide carbon is more preferable than 6-*endo* mode. This new method provides a short enantiospecific synthesis of bicyclic saturated or unsatutated γ -lactones if suitable epoxides are used.

Experimental Section

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere in oven-dried glassware using standard syringe, cannula, and septa apparatus. Benzene, diethyl ether, tetrahydrofuran, and hexane were dried with sodium benzophenone and distilled before use. Dichloromethane was dried over CaH₂ and distilled before use. Dichloromethane was dried over CaH₂ and distilled before use. W(CO)₆, BF₃·Et₂O, dicyclopentadiene, propargyl bromide, benzyl alcohol, I₂, and sodium were obtained commercially and used without purification. Mass data of tungsten compounds were reported according to ¹⁸⁴W. ClCpW(CO)₃ were prepared by procedures described in the literature.¹⁶ Spectral data of compounds **4**–**30**, **33**, **35**, **40–48**, and **55–57** in repetitive experiments are provided in the Supporting Information.

(1) Synthesis of $(2R^*, 3R^*)$ -3-Methyl-2-[[(4-methylphenyl)(2-propynyl)Sulfonamido]methyl]oxirane (1). To a CH₂Cl₂ solution (10.0 mL) of enyne (0.50 g, 2.5 mmol) was added *m*-CPBA (0.79 g, 3.75 mmol) at 23 °C, and the mixtures were stirred for 36 h. The solution was concentrated, and the remaining white residues were chromatographed through a short basic alumina column (diethyl ether/hexane = 1/1, $R_f = 0.4$) to afford epoxide 1 as a colorless oil (0.55 g, 2.0 mmol, 80%): IR (neat, cm⁻¹) 3310 (vs); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.0 Hz, 2 H), 7.29 (d, J = 8.0 Hz, 2 H), 4.20 (ABq, J = 5.6 Hz, 2 H), 3.41 (dd, J = 14.8, 4.0 Hz, 1 H),

JOCArticle

3.28 (dd, J = 14.8, 5.2 Hz, 1 H), 2.89–2.88 (m, 2 H), 2.41 (s, 3 H), 2.02 (t, J = 2.4 Hz, 1 H), 1.29 (d, J = 5.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 135.7, 129.5, 127.7, 76.6, 73.9, 57.3, 52.9, 47.9, 37.9, 21.5, 17.0; MS (EI, 75 eV, *m/z*) 279 (M⁺).

(2) Synthesis of WCp(CO)₃[η^{1} -(2*R**,3*R**)-3-methyl-2-[[(4methylphenyl)(2-propynyl)sulfonamido]methyl]oxirane] (2). To a Et₂NH solution (15.0 mL) of alkynyltungsten complex 1 (0.50 g, 1.79 mmol) were added CpW(CO)₃Cl (0.66 g, 1.79 mmol) and CuI (34 mg, 0.179 mmol), and the solution was stirred for 3 h to yield a dark yellow solution. The solution was concentrated to ca. 3 mL and eluted through a Et₃Npretreated silica column to give compound 2 (0.77 g, 1.26 mmol, 70%) as a viscous solid: IR (neat, cm⁻¹) 2016 (s), 1914 (vs); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 8.4 Hz, 2 H), 7.25 (d, J = 8.4 Hz, 2 H), 5.42 (s, 5 H), 4.30 (ABq, J = 18 Hz, 2 H), 3.42 (dd, J = 14.8, 4.8 Hz, 1 H), 3.25 (dd, J = 14.4, 5.6 Hz, 1 H), $2.89 \sim 2.86$ (m, 2 H), 2.40 (s, 3 H), 1.28 (d, J = 5.6Hz, 3 H); $^{13}\mathrm{C}$ NMR (75 MHz, CDCl_3): δ 228.8, 211.6, 143.0, $136.4,\,129.4,\,127.7,\,120.3,\,91.3,\,67.5,\,57.3,\,53.5,\,47.4,\,40.7,\,21.4,$ 17.1; MS (75 eV, m/z) 611 (M⁺). Anal. Calcd for C₂₂H₂₂O₆-NWS: C, 43.15; H, 3.62; N, 2.29. Found: C, 43.11; H, 3.44; N, 2.11.

(3) Synthesis of (3S*,3aR*,6aS*)-3-Methyl-5-[(4-methylphenyl)sulfonyl]perhydrofuro[3,4-*c*]pyrrol-1-one (3). To a CH_2Cl_2 solution (3.0 mL) of alkynyltungsten complex 2 (0.50 g, 0.81 mmol) was added $BF_3 \cdot Et_2O$ at -40 °C, and the mixtures were stirred for 8 h before addition of water (2.0 mL). The solution was stirred for 6 h, and the organic layer was extracted with diethyl ether. Flash chromatography over a silica bed afforded 3 as a colorless solid (0.21 g, 0.70 mmol, 86%): IR (neat, cm⁻¹) 1774 (vs); ¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 2 H), 7.31 (d, J = 8.2 Hz, 2 H), 4.68 (dt, J = 12.8, 6.5 Hz, 1 H), 3.59 (dd, J = 10, 1.8 Hz, 1 H), 3.69-3.30 (m, 1H), 3.25-3.11 (m, 3 H), 3.05-2.98 (m, 1 H), 2.40 (s, 3 H, CH₃), 1.34 (d, J = 6.5 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 176.5, 144.2, 132.1, 129.9, 127.8, 76.3, 50.0, 47.2, 46.0, 42.7, 21.5, 16.2; MS (EI, 75 eV, m/z) 295(M+); HRMS calcd for C14H17NO4S 295.3642, found 295.3646.

(4) Synthesis of $(3S^*,3aR^*,6aS^*)$ -3-Phenylperhydrofuro[3,4-*c*]furan-1-one (31). To a CH₂Cl₂ solution (3.0 mL) of alkynyltungsten complex **28** (0.50 g, 0.96 mmol) was added BF₃·Et₂O at -40 °C, and the mixtures were stirred for 8 h before addition of water (2.0 mL). The solution was stirred for 6 h, and the organic layer was extracted with diethyl ether. Flash chromatography over a silica bed afforded **31** as colorless oil (0.15 g, 0.71 mmol, 74%): IR (neat, cm⁻¹) 1776 (vs); ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.27 (m, 5 H), 5.23 (d, *J* = 5.4 Hz, 1 H), 4.38 (dd, *J* = 9.6, 2.0 Hz, 1 H), 4.14 (dd, *J* = 9.6, 2.0 Hz, 1 H), 3.85-3.80 (m, 2 H), 3.66-3.41 (m, 1 H), 3.13-3.08 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 177.9, 139.8, 129.0, 128.7, 125.1, 85.9, 74.2, 71.6, 49.2, 46.0; MS (75 eV, *m/z*) 204 (M⁺); HRMS calcd for C₁₂H₁₂O₃ 204.2231, found 204.2230.

(5) Synthesis of WCp(CO)₃(η^{1} -3-Carbonyl-5-hydroxy-4-phenyltetrahydropyran) (32). To a CH₂Cl₂ solution (3.0 mL) of alkynyltungsten complex **29** (0.50 g, 0.96 mmol) was added BF₃·Et₂O at -40 °C, and the mixture was stirred for 8 h before addition of water (2.0 mL). The solution was stirred for 4 h, and the organic layer was extracted with diethyl ether. Flash chromatography over a Et₃N-pretreated silica bed

⁽¹⁶⁾ Dub, M. Organometallic Compounds, 2nd ed.; Springer-Verlag: Berlin, 1966; Vol. 1.

afforded **32** as yellow solid (0.41 g, 0.76 mmol, 79%): IR (neat, cm⁻¹) 2017 (vs), 1939 (vs), 1913 (s); ¹H NMR (300 MHz, CDCl₃) δ 7.34–7.17 (m, 5 H), 5.22 (s, 5 H, Cp), 4.81–4.72 (m, 1 H), 4.21 (d, J = 12.1 Hz, 1 H), 4.13 (dd, J = 10.8, 5.2 Hz, 1 H), 4.01–3.98 (m, 1 H), 3.48 (dd, J = 12.2, 3.6 Hz, 1 H), 3.08 (dd, J = 10.8, 10.0 Hz, 1 H), 2.68 (dd, J = 10.1, 4.6 Hz, 1 H), 1.75 (bs, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 242.1, 226.4, 219.9, 219.2, 139.1, 129.0, 128.5, 126.8, 93.6, 75.8, 72.2, 66.8, 64.6, 52.7; MS (75 eV, m/e) 538 (M⁺). Anal. Calcd for C₂₀H₁₈O₆W: C, 44.63; H, 3.37. Found: C, 44.61; H, 3.29.

(6) Synthesis of 5-Hydroxy-4-phenyltetrahydropyran-3-carboxylic Acid Methyl Ester (34). To a CH₂Cl₂ solution containing I₂ (46 mg, 0.185 mmol) wrere added compound 32 (100 mg, 0.185 mmol) and MeOH (2.0 mL) at 0 °C, and the mixture was stirred for 8 h. The reaction mixture was treated with a saturated Na₂S₂O₃ solution, and the organic layer was extracted with diethyl ether, dried over MgSO₄, and concentrated. The residue was eluted through a silica column (hexane/ether = 1:2) to give compound $3\overline{4}$ as a colorless solid (42.0 mg, 0.178 mmol, 96%): IR (neat, cm⁻¹) 2923 (s), 1937 (vs), 1688 (w); ¹H NMR (500 MHz, CDCl₃) δ 7.34 -7.22 (m, 5 H), 4.82-4.78 (m, 1 H), 4.20-4.16 (m, 1 H), 3.75 (dd, J = 12.0, 3.5 Hz, 1 H), 3.50 (s, 3 H, OCH₃), 3.26 (dd, J = 11.0, 8.5 Hz, 1 H), 3.0-2.98 (m, 1 H), 2.94 (dd, J = 9.5, 5.0 Hz, 1 H), 1.72 (bs, 1 H, OH); ¹³C NMR (75 MHz, CDCl₃) δ 172.1, 138.4, 128.7, 128.5, 127.3, 71.8, 69.3, 64.7, 51.5, 50.6, 47.4; MS (75 eV, m/e) 236 (M⁺); HRMS calcd for C₁₃H₁₆O₄ 236.1037, found 236.1035.

Synthesis of 1-[(2R)-2,2-Dihydroxy-2-methyl-(7) propyl]-1-(2-propynyl)-4-methyl-1-benzensulfonamide (36). To a mixture of water (8.6 mL) and tert-butyl alcohol (8.6 mL) were added methyl sulfonamide (0.18 g, 1.89 mmol), β -ADmix (2.27 g), and compound 35 (0.50 g, 1.89 mmol), and the mixture was stirred at 0 °C for 27 h before quenching with a saturated Na₂S₂O₃ solution. The organic layer was extracted with ethyl acetate and dried over MgSO₄. The solution was concentrated and chromatographed on a silica column to afford the diol **36** as a solid form (0.48 g, 1.62 mmol, 86%, 75% ee). Recrystallization from a saturated diethyl ether/hexane gave a sample with 87% ee: $[\alpha]_D = +4.25$ (CHCl₃, c = 2.0); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (2 H, d, J = 11.2 Hz); 7.27 (2 H, d, J= 11.2 Hz), 4.34 (2 H, s), 3.56 (2 H, m), 3.23 (2H, ABq, J =11.2 Hz), 3.03 (2H, s), 2.30(3H, s), 1.94 (1H, t, J = 3.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 143.4, 136.0, 129.3, 127.7, 126.8, 90.1, 76.3, 67.2, 52.3, 39.4, 23.4, 21.6; MS (75 eV, m/e) 297 (M⁺); HRMS calcd for C₁₄H₁₉NSO₄ 297.1035, found 297.1038.

(8) Synthesis of Toluene-4-sulfonic Acid 2-Hydroxy-2-methyl-3-[prop-2-ynyl(toluene-4-sulfonyl)amino]propyl Ester (37). To a pyridine solution (5.0 mL) of compound 36 (0.42 g, 1.21 mmol) was added p-toluenesulfonyl chloride (0.30 g, 1.41 mmol), and the mixture was stirred for 4 h. To this mixture was added cold water, and the organic layer was extracted with ether. The solution was concentrated and eluted through a silica column to give compound 37 as a colorless solid (0.42 g, 0.94 mmol, 78%): $[\alpha]_D = +17.1$ (CHCl₃, c = 2.0); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (2H, d, J = 8.4Hz); 7.31 (2H, d, J = 8.4 Hz), 7.27 (2H, d, J = 8.4 Hz), 4.34 (ABq, J = 11.2 Hz, 2 H), 3.94 (2H, d, J = 1.6), 3.23 (ABq, J = 11.2 Hz, 2H), 2.41 (3H, s), 1.96 (1H, t, J = 3.2 Hz); ¹³C NMR (75 MHz, CDCl₃) & 143.4, 136.0, 129.3, 127.7, 126.8, 90.1, 76.3, 67.2, 52.3, 39.4, 23.4, 21.6; MS (75 eV, m/e) 451 (M+); HRMS calcd for C₂₁H₂₅NS₂O₆ 451.1123, found 451.1122.

(9) Synthesis of 4-Methyl-*N*-(2-methyloxiranylmethyl)-*N*-prop-2-ynylbenzenesulfonamide (38). To a methanol solution (10 mL) of alcohol 37 (1.00 g, 2.21 mmol) was added potassium carbonate (0.65 g, 4.46 mmol), and the mixtures were stirred for 6 h. To this mixture was added cold water, and the organic layer was extracted with diethyl ether. The solution was concentrated and eluted through a silica column to give compound 38 as a solid (0.52 g, 1.85 mmol, 84%): $[\alpha]_D$ = -24.7 (CHCl₃, *c* = 5.0); IR (neat, cm⁻¹) 2047 (s), 1934(s); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (2H, d, *J* = 8 Hz), 7.25 (2 H, d, *J* = 8.0 Hz), 4.21 (ABq, *J* = 2.8 Hz, 2 H), 3.35 (ABq, *J* = 14 Hz, 2 H), 2.74 (d, J = 4.4 Hz, 1 H), 2.60 (d, J = 4.4 Hz, 1 H), 2.39 (s, 3H), 1.94 (t, J = 2.8 Hz, 1 H), 1.37 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 143.6, 135.8, 129.4, 127.6, 76.3, 73.9, 55.5, 51.4, 50.8, 37.6, 21.4, 18.7; MS (75 eV, m/e) 279 (M⁺); HRMS calcd for C₁₄H₁₇NSO₃ 279.0929, found 279.0923.

(10) Synthesis of WCp(CO)₃[η^{1} -4-Methyl-*N*-(2-methyloxiranylmethyl)-N-prop-2-ynylbenzenesulfonamide] (39). To a Et₂NH (10 mL) solution of epoxide **38** (1.00 g, 3.77 mmol) were added CpW(CO)₃Cl (1.38 g, 3.77 mmol) and CuI (71 mg, 0.37 mmol), and the solution was stirred for 3 h. The solution was concentrated to 3 mL and eluted through an Et₃Npretreated silical gel column to give compound **39** as a yellow solid (1.66 g, 2.70 mmol, 76%): $[\alpha]_D = -24.7$ (CHCl₃, c = 5.0); IR (neat, $c\bar{m}^{-1}$) 2047 (s), 1931 (s); 1H NMR (400 MHz, CDCl_3) δ 7.70 (2 H, d, J = 8.0 Hz); 7.26 (2 H, d, J = 8.0 Hz), 5.41(s, 5 H), 4.41 (2 H, dd, J = 16.0, 1.0 Hz), 4.23 (1 H, dd, J = 18, 0.8 Hz), 3.45 (d, J = 14.4 Hz, 1 H), 3.21 (d, J = 14.4 Hz, 1 H), 2.79 (dd, J = 4.8 Hz, 2H), 2.60 (d, J = 4.8 Hz, 1 H), 2.41 (s, 3 H), 1.39 (3 H, s); ¹³C NMR (75 MHz, CDCl₃) δ 228.8, 211.6, 211.6, 142.9, 136.5, 129.3, 127.6, 120.2, 91.2, 67.4, 55.4, 52.1, 50.3, 40.4, 21.4, 19.0; MS (75 eV, m/e) 611 (M⁺). Anal. Calcd for C₂₂H₂₁WSNO₆: C, 43.22; H, 3.46; N, 2.29. Found: C, 43.01; H, 3.40; N, 2.00.

(11) General Procedures for Synthesis of Enyne Alcohol (49). To a THF solution (40 mL) of trimethylsilylethyne (6.0 mL, 42.48 mmol) was added *n*-BuLi (42.5 mmol) at -78 °C, and the solution was stirred for 1 h. To this solution was added slowly aldehyde 48 (5.95 g, 42.5 mmol), and the solution was warmed to 23 °C in a period of 5 h. To this mixture was added a saturated ammonium chloride solution, and the organic layer was extracted with diethyl ether, concentrated, and eluted through a silica column to afford a colorless oil (10.2 g, 39.1 mmol, $92\overline{\%}$). This oil was treated with a THF solution of TBAF (1 M, 40 mL) at 23 °C, and the mixture was stirred for 1 h. The solution was concentrated and eluted through a silica column to give compound 49 as a colorless oil (5.90 g, 35.6 mmol, 91%): ¹H NMR (400 MHz, CDCl₃) δ 5.35–5.33 (m, 2 H), 4.35-4.31 (m, 1 H), 2.4 (s, 1 H), 2.0 -1.84 (m, 4 H), 1.64-1.62 (m, 2 H), 1.45-1.42 (m, 2 H), 1.38-1.22 (m, 2 H), 0.823 (t, J = 7.6 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 130.9, 129.9, 85.5, 72.6, 53.3, 37.3, 34.8, 32.3, 25.2, 22.8, 14.11; MS (75 eV) *m*/*e*) 166.14 (M⁺); HRMS calcd for C₁₁H₁₈O 166.1358, found 166.1355.

(12) General Procedures for Synthesis of Ethynyl Acetate Compound (50). To a CH_2Cl_2 (20 mL) of compound 49 (5.50 g, 33.10 mmol) were added dry pyridine (20 mL), acetic anhydride (51.1 mL, 49.7 mmol), and DMAP (360 mg). The solution was washed with 100 mL of 1 N HCl and extracted with ether. The ether extract was concentrated and eluted through a silica column to give compound 50 as a colorless oil (5.78 g, 27.8 mmol, 84%): ¹H NMR (400 MHz, $CDCl_3$) δ 5.39–5.32 (m, 3 H), 2.43 (d, J= 2.4 Hz, 1 H), 2.06 (3 H, s), 1.93–2.02 (m, 4 H), 1.72~1.76 (m, 2 H), 1.50–1.48 (m, 2 H), 1.37–1.31 (m, 2 H), 0.844 (t, J= 7.6 Hz, 3 H); ¹³C NMR (100 MHz, $CDCl_3$) δ 170.3, 131.3, 129.6, 81.4, 73.6, 63.9, 34.7, 34.2, 32.1, 25.0, 22.8, 21.1, 13.8. MS (75 eV, m/e) 208 (M⁺); HRMS calcd for $C_{13}H_{20}O_2$ 208.1463, found 208.1456.

(13) Synthesis of 1,3-[(2*R*,3*R*)-3-Oxiran-2-yl]propyl-4pentynyl Acetate (51). A buffer solution (pH 9–10) was prepared from Na₂B₄O₇·10H₂O (1.097 g), Na₂EDTA (1.0 mL, 0.10 M), and water (99 mL). This buffer solution (20 mL) was added with CH₃CN (30 mL), the enyne **50** (0.416 g, 2.0 mmol), chiral fructose-derived ketone (0.31 g, 1.20 mmol), and Bu₄-NHSO₄ (0.03 g). To this mixture was added an aqueous K₂-CO₃ solution (1.6 g, 13.0 mL water) and a Na₂EDTA solution (4×10^{-4} M, 13.0 mL) of oxone (1.70 g, 2.76 mmol) in a period of 2 h. The mixtures were stirred at 0 °C for an additional 3 h before treatment with pentane (50 mL), dried over MgSO₄, and chromatographed through a Et₃N-pretreated silica column to afford compound **51** (0.39 g, 1.74, mmol, 87%) as a colorless oil. HPLC analysis showed a 1:1 diastereomeric mixture product with each one having 90% ee: [α]_D = +18.9 (CHCl₃, *c* = 0.32); ¹H NMR (400 MHz, CDCl₃) δ 5.38–5.30 (m, 1 H), 2.65 (m, 2 H), 2.44 (1 H, d, J=2.0 Hz), 2.07 (s, 3 H), 1.40–1.86 (m, 8 H), 0.948 (t, J=4.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 81.1, 73.8, 63.7, 58.7, 58.5, 34.5, 34.3, 31.4, 21.7, 21.1, 19.5, 14.3; MS (75 eV, *m/e*) 224.14 (M⁺); HRMS calcd for C₁₃H₂₀O₃ 224.1424, found 224.1423.

(14) Synthesis of WCp(CO)₃[η^{1} -1,3-[(2*R*,3*R*)-3-propyloxiran-2-yl]propyl-4-pentynyl acetate] (54). To a Et₃N (4.0 mL) solution of epoxide 51 (0.20 g, 0.89 mmol) were added CpW(CO)₃Cl (0.50 g, 1.36 mmol) and CuI (15 mg, 0.37 mmol), and the solution was stirred for 3 h. The solution was concentrated to 3 mL and eluted through a Et₃N-pretreated silica gel column to give the compound as a yellow solid (0.44 g, 0.80 mmol, 70%): [α]_D= +7.32 (CHCl₃, *c* = 4.5); IR (neat, cm⁻¹) 1919 (vs), 2015 (vs); ¹H NMR (400 MHz, CDCl₃) δ 5.46 (s, 5 H), 5.30 (t, *J* = 6.4 Hz, 1 H), 2.50 (d, *J* = 2 Hz, 2 H), 1.87 (s, 3 H), 1.20-1.60 (m, 10 H), 0.80 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 229.0, 212.0, 212.1, 170.1, 125.4, 91.7, 66.2, 58.5, 35.6, 34.2, 31.6, 22.6, 21.8, 21.4, 19.3, 14.0; MS (EI, 75 eV, *m/z*) 555 (M⁺). Anal. Calcd for C₂₁H₂₃O₆W: C, 45.43; H 4.18. Found: C, 45.33; H, 4.30.

(15) Synthesis of (3*R*,3a*R*)-3-Propyl-1,3,3a,4,5,6-hexahydro-1-isobenzofuranone (58). To a diethyl ether (5.0 mL) solution of tungsten complex 54 (238 mg, 0.43 mmol) was added BF₃·OEt₂ at -78 °C (0.10 mL, 0.43 mmol), and the mixture was stirred for 4 h. To this solution was added water (5.0 mL), and the resulting solution was extracted with diethyl ether and dried over MgSO₄. The solution was concentrated and eluted on silica to give compound **58** as colorless oil (50.3 mg, 0.279 mmol, 65%): $[\alpha]_D = +69.6$ (CHCl₃, c = 0.6); IR (neat, cm⁻¹) 1759 (vs), 2015 (vs); ¹H NMR (400 MHz, CDCl₃) δ 6.83 (m, 1 H), 4.66 (dt, J = 9.2, 3.2 Hz, 1 H), 3.1–3.00 (m, 1 H), 2.40–2.32 (m, 1 H), 2.24–2.12 (m, 1 H), 2.00–1.83 (m, 2 H), 1.60–1.20 (m, 6 H), 0.92 (t, J = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 136.3, 129.8, 81.7, 39.9, 34.0, 25.3, 22.7, 21.3, 18.8, 13.9; HRMS calcd for C₁₆H₁₈O₃ 180.1150, found 180.1148.

Acknowledgment. We thank the National Science Council, Taiwan, for financial support of this work.

Supporting Information Available: Experimental procedures and spectral data of compounds **4–30**, **33**, **35**, **40–48**, and **55–57** in repetitive experiments. This material is available free of charge via the Internet at http://pubs.acs.org. JO020669J