A Study of the Gas-Phase Reaction of NO_2 with O_3 by Matrix Isolation Infrared Spectroscopy

V. R. Morris,^{†‡} S. C. Bhatia,[†] and John H. Hall, Jr.*^{†‡}

Dolphus E. Milligan Science Research Institute, Atlanta University Center, Inc., Atlanta, Georgia 30310, and School of Geophysical Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332 (Received: September 5, 1986)

The observed products of the $NO_2 + O_3$ reaction are N_2O_3 and N_2O_4 . The presence of N_2O_3 as a product indicates that NO is formed in secondary reactions and subsequently reacts with NO₂ to produce N_2O_3 . In the experiments where ozone was allowed to deposit at a rapid rate (0.27 mmol/h), infrared absorptions attributable to N_2O_5 and NO were observed. We attribute the production of N_2O_5 to the formation of the symmetrical NO_3 radical. Our data indicate that both the symmetrical and asymmetrical NO₃ radicals are intermediates in the reaction of NO₂ + O₃. An explanation for the presence of NO in nighttime chemistry is given. Attempts to isolate symmetrical NO_3 were unsuccessful.

Introduction

The nitrogen oxides are important participants in the reaction schemes for the depletion of stratospheric ozone.¹ In fact, it has been estimated that naturally occurring NO and NO₂ limit the production of O3 by 50% of the amount predicted by the Chapman mechanism.² The reactions

$$NO + O_3 \rightarrow NO_2 + O_2 \tag{1}$$

$$NO_2 + O(^{3}P) \rightarrow NO + O_2$$
 (2)

clearly serve as a sink for O₃. The NO₂ formed in reaction 1 can be removed³ from the stratosphere by the reactions

$$NO_2 + O_3 \rightarrow NO_3 + O_2 \tag{3}$$

and

$$NO_2 + NO_3 \rightarrow N_2O_5 \tag{4}$$

The resulting N_2O_5 can be removed from the stratosphere via reaction with H_2O and through heterogeneous reactions.¹ Reactions 3 and 4 result in a net loss of NO_2 and O_3 . The present models of stratospheric chemical reaction mechanisms predict that the NO should not be present in the stratosphere under nighttime conditions.⁴ However, recent observations by Davis⁵ suggest that NO may be present at ppb concentrations at night.

To account for the presence of nighttime NO, Davis suggests that the $NO_2 + O_3$ reaction may proceed through two distinct channels, resulting in the formation of NO

$$\rightarrow$$
 OONO + O₂ (3a)

$$NO_2 + O_3 - NO_2 + O_3$$

 $sym - NO_3 + O_2$ (3b)

Previously, only sym-NO3 has been proposed as an intermediate in reaction 3.6 The peroxynitrate radical, if formed, can undergo further reactions to produce NO.7 In order to explain the observed concentration of NO at night, Davis suggested a partition coefficient (k_{3a}/k_{3b}) of 0.42 for reaction 3.⁵ Prior matrix isolation studies^{7,8} of the NO + O_3 reaction resulted in the observation of an NO \cdot O₃ complex. Similarly, an NO₂ \cdot O₃ complex may be an intermediate in reaction 3.8 There also was no observation of any infrared induced matrix reaction for the $NO_2 + O_3$ reaction.⁸

This study was undertaken in order to isolate symmetrical nitrogen trioxide and/or peroxynitrate using the matrix isolation technique. Isotopic studies were performed in order to confirm the infrared assignments of the observed products.

Experimental Method

Ozone was synthesized by the static method via discharge of oxygen (Matheson) at low pressures as outlined in ref 7a. The nitrogen dioxide was purified with excess oxygen.7 The 2.23 mmol

TABLE I: Observed Absorptions (cm^{-1}) for the NO₂ + O₃ Reaction

"(¹⁴ NO ₂)	v ⁽¹⁵ NO ₂)	$\Lambda_n 1^a$	»(¹⁸ O.)	$\Lambda_{\mu}2^{b}$	molecular
<i>V</i> (110 ₂)	<i>V</i> (110 ₂)		V(U ₃)	<u> </u>	species
2901.3	2851.3	50.0	2901.3	0.0	NO_2
2107.6	2107.6	0.0	1995.1	112.5	O3
1835.7	1807.6	28.1	1838.8	-3.1°	asym-N ₂ O ₃
1824.7	1798.2	26.5	1827.9	-3.2°	iso-N ₂ O ₄
1732.6	n.o. ^d		n.o.		$D_{2h} N_2 O_4$
1716.9	n.o.		n.o.		$D_{2d} N_2 O_4$
1707.5	n.o.		n.o.		N_2O_4 (?)
1638.8	1609.1	29.7	1640.4	-1.6	asym-N ₂ O ₃
1638.8	1604.4	34.4	1579.4	59.4	iso-N ₂ O ₄
1623.2	1623.2	0.0	1623.2	0.0	H ₂ O
1613.8	1576.3	37.5	1613.8	0.0	NO_2
1598.2	1598.2	0.0	1598.2	0.0	H ₂ O
1591.9	1591.9	0.0	1591.9	0.0	H ₂ O
1355.9	n.o.		n.o.		unassigned
1287.2	1276.3	10.9	1291.9	-4.7	$iso-N_2O_4$
1273.2	1260.7	12.5	1276.3	-3.1	$D_{2d} N_2 O_4$
1260.6	1252.9	7.7	1263.3	-2.7	$D_{2h} N_2 O_4$
1101.3	n.o.		1016.9	84.4	O ₃
1041.9	1043.5	-1.6	988.8	53.1	O ₃
1038.8	1038.8	0.0	976.3	62.5	O3
901.3	896.6	4.7	904.4	-3.1	iso-N ₂ O ₄
782.6	776.3	6.3	785.7	-3.1	iso-N ₂ O ₄
751.3	741.9	9.4	751.3	0.0	NO_2
701.3	701.3	0.0	648.2	53.1	O3
666.9	n.o.		666.9	0.0	CO_2
488.8	n.o.		495.1	-6.3	$iso-N_2O_4$

 ${}^{a}\Delta\nu 1 = \nu({}^{14}NO_2 + O_3) - \nu({}^{15}NO_2 + O_3). {}^{b}\Delta\nu 2 = \nu(NO_2 + {}^{16}O_3) - \nu({}^{15}NO_2 + O_3).$ $\nu(NO_2 + {}^{18}O_3)$. The value of this shift is uncertain. Not observed.

of NO_2/Ar (1:200) mixture was deposited on the cold CsI window. The spectra had absorptions due to NO2 and very weak absorptions (< 5 absorption units) due to N_2O_4 . Isotopic ¹⁵NO₂ and ¹⁸O₂ (Stohler Isotopes) were used without further purification. Gas mixtures were prepared by a standard manometric method. The mixtures (2.23 mmol of NO_2/Ar (1:200) and O_3/Ar (1:25) in excess) were allowed to react in the cell (Figure 1) with a gas-phase path length of ~ 15 cm, and products of the gas-phase reaction were deposited on a precooled (10 K) CsI window. The deposition rates varied from 0.83 to 1.86 mmol/h for NO₂/Ar and from 0.09 to 0.27 mmol/h for O_3 . The spectra were recorded with a

- (3) Wu, C. H.; Morris, E. D.; Niki, H. J. Phys. Chem. 1973, 77, 21.
 (4) Connell, P.; Johnston, H. S. Geophys. Res. Lett. 1979, 6, 553.
 (5) Davis, D. D., private communication.
 (6) Cox, R. A.; Coker, G. B. J. Atmos. Chem. 1983, 1, 53.
 (7) (a) Bhatia, S. C.; Hall, J. H., Jr. J. Phys. Chem. 1980, 84, 3255. (b)

- Frei, H.; Pimentel, G. C. J. Phys. Chem. 1981, 85, 3355. (8) Frei, H.; Fredin, L.; Pimentel, G. C. J. Chem. Phys. 1981, 74, 1.

[†] Dolphus E. Milligan Science Research Institute.

¹School of Geophysical Sciences

⁽¹⁾ Baum, R. M. Chem. Eng. News 1982, 60, 21.

⁽²⁾ Birks, J. W.; Schoemaker, B.; Leck, T. J.; Hinton, D. M. J. Chem. Phys. 1976, 65, 5181.

Figure 1. Gas-phase kinetic cell.

Beckman 4250X infrared spectrometer.

Discussion

The absorptions at 2901.3, 1613.8, and 748.2 cm⁻¹ are assigned to the NO₂ monomer (Table I).⁹ These assignments are further confirmed by isotopic shifts of 50, 37.5, and 6.1 cm⁻¹, respectively (¹⁵NO₂).^{9,10} We assign the absorptions at 2107.6, 1101.3, 1060.0, 1041.9, 1038.8, and 701.3 cm⁻¹ to ozone.^{11,12} The isotopic shifts due to ${}^{18}O_3$ are consistent with published data.^{11,12} The absorptions at 1623.2, 1598.2, and 1591.9 cm^{-1} are assigned to matrix-isolated water.^{13,14} The remaining absorptions are due to reaction products.

As mentioned previously, the proposed products of the reaction $NO_2 + O_3$ are symmetric nitrogen trioxide (sym-NO₃) and peroxynitrate. Gas-phase absorptions for sym-NO₃ have been reported at 1480, 1060, and 380 cm^{-1,15} In our experiments, there are no absorptions observed within ± 50 cm⁻¹ of 1480 and 380 cm⁻¹. Using intensity arguments, we assign the absorption at 1038.8 cm⁻¹ to ozone.^{11,12} We conclude that the remaining absorptions cannot be due to sym-NO₃. The absence of absorptions due to sym-NO₃ in our spectra is consistent with a previous study of the matrix reactions of NO₂ + O₃ $\frac{h\nu}{2}$ products.¹⁶ DeMore and Davidson (DD)¹⁶ also did not observe any infrared absorptions due to sym-NO₃ but were able to detect the presence of sym-NO₃ in the same sample by its visible absorption spectra. DD^{16} also point out that in the high dilution experiments N_2O_5 and sym-NO₃ are formed in equal amounts, but at higher concentrations of NO₂ and O_3 , the amount of N_2O_5 formed is higher than sym-NO₃.

The peroxynitrate radical (OONO) has an absorption due to the N=O stretch at 1840 cm^{-1, 7,10,17} Therefore, there is the strong possibility that the doublet at 1835.7 and 1824.7 cm⁻¹ (Table I) is due to OONO. Absorptions in the 1800-1880-cm⁻¹ region are characteristic of the N==O stretch;⁷ thus, in the ${}^{15}NO_2 + O_3$ experiments, we should expect a shift that corresponds to a $^{15}N=0$ stretch. The isotopic shift for ¹⁵N==O is reported to be 33 cm⁻¹ in an argon matrix;10,18 hence, we should observe absorptions around 1800 or 1790 cm⁻¹. In the ${}^{15}NO_2 + O_3$ spectrum (Table I), absorptions at 1807.6 and 1798.2 \mbox{cm}^{-1} are observed. The observed isotopic shifts (28.1 and 26.5 cm⁻¹) of the doublet due to isotopic nitrogen can arise from the following molecular species:

In the NO₂ + ${}^{18}O_3$ experiments, the doublet (1835.7 and 1824.7 cm⁻¹) shifts by approximately 3 cm⁻¹. We should not expect any

(12) Brewer, L.; Wang, J. L. J. Chem. Phys. **1972**, 56, 759.
 (13) Redington, R. L.; Milligan, D. E. J. Chem. Phys. **1963**, 39, 1276.

- (14) Catalano, E.; Milligan, D. E. J. Chem. Phys. 1959, 30, 45. (15) Ishiwata, T.; Tanaka, T.; Kawaguchi, K.; Hirota, E. J. Chem. Phys. 1985, 82, 5

 - (16) DeMore, W. B.; Davidson, N. J. Am. Chem. Soc. 1959, 81, 5869.
 (17) Guillory, W. A.; Johnston, H. S. J. Chem. Phys. 1965, 42, 2457.
 (18) Varetti, E. L.; Pimentel, G. C. J. Chem. Phys. 1971, 55, 3813.

isotopic shifts for O¹⁸ONO species. Therefore, the absorptions at 1835.7 and 1824.7 cm⁻¹ cannot be due to OONO. It is well-known that sym-NO₃ combines with NO₂ to form N_2O_5 ¹⁵ however, no infrared absorptions due to N_2O_5 were observed in these experiments. The nonobservance of N_2O_5 in the experiments where O_3/Ar mixture deposition rate was slow could be due to the low concentration of N_2O_5 present in the sample. The concentration of N_2O_5 formed in the $NO_2 + O_3$ reaction is dependent on the amount of sym-NO₃ produced in the initial step of the reaction. Ishiwata et al.¹⁵ have shown that the yield of sym-NO₃ is maximum in the presence of excess O₃. In experiments where the deposition rate for O_3/Ar mixture was increased (excess ozone), we observed absorptions due to NO (1875 cm⁻¹) and N_2O_5 (1728 cm⁻¹). The presence of NO and N_2O_5 suggests that sym-NO3 is being formed and subsequently combines with NO2 to form $N_2O_5.^{6,16}$

The formation of NO as a secondary product is further suggested by the presence of N_2O_3 as a product. The only known bimolecular channel^{18,19} through which N_2O_3 can be produced is via the reaction

$$NO_2 + NO \rightarrow N_2O_3$$
 (5)

The presence of N_2O_3 in the spectrum will then indicate that NO is a by-product of the $NO_2 + O_3$ reaction. Varetti and Pimentel¹⁸ reported the spectra of both asym- N_2O_3 (A) and sym- N_2O_3 (B) in an N_2 matrix. Asymmetric N_2O_3 is more stable in the gas phase,^{18,20} but it has been shown that, by warming or selectively irradiating matrices containing NO and NO₂, sym-N₂O₃ can be produced in abundance.^{18,20} In this work, no external energy sources were used so we expect that if N_2O_3 is present at all, it would be asym-N₂O₃. In the NO₂ + O₃ spectrum, no absorptions near the reported absorptions of $sym-N_2O_3$ were observed.^{18,20} Asymmetric N_2O_3 absorbs in an N_2 matrix at 1839.7, 1630.4, 1302, 775.7, and 420.4 cm^{-1.18-20} We assign the 1835.7- and 1638.8-cm⁻¹ absorptions to asym-N₂O₃. In the ¹⁵NO₂ + O₃ spectrum, the 1835.7-cm⁻¹ absorption shifts to 1807.6 cm⁻¹ (28.1) and the 1638.8-cm⁻¹ absorption shifts to 1609.1 cm⁻¹ (29.7 cm⁻¹). The observed shifts are in good agreement with previously published results.¹⁸ No isotopic shift due to ¹⁸O was observed for asym- N_2O_3 , consistent with published data.¹⁸ The absence of other fundamentals due to $asym-N_2O_3$ is understandable in view of the fact that the observed fundamentals at 1835.7 and 1638.8 cm⁻¹ are very weak.²¹

The observed absorptions at 1716.9 and 1273.2 cm⁻¹ are assigned to the D_{2d} structure of N₂O₄.^{20,23} The isotopic shifts for N_2O_4 due to ${}^{15}NO_2$ and ${}^{18}O_3$ are consistent with published data.^{10,11} Based on previous studies^{20,23} the absorptions at 1732.6 and 1260.6 cm^{-1} are assigned to the D_{2h} structure of N_2O_4 . The remaining absorptions at 1824.7, 1638.8, 1287.2, 901.3, 782.6, and 488.8 $\rm cm^{-1}$ are assigned to $iso\rm N_2O_4.^{10.19,22,23}$ The 1638.8- $\rm cm^{-1}$ ab-

- (19) Bibart, Ch. H.; Ewing, G. E. J. Chem. Phys. 1974, 61, 1293.
 (20) Fateley, W. G.; Bent, H. A.; Crawford, B.,, Jr. J. Chem. Phys. 1959,
- 31, 204.
- (21) D'Or, L.; Tarte, P. Bull. Soc. R. Sci. Liege 1953, 22, 270.
- (22) St. Louis, R.; Crawford, B., Jr. J. Chem. Phys. 1965, 42, 857.
 (23) Smith, G. R.; Guillory, W. A. J. Mol. Spectrosc. 1977, 65, 223.

⁽⁹⁾ Arakawa, E. T.; Nielsen, A. H. J. Mol. Spectrosc. 1958, 2, 413.
(10) Laane, J.; Ohlsen, J. R. Prog. Inorg. Chem. 1980, 27, 465.
(11) Spoliti, M.; Cesaro, S. N.; Mariti, B. J. Chem. Phys. 1973, 59, 985.

sorption is due to both iso- N_2O_4 and asym- N_2O_3 .¹⁹ In the experiments in which ¹⁸O₃ was a reactant, the absorptions assigned to iso- N_2O_4 shift by 3.2, 59.4, 4.7, 3.1, and 6.3 cm⁻¹, respectively. The isotopic shifts due to ${}^{18}O_3$ indicate that the N₂O₄ formed in the $NO_2 + O_3$ reaction is due to the following reactions:

$$D_2 + NO_2 \longrightarrow N_2O_4 \text{ (iso and } D_{2d} \text{)} \tag{6}$$

$$O = 1 + NO \longrightarrow iso - N_2O_4 \tag{7}$$

$$O = 0 + NO + NO + NO + N_2O_4 \tag{7}$$

One of the nitrogen dioxide molecules participating in reaction 6 could be produced in secondary reactions, while the NO in reaction 7 should be the secondary product of reaction NO_2 + O₃. The observed isotopic shift due to the O-N stretch (901.3 cm⁻¹) for iso-N₂O₄ and relative intensities of the absorptions due to iso-N₂O₄ and D_{2d} N₂O₄ can only be explained by invoking the formation of $iso-N_2O_4$ in reaction 7. Though reaction 6 is 6 orders of magnitude faster than reaction 7, we feel that both reaction mechanisms may be operative for the formation of N_2O_4 (iso and D_{2d}).^{6,24} This further suggests that NO is one of the products

(24) Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J.; Watson, R. T. J. Phys. Chem. Ref. Data 1984, 13, 1259.

in NO₂ + O₃ reaction and it undergoes further reaction with ${}^{18}O_3$ to form ¹⁸ONO.^{7,8}

Conclusions

Our experimental results indicate that $asym-N_2O_3$ and $iso-N_2O_4$ are major products of the $NO_2 + O_3$ reaction. The presence of N_2O_5 in fast-flow deposition experiments indicates that sym-NO₃ is formed, consistent with published reports for the formation of sym-NO₃ in the presence of excess $O_3^{.6,15,16}$ The formation of N₂O₃ suggests that NO should be produced in secondary reactions. The observed isotopic shifts due to ¹⁸O for N_2O_4 further support this conclusion. The NO can result from the decomposition of the peroxynitrate radical, indicating that the $NO_2 + O_3$ reaction proceeds via the formation of sym-NO₃ and peroxynitrate, explaining the presence of NO in the stratosphere during nighttime conditions.

Acknowledgment. We thank NASA (NSG 7652) and the NSF (ATM 8317231) for support of this work. We also thank Dr. D. D. Davis for helpful discussions and for bringing his results on the nighttime concentration of NO to our attention.

Registry No. NO₂, 10102-44-0; O₃, 10028-15-6; asym-N₂O₃, 10544-73-7; N₂O₄, 10544-72-6; *iso*-N₂O₄, 15969-55-8; N₂O₅, 10102-03-1; NO, 10102-43-9.

Kinetics of the Reactions of NO₃ Radicals with CI and CIO

R. A. Cox,*

Environmental and Medical Sciences Division, Harwell Laboratory, Harwell, Oxon OX11 0RA, U.K.

Martin Fowles, David Moulton, and Richard P. Wayne

Physical Chemistry Laboratory, Oxford, U.K. (Received: September 15, 1986; In Final Form: February 4, 1987)

Rate coefficients for the reactions $Cl + NO_3 \rightarrow ClO + NO_2$ (2) and $ClO + NO_3 \rightarrow products$ (3) were determined from observation of the kinetic behavior of NO3 and CIO in the modulated photolysis of Cl2-ClONO2-N2 mixtures at 1 atm pressure and in the temperature range 278-338 K. NO₃ was monitored in absorption at $\lambda = 662$ nm and formation of CIO in reaction 2 was indicated by observation of the characteristic absorption spectrum in the $A^2\Pi \leftarrow X^2\Pi$ system. The results gave k_2 = $(5.5 \pm 2.0) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ independent of temperature and $k_3 = (1.6 \pm \frac{1.6}{0.8}) \times 10^{-12} \exp(-(420 \pm 200)/T)$ cm^3 molecule⁻¹ s⁻¹. The relative importance of the channels forming ClOO and OClO in reaction 3 is discussed.

Introduction

Reactions of nitrate radicals, NO₃, are of interest in atmospheric chemistry since NO_3 is produced by the thermal reaction between two common constituents, NO₂ and ozone, and can initiate free-radical chemistry at nighttime, when photochemical radical sources are absent. Moreover, reaction of NO₃ with NO₂ forms N_2O_5 , which can provide a route for conversion of nitrogen oxides to nitric acid, through the heterogeneous reaction of N_2O_5 with water. Assessment of the importance of NO3 chemistry requires accurate kinetic and photochemical data for reactions controlling NO_3 concentration in the atmosphere.

Recently, a number of new studies of NO3 photochemistry and kinetics have been reported. The absorption cross section, σ , and the quantum yields for photodissociation of NO₃ in its broad, structured, visible absorption spectrum now appear to be reasonably well established,¹ although more work will be required

to resolve outstanding uncertainties. Rate constants for NO3 reactions with a range of simple organic species have been determined at room temperature by relative rate techniques.² Recent direct studies have provided accurate rate coefficients for the reactions of NO₃ with NO and NO₂.³⁻⁶

We recently reported⁷ a study in which the reaction of Cl atoms, produced by $\lambda = 350$ nm photolysis of Cl₂, with chlorine nitrate was used as a source of NO₃:

$$Cl + ClONO_2 \rightarrow Cl_2 + NO_3$$
 (1)

⁽¹⁾ NASA Panel for Data Evaluation: DeMore, W. B.; Margitan, J. J.; Molina, M. J.; Watson, R. T.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R. Chemical Kinetics and Photochemical Data for use in Stratospheric Modelling; Evaluation No. 7; JPL Publication 85-37, JPL/CALTEC Pasadena, CA, 1985.

⁽²⁾ Atkinson, R.; Plum, C. N.; Carter, W. P. L.; Winer, A. M.; Pitts, J. N., Jr. J. Phys. Chem. 1984, 88, 1210.
(3) Kircher, C. C.; Margitan, J. J.; Sander, S. P. J. Phys. Chem. 1984, 88,

^{4370.}

⁽⁴⁾ Croce de Cobos, A. E.; Hippler, H.; Troe, J. J. Phys. Chem. 1984, 88, 5803.

⁽⁵⁾ Smith, C. A.; Ravishankara, A. R.; Wine, P. H. J. Phys. Chem. 1985, 89, 1423.

⁽⁶⁾ Burrows, J. P.; Tyndall, G. S.; Moortgat, G. K. J. Phys. Chem. 1985, 89, 4848.

⁽⁷⁾ Cox, R. A.; Barton, R. A.; Ljungstrom, E.; Stocker, D. W. Chem. Phys. Lett. 1984, 108, 228.