Accepted Manuscript

Design, synthesis and evaluation of MCH Receptor 1 antagonists – Part II: Optimization of pyridazines toward reduced phospholipidosis and hERG inhibition

Gerald J. Roth, Armin Heckel, Jörg Kley, Thorsten Lehmann, Stephan G. Müller, Thorsten Oost, Klaus Rudolf, Kirsten Arndt, Ralph Budzinski, Martin Lenter, Ralf R.H. Lotz, Marcus Schindler, Leo Thomas, Dirk Stenkamp

PII: DOI: Reference:	S0960-894X(15)00548-X http://dx.doi.org/10.1016/j.bmc1.2015.05.074 BMCL 22764				
To appear in:	Bioorganic & Medicinal Chemistry Letters				
Received Date:	10 April 2015				
Revised Date:	22 May 2015				
Accepted Date:	24 May 2015				

Please cite this article as: Roth, G.J., Heckel, A., Kley, J., Lehmann, T., Müller, S.G., Oost, T., Rudolf, K., Arndt, K., Budzinski, R., Lenter, M., Lotz, R.R.H., Schindler, M., Thomas, L., Stenkamp, D., Design, synthesis and evaluation of MCH Receptor 1 antagonists – Part II: Optimization of pyridazines toward reduced phospholipidosis and hERG inhibition, *Bioorganic & Medicinal Chemistry Letters* (2015), doi: http://dx.doi.org/10.1016/j.bmcl. 2015.05.074

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Design, synthesis and evaluation of MCH Leave this area blank for abstract info. **Receptor 1 antagonists – Part II: Optimization of pyridazines toward reduced** phospholipidosis and hERG inhibition Gerald J. Roth, Armin Heckel, Jörg Kley, Thorsten Lehmann, Stephan G. Müller, Thorsten Oost, Klaus Rudolf, Kirsten Arndt, Ralph Budzinski, Martin Lenter, Ralf R. H. Lotz, Marcus Schindler, Leo Thomas, and Dirk Stenkamp Boehringer Ingelheim Pharma GmbH & Co. KG, Research Germany, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany 0

Bioorganic & Medicinal Chemistry journal homepage: www.elsevier.com

Design, synthesis and evaluation of MCH Receptor 1 antagonists – Part II: Optimization of pyridazines toward reduced phospholipidosis and hERG inhibition

Gerald J. Roth^{a, *}, Armin Heckel^a, Jörg Kley^a, Thorsten Lehmann^a, Stephan G. Müller^a, Thorsten Oost^a, Klaus Rudolf^a, Kirsten Arndt^b, Ralph Budzinski^b, Martin Lenter^b, Ralf R. H. Lotz^c, Marcus Schindler^b, Leo Thomas^b, and Dirk Stenkamp^a

^a Boehringer Ingelheim Pharma GmbH & Co. KG, Department of Medicinal Chemistry

^b Boehringer Ingelheim Pharma GmbH & Co. KG, Department of Cardiometabolic Research

^c Boehringer Ingelheim Pharma GmbH & Co. KG, Department of Drug Discovery Support

Research Germany, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: Melanin-concentrating hormone (MCH) MCH-R1 antagonists Pyridazine chemistry Phospholipidosis hERG inhibition

Despite recent success there remains a high therapeutic need for the development of drugs targeting diseases associated with the metabolic syndrome. As part of our search for safe and effective MCH-R1 antagonists for the treatment of obesity, a series of 3,6-disubstituted pyridazines was evaluated. During optimization several issues of the initial lead structures had to be resolved, such as selectivity over related GPCRs, inhibition of the hERG channel as well as the potential to induce phospholipidosis. Utilizing property-based design, we could demonstrate that all parameters can significantly be improved by consequently increasing the polarity of the compounds. By this strategy, we succeeded in identifying potent and orally available MCH-R1 antagonists with good selectivity over M1 and 5-HT_{2A} and an improved safety profile with respect to hERG inhibition and phospholipidosis.

2015 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +49-7351-540; fax: +49-7351-54-5181; e-mail: geraldroth@boehringer-ingelheim.com

Obesity is a major risk factor in the modern world and associated with many serious diseases of the metabolic syndrome such as type 2 diabetes, dyslipidemia, coronary heart disease, and stroke.¹ The melanin-concentrating hormone (MCH), a cyclic 19-amino acid polypeptide, has been in the focus of obesity research over the recent years.² It is expressed in the lateral hypothalamus of the brain and the natural ligand for the seven-transmembrane Gprotein-coupled receptors MCH-R1 and MCH-R2. MCH-R1 is involved in the regulation of feeding and energy homeostasis and has therefore been considered an interesting target for the treatment of obesity over the years. While MCH-R1 is expressed in humans and rodents, less is known about the exact function of MCH-R2 which is also expressed in humans and other species, but not in rodents. Despite many efforts of the pharmaceutical industry to develop MCH-R1 antagonists as potential anti-obesity agents, only few compounds advanced to the phase 1 clinical stage.³ Safety concerns such as hERG inhibition or phospholipidosis⁴ were among the prominent reasons for the discontinuation of preclinical research programs in the past.^{5,6} Thus, there remains a high therapeutic need for the development of safe and effective MCH-R1 antagonists.

Figure 1. Design of the 4-atom linker series

As part of our ongoing research program aimed at the identification of potent MCH-R1 antagonists⁷, compounds such as **2** were designed with a modified topology that, compared to compound **1**, positions the left-hand side aryl moiety differently (Figure 1). We reasoned that modifying the position of the aryl moiety could help overcome problems with respect to hERG inhibition and phospholipidosis (PL) discovered in series **1**, as the position of lipophilic moieties is often an integral part of the hERG and PL pharmacophore⁸.

Compound **4** is a potent MCH-R1 binder, but insufficient selectivity over M1 was an initial concern for this probe (Table 1). Several related 4-atom linkers were synthesized to screen for improved lead compounds (Scheme 1). Reducing the triple bond (compounds **5** and **7**) as well as introducing additional hetero atoms (compounds **8** and **10**) into the linker led to reduced affinity to the receptor. In addition, selectivity over M1 remained poor for these derivatives and binding to $5-HT_{2A}$ was identified as additional off-target activity. Removing the carbonyl group from **7** finally resolved the problem and furnished compound **3** with single-digit nanomolar potency and improved selectivity over M1 and $5-HT_{2A}$ as a new lead to the MCH-R1 program. Of note, *N*-methylated derivatives such as **6** or **9** showed reduced affinity and were not followed up further.

Compound 3 displayed a rather unattractive clogP of 7.7 and did show strong inhibition of the hERG channel at a concentration of 1 μ M (Table 2). In order to reduce the

lipophilicity of the compounds a series of derivatives based on a central pyridazine scaffold rather than the phenyl moiety was synthesized (Scheme 2). Starting from pyridazine 17, Sonogashira coupling and subsequent hydrogenation furnished building block 18. 2-Chloro pyridazine 18 could be further modified by either Suzuki couplings utilizing aryl boronic esters or nucleophilic displacement reactions giving rise to Bocprotected 3-pyridazinyl-propylamines 21. Alternatively, the order of reactions can be reversed using triflates 19⁹ or iodides 20⁹ as starting material. After deprotection, Buchwald coupling with aryl bromides 22 yielded the final products 23 in acceptable to good yield.¹⁰

Pyridazine 24 displays a significantly reduced calculated lipophilicity and is still a highly potent and selective MCH-R1 binder (Table 2). Gratifyingly, no hERG inhibition was observed for this compound at 1 µM. However, first phospholipidogenic effects⁴ were observed for this compound at a concentration of 6.25 μM in a cellular test system.¹¹ According to Ploemen at al.⁸ the phospholipidogenic potential can depend on the polarity and basicity of the compounds. We therefore decided to synthesize additional compounds with further reduced lipophilicity (as judged by the clogP) and basicity. Modifying R^3 (Table 2) led to compounds 25-29 with improved polarity but in most cases reduced potency. Only the 4-methoxy-substituted derivative 26 showed comparable activity and was used for further explorations. As a next step we explored the SAR around the basic moiety R¹R²N with a special emphasis on improving the polarity further. Replacing the piperidine moiety with smaller residues such as pyrrolidine 30 or dimethyl amine 31 led to reduced affinity. While neutral compounds did not show binding to the MCH-R1, compounds with reduced basicity such as morpholine 32 retained potency. We decided to keep 6membered amines as preferred residues and explored the effect of ring substitution further. In combination with starting point 24 compounds 32-35 differ in up to 3 clogP units and represent a remarkable example on how to improve compound characteristics by property-based design. All compounds display single-digit nanomolar potency and excellent selectivity over the M1 and 5-HT_{2A} receptors. By consequently reducing the clogP to a value of 2.2 a reduction of the phospholipidogenic potential into a concentration range of 100 µM could be achieved. We reasoned that polarity is clearly the decisive factor influencing phospholipidosis in our series of compounds rather than the basicity (see Table 2). Using the 4-substituted piperidines 34 and 35 as a basis for further modifications, additional derivatives such as 36, 37, and 38 with an overall excellent profile with respect to potency, selectivity, hERG inhibition (IC₅₀>10 µM for **38**) and phospholipidosis (first effects >100 μ M for **38**) could be identified.

Parallel to the 3-pyridazinyl-propylamine series we explored the SAR of the related 3-pyridazinyl-propylethers (Table 3). The synthesis of the compounds is described in Scheme 3. Employing propargylic ether 48^8 in the Sonogashira reaction/hydrogenation sequence, central intermediates 49 could be derived. Introduction of the basic moieties $R^1 R^2 N$ was achieved by either mesylation of the benzylic alcohol and subsequent nucleophilic substitution reaction or by transformation into the aldehyde and reductive amination furnishing compound series 50. SAR in the 3pyridazinyl-propylether series were comparable to those in the propylamine series. Substituted piperidines such as 39 and 40 were identified as potent and selective binders to MCH-R1. Modification of R³ delivered additional potent compounds such as 42, 43, and 45-47, however the correct combination of optimal left-hand and right-hand side is crucial for good potency (for comparison see 41 and 44). Selectivity over M1 and 5-HT_{2A}, as

well as inhibition of the hERG channel was not an issue within this series. The potential for phospholipidosis followed the same trends as before: while less polar compounds such as **39** and **40** induced phospholipidogenic effects in the cellular assay at concentrations of 6-12 μ M, more polar compounds such as **45-47** had a reduced potential for phospholipidosis (first effects at 100 μ M).

concentrations of 6-12 μ M, more polar compounds such as 45-47 had a reduced potential for phospholipidosis (first effects at 100 μ M). Compounds **35**, **38** and **47** display high affinity to MCH-R1, are selective over M1 and 5-HT_{2A} and show an improved safety profile with respect to inhibition of hERG and phospholipidosis.

profile with respect to inhibition of hERG and phospholipidosis. In addition, these compounds exhibited favorable exposure in rats after oral administration (Table 4) and are candidates for further characterization in *in vivo* experiments.

Table 4.	Pharmacokinetic	data after	oral application	to Wistar
rats				

dose	c _{max}	t _{max}	MRT	AUC ^a
[µmol/kg]	$[nM]^{a}$	[h]	[h]	[nM*h]

35 11.9 83 1.5 4.0 476	
38 10.9 24 2.8 6.4 123	
47 6.7 531 0.8 2.9 175	

^a Dose-normalized for 1 µmol/kg

In summary, starting from a potent but non-selective lead, we managed to identify potent and orally available MCH-R1 binders with good selectivity over M1 and 5-HT_{2A} and a clearly improved safety profile with respect to the inhibition of the hERG channel and the induction of phospholipidosis. A key finding during optimization was that especially the potential for phospholipidosis could significantly be lowered by increasing the polarity of the compounds into a clogP range of 2-3.

Table 1. Representative SAR of 4-atom-linker series leading to improved M1 selectivity

	1:-1	MCH-R1 ^a	M1	Selectivity	5-HT _{2A}	Selectivity
	Inker	IC ₅₀ [nM]	IC ₅₀ [nM]	M1/MCH	IC ₅₀ [nM]	5-HT _{2A} /MCH
3	-NHCH2CH2CH2-	3	325	110	680	230
4	-NHCOCC-	10	225	23	NT ^b	NT
5	(E)-NHCOCHCH-	16	401	25	1932	121
6	-(NCH3)CH2CH2CH2-	17	419	25	646	38
7	-NHCOCH ₂ CH ₂ -	38	89	2	138	4
8	-NHCOCH ₂ O-	94	446	5	91	1
9	-(NCH ₃)COCHCH-	634	625	1	362	1
10	-NHCONHCH ₂ -	899	511	<1	29	<1

^a For the description of biological methods, see reference 9. ^bNot tested.

Scheme 1. Reagents and conditions: (a) $Pd_2(dba)_3$, 2-(di-*tert*-butylphosphino)biphenyl, NaOtBu, toluene, 80°C, 29%; (b) NaCNBH₃, formalin, HOAc, THF/CH₃CH, r.t., 49%; (c) TBTU, HOBt, NEt₃, DMF, r.t.; (d) CDT, THF, 0°C -> r.t., 63%, 90%; (e) H₂, Ra-Ni, EtOAc, r.t./50 psi, 27%; (f) Br₂, CH₂Cl₂, r.t., 92%; (g) KOtBu, butanol, 40°C, 24%.

Scheme 2. Reagents and conditions: (a) *N*-Boc-propargylamine, $Pd(PPh_3)_2Cl_2$, CuI, $HNiPr_2$, THF, $-10^{\circ}C \rightarrow r.t.$; (b) H_2 , Ra-Ni, EtOAc/EtOH, r.t./50 psi; (c) R^3 -B(OH)₂, $Pd(PPh_3)_2Cl_2$, NaHCO₃, dioxane, $110^{\circ}C$; (d) phenol, K_2CO_3 , CH₃CN, reflux; (e) TFA, CH₂Cl₂, r.t.; (f) 22, Pd₂(dba)₃, 2-(di-*tert*-butylphosphino)biphenyl, NaO*t*Bu, dioxane, 80°C.

Scheme 3. Reagents and conditions: (a) 48, Pd(PPh₃)₂Cl₂, CuI, HN*i*Pr₂, THF, -10°C -> r.t.; (b) H₂, Ra-Ni, THF/EtOH, r.t./50 psi; (c) MsCl, NEt₃, CH₂Cl₂, -10°C -> r.t.; (d) R¹R²NH, NEt₃, THF or DMF, reflux; (e) MnO₂, CH₂Cl₂, r.t.; (f) R¹R²NH, NaBH(OAc)₃, NaOAc, CH₂Cl₂, r.t.:

Table 2. SAR and optimization of 3-pyridazinyl-propylamine series toward increased polarity

	1.2	2			MCH-R1 ^a	M1	5-HT _{2A}	Phospholipidosis	hERG Patch Clamp
	R ¹ R ² N	R³	clogP	рКа	IC ₅₀ [nM]	IC50 [nM]	IC50 [nM]	First effect conc. [µM]	Blockage
3 (see Table 1)			7.7	NT ^b	3	325	680	NT	76% @ 1µM
24	piperidin-1-yl	4-chloro- phenyl	5.3	NT	4	310	138	6.25	8% @ 1µM
25	piperidin-1-yl	4-fluoro- phenyl	4.7	NT	21	3737	34	NT	NT
26	piperidin-1-yl	4-methoxy- phenyl	4.6	9.0	7	962	1810	6.25	31% @ 1µM
27	piperidin-1-yl	4-cyano- phenyl	4.0	NT	151	1920	1460	NT	NT
28	piperidin-1-yl	4-pyridyl	3.2	NT	2530	NT	NT	NT	NT
29	piperidin-1-yl	methoxy	3.1	NT	>3000	NT	NT	NT	NT
30	pyrrolidin-1-yl	4-methoxy- phenyl	4.0	NT	95	1860	4540	NT	NT
31	dimethylamino	4-methoxy- phenyl	3.4	NT	154	1030	4580	NT	NT
32	morpholin-4-yl	4-methoxy- phenyl	3.3	7.6	20	>10000	>10000	12.5	5% @ 1µM
33	3-hydroxy- piperidin-1-yl	4-methoxy- phenyl	3.3	8.7	6	>10000	>10000	25	10% @ 1µM
34	4-hydroxy- piperidin-1-yl	4-methoxy- phenyl	2.5	8.6	20	>10000	8820	50	10% @ 1µM
35	4-acetylamino- piperidin-1-yl	4-methoxy- phenyl	2.2	8.8	10	>10000	>10000	100	7% @ 1µM
36	4-hydroxy- piperidin-1-yl	benzyloxy	2.8	NT	3	>10000	>10000	50	4% @ 1µM
37	4-hydroxy- piperidin-1-yl	phenoxy	2.4	9.1	24	>10000	>10000	50	35% @ 10µM
38	4-acetylamino- piperidin-1-yl	phenoxy	2.1	8.6	9	>10000	>10000	>100	$IC_{50} > 10 \ \mu M$

^a For the description of biological methods, see reference 9. ^bNot tested.

R ¹ R ² N		√R³ N						6
	R^1R^2N	R ³	clogP	MCH-R1 ^a	M1	5-HT _{2A}	Phospholipidosis	hERG Patch Clamp
				IC_{50} [IIVI]	IC_{50} [mvI]	IC_{50} [IIII]	First effect conc. [µM]	вюскаде
39	(R)-3-hydroxy- piperidin-1-yl	4-chloro- phenyl	4.4	15	5470	595	6.25	13% @ 1µM
40	4-hydroxymethyl- piperidin-1-yl	4-chloro- phenyl	4.2	4	1650	790	12.5	NT^{b}
41	(R)-3-hydroxy- piperidin-1-yl	phenoxy	3.7	92	>10000	>10000	NT	NT
42	4-hydroxy- piperidin-1-yl	4-chloro- phenyl	3.6	13	>10000	1410	25	38% @ 1µM
43	4-hydroxymethyl- piperidin-1-yl	phenoxy	3.4	13	2110	>10000	100	8% @ 1µM
44	4-hydroxy- piperidin-1-yl	4-fluoro- phenyl	3.0	186	>10000	242	NT	NT
45	4-acetylamino- piperidin-1-yl	4-fluoro- phenyl	2.7	15	4470	713	100	2% @ 1µM
46	4-acetylamino- piperidin-1-yl	benzyl	2.5	22	>10000	>10000	100	13% @ 1µM
47	4-acetylamino- piperidin-1-yl	phenoxy	2.5	10	>10000	9650	100	13% @ 10µM

Table 3. SAR and optimization of 3-pyridazinyl-propylether series

^a For the description of biological methods, see reference 9. ^bNot tested.

Acknowledgments

We thank Stephanie Isambert, Simone Klein and Josef Zeiler for their excellence in preparing the compounds shown in this manuscript.

References and notes

- 1. Grundy, S. M. Nat. Rev. Drug Disc. 2006, 51, 295.
- Chung, S.; Parks, G. S.; Lee, C.; Civelli, O. J. Mol. Neurosci. 2011, 43, 115.
- 3. Johannson, A. Expert Opin. Ther. Patents, 2011, 21,905-925.
- 4. Reasor, M. J.; Hastings, K. L.; Ulrich, R. G. *Expert Opin. Drug. Saf.* **2006**, *5*, 567.
- 5. Méndez-Andino, J. L.; Wos, J. A. *Drug Disc. Today* **2007**, *12*, 972.
- 6. Högberg, T.; Frimurer, T. M.; Sasmal, P. K. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 6039.
- Müller, S. G.; Heckel, A.; Kley, J.T.; Lehmann, T.; Lustenberger, P.; Oost, T.; Roth, G. J.; Rudolf, K.; Arndt, K.; Lenter, M.; Schindler, M.; Lotz, R.R.H.; Maier, G.-M.; Markert, M.; Thomas, L.; Stenkamp, D. *Bioorg. Med. Chem. Lett.*, submitted.
- Ploemen, J.-P.; Kelder, J.; Hafmans, T.; van de Sandt, H.; van Burgsteden, J. A.; Salemink, P. J. M.; van Esch, E. *Exp. Toxic Path.*, 2004, 55, 347.
- Chemical procedures and analytical data for all final products and intermediates mentioned above can be found in: Roth, G. J.; Müller, S. G.; Lehmann-Lintz, T.; Stenkamp, D.; Lustenberger, P.;

Kley, J.; Rudolf, K.; Heckel, A.; Schindler, M.; Thomas, L.; Lotz, R.H. WO07048802, **2007**.

- Buchwald coupling reaction representative procedure: 10. N-(1-{4-[3-(6-Phenoxy-pyridazin-3-yl)-propylamino]-benzyl}piperidin-4-yl)-acetamide (Example 38) 6.00 g (26.2 mmol) 3-(6-Phenoxy-pyridazin-3-yl)-propylamine and 8.09 g (26.0 mmol) N-[1-(4-Bromo-benzyl)-piperidin-4-yl]acetamide are dissolved in 60 mL of dioxane and 390 mg (1.30 mmol) 2-(di-tert-butylphosphino)biphenyl, 715 mg (0.78 mmol) tris(dibenzylideneaceton)dipalladium(0) and 3.50 g (36.4 mmol) sodium tert-butoxide are added. The mixture is stirred for 2 hours at 50°C under argon atmosphere. After cooling, the mixture is poured onto 1N HCl/ice water. After neutralizing with ammonia, the mixture is extracted three times with ethyl acetate. The combined organic layers are dried over sodium sulfate. The solvent is removed and the residue is purified by column chromatography (aluminum oxide, act. 2-3, ethyl acetate/ethanol 20:1). Yield: 7.55 g (63% of theory), Rf value: 0.40 (silica gel, methylene chloride/methanol/ammonia = 9:1:0.1); ESI mass spectrum: $m/z = 460 [M+H]^+$; ¹H-NMR (400 MHz, DMSO-d₆): δ 7.72 (d, J = 7.7 Hz, 1H), 7.68 (d, J = 9.0 Hz, 1H), 7.48 - 7.41 (m, 2H), 7.37 (d, J = 9.0 Hz, 1H), 7.29 - 7.22 (m, 1H), 7.21 - 7.16 (m, 2H), 6.95 (d, J = 8.5 Hz, 2H), 6.52 - 6.45 (m, 2H), 5.56 (t, J = 5.6 Hz, 1H), 3.49 – 3.44 (m, 1H), 3.03 (q, J = 6.6 Hz, 2H), 2.95 (t, J = 7.7 Hz, 2H), 2.75 - 2.64 (m, 2H), 2.50 (p, J = 1.9 Hz, 3H), 1.97 -1.85 (m, 4H), 1.76 (s, 3H), 1.65 (dd, J = 12.8, 3.8 Hz, 2H), 1.35 -1.27 (m. 2H).
- Phospholipidosis assay according to: (a) Xia, Z.; Appelkvist, E.-L.; DePierre, J. W.; Nässberger, L. *Biochem. Pharm.* 1997, 53, 1521-1532. (b) Casartelli, A.; Bonato, M.; Cristofori, P.; Crivellente, F.; Dal Negro, G.; Masotto, I.; Mutinelli, C.; Valko, K.; Bonfante, V. *Cell Biol. Tox.* 2003, *19*, 161.