THE USE OF ANILINODIHYDROFURANS IN THE SYNTHESIS OF NOVEL HETEROCYCLIC COMPOUNDS

M. Hammouda¹*, Z. M. Abou Zeid¹, H. A. Etman¹, and M. A. Metwally¹**

Alkyl 4-oxo-2-phenylamino-4,5-dihydrofuran-3-carboxylates were used for the preparation of alkyl 5-amino-7-aryl-2-{[aryl(hydroxy)methyl](phenyl)amino}-4,6-dicyano-1-benzofuran-3-carboxylates, 4-oxo-2-phenylamino-N-(p-tolyl)-4,5-dihydrofuran-3-carboxamide, and ethyl 4-chloro-5-formyl-2-(phenylamino)furan-3-carboxylate. The latter was used for the synthesis of ethyl 4-chloro-5-(hydrazinylidenemethyl)-2-(phenylamino)furan-3-carboxylate and diethyl 5,5'-(hydrazine-1,2-di-ylidenemethylylidene)bis[4-chloro-2-(phenylamino)furan-3-carboxylate].

Keywords: anilinodihydrofurans, benzofurans, substituted furans.

The increasing importance of furano-fused heterocycles as biologically active compounds [1-5] has led to continuing development of new simple procedures for their synthesis. In the light of these findings and our continuing interest in the synthetic importance of the enaminones and synthesis of some functionally substituted heterocycles [6-9], we have investigated the behavior of some furans of the enaminone type towards cinnamonitriles.

When arylidenemalononitriles $1\mathbf{a}-\mathbf{c}$ [10] were subjected to reaction with alkyl 4-oxo-2-phenylamino-4,5-dihydrofuran-3-carboxylates $2\mathbf{a}$, **b** [11] in refluxing 1-propanol in the presence of a catalytic amount of piperidine (Scheme 1), the 1-benzofuran derivatives $5\mathbf{a}-\mathbf{c}$ were obtained, instead of the expected furo-[3,2-*b*]pyrans $4\mathbf{a}-\mathbf{c}$. Similar behavior has been reported previously [12–16].

The NMR spectrum of compound **5a** exhibited two one-proton singlets at δ 5.50 (CH benzyl) and δ 5.60 (OH) ppm. The mass spectrum of compound **5b** showed the molecular ion at *m/z* 584.

Formation of compound **5** could be explained by addition of two molecules of compound **1** to compound **2** to form the intermediate **3** *via* retro Knoevenagel reaction followed by cyclization and elimination of hydrogen cyanide. This reaction represents an interesting method for the construction and functionalization of the 1-benzofuran ring systems. In addition, this method has the advantages of ready accessibility of the reagents, good yields, and experimental simplicity.

In view of the above findings and in connection with the present work aiming to explore the synthetic importance of enaminones, we studied the conversion of compound 2a into some new substituted furan derivatives.

* Deceased.

** To whom correspondence should be addressed, e-mail: mamegs@mans.edu.eg.

¹ Department of Chemistry, Faculty of Science, University of Mansoura, Mansoura, Egypt.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 27-32, January, 2011. Original article received March 31, 2010, in revised form October 26, 2010.

0009-3122/11/4701-0017©2011 Springer Science+Business Media, Inc.

In the present work, the heterocyclic enaminone 2a has been condensed with aromatic amine 6 in refluxing xylene to give compound 7, which we could not convert into compound 8 when treated with formaldehyde (Scheme 2). The product 7 was characterized by analytical and spectral data (cf. Experimental).

Treatment of compound 2a with the Vilsmeier reagent (Me₂NCHO + POCl₃) in tetrachloroethylene at room temperature afforded the aldehyde 9 (Scheme 3). The structure of 9 was supported by its mass spectrum, which showed the molecular ion at m/z 293.

Scheme 3

In view of the considerable chemical reactivity of β -halo ketones, the authors felt it would be valuable to investigate the reaction of the aldehyde 9 with hydrazines as a possible route to the furo[3,2-c]pyrazoles. However, the treatment of compound 9 with hydrazine in a 1:1 molar ratio in absolute ethanol afforded the corresponding hydrazone 10 instead of the expected product 11. On the other hand, the treatment of compound 9 with hydrazine in a cetic acid afforded the azine 12 (Scheme 4). The structure 10 assigned to the product is based on analytical and spectral data.

Several nucleophilic condensation reactions of compound 9 were also studied: this compound reacted with malononitrile and with compound 2a to give furan derivatives 13 and 14, respectively (Scheme 4). The structures assigned to the products are based on their analytical and spectral data. The mass spectrum of compound 14 showed the molecular ion at m/z 522 (cf. Experimental).

Scheme 4

EXPERIMENTAL

Melting points (uncorrected) were taken on a Fisher electric melting point apparatus. Elemental analyses were carried out in the Microanalytical Unit, Faculty of Science, Mansoura and Cairo Universities.

Infrared spectra (pellets, KBr) were recorded on a SP-2000 Pye-Unicam spectrometer. ¹H NMR spectra were obtained with Varian-Gemini (200 MHz) and Brucker (250 MHz) spectrometers, internal standard TMS. Mass spectra (EI) were recorded on a GCMS QP1000EX Shimadzu mass spectrometer (EI, 70 eV). The purity of the synthesized compounds were tested by TLC using Merck TLC aluminum sheets, Cellulose F254, layer thickness 0.10 mm (ethyl acetate–ether, 9:1 as eluent), and no by-products were noticed in all cases.

Synthesis of Alkyl 5-Amino-7-aryl-2-{[aryl(hydroxy)methyl](phenyl)amino}-4,6-dicyano-1-benzofuran-3-carboxylates 5a-c. A mixture of compound 2a or 2b (0.003 mol) and the appropriate arylidenemalononitrile 1a-c (0.006 mol) in 1-propanol (30 ml) and piperidine (0.1 ml) was refluxed for 8 h. The solid products that precipitated after cooling were filtered off and crystallized from ethanol.

Ethyl 5-Amino-2-{[hydroxy(phenyl)methyl](phenyl)amino}-7-phenyl-4,6-dicyano-1-benzofuran-3-carboxylate (5a) obtained as yellow crystals. Yield 83%; mp 205–207°C. IR spectrum, v, cm⁻¹: 3399 (OH), 3337, 3238 (NH₂), 2198 (C=N), 1660 (C=O ester). ¹H NMR spectrum (200 MHz, CDCl₃), δ , ppm (*J*, Hz): 1.25 (3H, t, *J* = 7.0, CH₃ ester); 4.15 (2H, q, *J* = 7.0, CH₂ ester); 5.05 (2H, s, NH₂); 5.50 (1H, s, CH benzyl); 5.6 (1H, s, OH); 7.19-7.45 (15H, m, H Ar). Found, %: C 72.51; H 4.71; N 10.82. C₃₂H₂₄N₄O₄. Calculated, %: C 72.72; H 4.58; N 10.60.

Methyl 5-Amino-7-(*p*-chlorophenyl)-2-{[*p*-chlorophenyl(hydroxy)methyl](phenyl)amino}-4,6-dicyano-1-benzofuran-3-carboxylate (5b) obtained as brown crystals. Yield 63%; mp 278-280°C (decomp.). IR spectrum, v, cm⁻¹: 3407 (OH), 3339, 3234 (NH₂), 2202 (C≡N), 1665 (C=O ester). Mass spectrum, *m/z* (*I*, %): 584 $[M]^+$ (30), 553 $[M-OMe]^+$ (34), 526 $[M+H-(CO_2Me)]^+$ (2), 442 $[553-C_6H_4C1]^+$ (6), 330 $[553-C_6H_4C1]^+$ (7), 93 (100). Found, %: C 63.61; H 3.32; N 9.51. C₃₁H₂₀Cl₂N₄O₄. Calculated, %: C 63.82; H 3.46; N 9.60.

Methyl 5-Amino-7-(*p*-bromophenyl)-2-{[*p*-bromophenyl(hydroxy)methyl](phenyl)amino}-4,6-dicyano-1-benzofuran-3-carboxylate (5c) obtained as yellow crystals. Yield 60%; mp 288-290°C (decomp.). IR spectrum, ν , cm⁻¹: 3395 (OH), 3310, 3210 (NH₂), 2198 (C=N), 1670 (C=O ester). Mass spectrum, *m/z* (*I*, %): 674 [M]⁺ (17.1), 643 [M-OMe]⁺ (5.1), 485 [643-(C₆H₄Br+2H)]⁺ (5.8), 93 (100). Found, %: C 55.21; H 3.12; N 8.11. C₃₁H₂₀Br₂N₄O₄. Calculated, %: C 55.38; H 2.99; N 8.33.

4-Oxo-2-phenylamino-N-(*p***-tolyl)-4,5-dihydrofuran-3-carboxamide (7)**. A mixture of compound **2a** (0.003 mol) and *p*-toluidine **6** (0.003 mol) in xylene (15 ml) was refluxed for 6 h. The solid product obtained after concentration and cooling was filtered off and crystallized from ethanol to give compound **7** as yellow crystals. Yield 59%; mp 218-220°C. IR spectrum, v, cm⁻¹: 3300 (NH), 1638 (C=O ketone), 1561 (C=O amide). Mass spectrum, m/z (I, %): 308 [M]⁺ (24), 202 [M-C₇H₈N]⁺ (29), 174 [202-CO]⁺ (4), 107 [C₇H₈N+H]⁺ (100), 92 [C₇H₈N+H-Me]⁺ (2), 77 [92-NH]⁺ (20). Found, %: C 70.25; H 5.38; N 9.25. C₁₈H₁₆N₂O₂. Calculated, %: C 70.12; H 5.23; N 9.09.

Ethyl 4-Chloro-5-formyl-2-(phenylamino)furan-3-carboxylate (9). A cold solution of POCl₃ (10 ml) in tetrachloroethylene (TCE) (10 ml) and 3.56 ml DMF in TCE (40 ml) was added dropwise to a solution of compound 2a (4.37 g) in TCE (40 ml). The reaction mixture was stirred for 16 h at room temperature. The solid product that separated after neutralization with NaOH solution and extraction with CHCl₃ was crystallized from ethanol to give yellow crystals. Yield 70%; mp 129-131°C. IR spectrum, v, cm⁻¹: 3261 (NH), 1680 (C=O ester), 1653 (C=O aldehyde). Mass spectrum, m/z (I, %): 293 [M]⁺ (25), 195 (50), 130 (100). Found, %: C 57.31; H 4.23; N 4.85. C₁₄H₁₂CINO₄. Calculated, %: C 57.25; H 4.12; N 4.77.

Ethyl 4-Chloro-5-(hydrazinylidenemethyl)-2-(phenylamino)furan-3-carboxylate (10). A mixture of compound 9 (0.003 mol) and hydrazine hydrate (0.003 mol) in absolute ethanol (25 ml) was refluxed for 5 h. The solid products that precipitated after cooling were filtered off and crystallized from the proper solvent to give the hydrazone 10 as yellow crystals from ethanol. Yield 82%; mp 125-127°C. IR spectrum, v, cm⁻¹: 3349 (NH₂ hydrazone), 3289 (NH), 1669 (C=O ester), 1639 (C=N). Mass spectrum, m/z (I, %): 307 [M]⁺ (22), 262 [M-OEt]⁺ (3), 234 [M-CO₂Et]⁺ (4), 142 [M-(C₆H₅NH+COOEt)]⁺ (9), 92 [C₆H₅NH]⁺ (7), 77 [C₆H₅]⁺ (100). Found, %: C 54.73; H 4.73; N 13.75. C₁₄H₁₄ClN₃O₃. Calculated, %: C 54.64; H 4.59; N 13.66.

Diethyl 5,5'-(Hydrazine-1,2-diylidenedimethanylylidene)bis[4-chloro-2-(phenylamino)-furan-3-carboxylate] (12). A mixture of compound **9** (0.003 mol) and hydrazine hydrate (0.003 mol) in acetic acid (20 ml) was refluxed for 6 h. The solid product that precipitated after cooling was filtered off and recrystallized from acetic acid to give golden-yellow crystals. Yield 37%; mp 227-229°C. IR spectrum, v, cm⁻¹: 3293 (NH phenylamino), 1671 (C=O ester), 1621 (C=N). Mass spectrum, m/z (I, %): 584 [M]⁺ (30), 308 [M+2H-C₁₄H₁₂NO₃Cl]⁺ (23), 77 [C₆H₅]⁺ (100). Found, %: C 57.82; H 7.31; N 9.51. C₂₈H₂₄Cl₂N₄O₆. Calculated, %: C 57.64; H 4.15; N 9.60.

Ethyl 4-Chloro-5-(2,2-dicyanovinyl)-2-(phenylamino)furan-3-carboxylate (13). A mixture of compound 9 (0.003 mol) and malononitrile (0.003 mol) in absolute ethanol (25 ml) and piperidine (0.1 ml) was refluxed for 6 h. The solid product that precipitated out after cooling was filtered off and recrystallized from ethanol to give yellow crystals. Yield 63%; mp 139-141°C. IR spectrum, v, cm⁻¹: 3324 (NH phenylamino), 2192 (C=N), 1715 (C=O ester), 1633 (C=C). ¹H NMR spectrum (250 MHz, DMSO-d₆), δ , ppm (*J*, Hz): 1.37 (3H, t, *J* = 7.0, CH₃ ester); 4.35 (2H, q, *J* = 7.0, CH₂ ester); 7.25–7.55 (6H, m, H Ar+vinyl); 10.1 (1H, s, NH). Found, %: C 59.86; H 3.61; N 12.41. C₁₇H₁₂ClN₃O₃. Calculated, %: C 59.73; H 3.54; N 12.29.

Ethyl 4-Chloro-5-[(4-ethoxycarbonyl-3-oxo-5-(phenylamino)furan-2(3H)-ylidene]methyl-2-(phenyl-amino)furan-3-carboxylate (14). A mixture of compound 9 (0.003 mol) and compound 2a (0.003 mol) in absolute ethanol (30 ml) and piperidine (0.1 ml) was refluxed for 6 h. The reaction mixture was cooled, poured in water, and acidified with diluted HCl, 1:1. The precipitated material was filtered off and recrystallized from ethanol to give brown crystals. Yield 58%; mp 219-221°C. IR spectrum, v, cm⁻¹: 3300 (NH phenylamino), 1664 (C=O ester), 1619 (CH=C). Mass spectrum, m/z (I, %): 523 [M+1]⁺ (2), 522 [M]⁺ (28), 487 [M-HCl]⁺, probably the fused pyrylium ion (93), 395 [M-HCl-(2EtO+2H)]⁺ (55), 77 [C₆H₅]⁺ (100). Found, %: C 62.13; H 4.51; N 5.43. C₂₇H₂₃ClN₂O₇. Calculated, %: C 62.01; H 4.43; N 5.36.

REFERENCES

- 1. The Merck Index of Chemicals and Drugs, 12th Ed., Merck and Co., Inc., 1996, p. 406.
- 2. The Merck Index of Chemicals and Drugs, 12th Ed., Merck and Co., Inc., 1996, p. 409.
- 3. S. Prabhakar, B. R. Pai, and V. N. Ramachandran, Indian J. Chem., 8, 857 (1970).
- 4. S. C. Kuo, S. C. Huang, L. J. Huang, E. H. Cheng, T. S. Ping, C. H. Wu, K. Ishii, and H. Nakamura, *J. Heterocycl. Chem.*, **28**, 955 (1991).
- 5. R. A. Mack, St. G. Vassil, S. C. Wu Edwin, and R. M. James, J. Org. Chem., 58, 6158 (1991).
- 6. M. Hammouda, M. M. Mashaly, and A. A. Fadda, Arch. Pharm. Res., 18, 213 (1995).
- 7. M. Hammouda, M. M. Mashaly, and E. M. Afsah, *Pharmazie*, 49, 365 (1994).
- 8. M. M. Mashaly and M. Hammouda, Z. Naturforsch., 54b, 1205 (1999).
- 9. M. Hammouda, A. S. El-Ahl, Y. M. El-Toukhee, and M. A. Metwally, J. Chem. Res. (S), 89 (2002).
- 10. A. W. Faull and R. Hull, J. Chem. Soc., Perkin Trans. 1, 1078 (1981).
- 11. L. Capuano and W. Fisher, Chem. Ber., 109, 212 (1976).
- 12. R. Gr. Redkin, L. A. Shemchuk, V. P. Chernykh, O. V. Shishkin, and S. V. Shishkina, *Tetrahedron*, **63**, 11444 (2007).
- 13. X. Z. Lian, Y. Huang, Y. Q. Li, and W. J. Zheng, Monatsh. Chem., 139, 129 (2008).
- 14. M. Xia, Q. Chen, and Y. Lu, Synth. Commun., 35, 1381 (2005).
- 15. D. Shi, J. Mou, Q. Zhuang, L. Niu, N. Wu, and X. Wang, Synth. Commun., 34, 4557 (2004).
- 16. B. P. V. Lingaiah, G. V. Reddy, T. Yakaiah, B. Narsaiah, S. N. Reddy, R. Yadla, and P. S. Rao, *Synth. Commun.*, **34**, 4431 (2004).