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Abstract A new probe 1was synthesized by incorporating an
α ,β-unsaturated ketone to a diketopyrrolopyrrole
fluorophore. The probe exhibited a selective and sensitive
response to cyanide against other anions. Addition of CN−

aqueous solution to 1 resulted in a rapid color change from
pink to light yellow together with a blue shift from 518 to
421 nm, while other anions did not induce any significant
color change. Furthermore, the Michael addition of cyanide
to 1 elicited 98% fluorescence quenching at 608 nm, which
constituted the fluorescence signature for cyanide detection.
The detection limit was 0.67 μM using the fluorescence spec-
tra changes, which was far lower than the WHO guideline of
1.9 μM. Moreover, 1-based test strips could successfully de-
tect CN− solutions.
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Introduction

Anion recognition is an area of growing interest in supramo-
lecular chemistry due to its crucial role in a wide range of
chemical, biological and environmental processes. Among
various anions, cyanide is well known as one of the most toxic
species and is extremely harmful to mammals. Any accidental

release of cyanide to the environment causes serious problems
[1–3]. Therefore, the maximum permissive level of cyanide in
drinking water is set at 1.9 μM by the World Health
Organization (WHO). Nevertheless, cyanide salts are still
widely used as industrial materials in gold mining,
electroplating, plastics production and other fields.
Therefore, it is highly desirable to develop sensitive, selective
and quick detection methods for toxic cyanide anions.

Compared with detection approaches for cyanide based on
hydrogen bonding or supramolecular interactions [4–7], the
burgeoning field of reaction-based indicators has made prog-
ress in this area because of the unique reactivity of CN− to-
ward a variety of organic functional groups including C = O,
C = N, C = C, and so on [8–11]. The irreversible formation of
chemical bonds can provide chemodosimetric information
and develop ratiometric fluorescent probes. Unfortunately,
none of these is ideal. Many of them suffer from the require-
ment of a long reaction time and elevated reaction tempera-
ture, the need for surfactant media and a slow response
[12–20]. There is an ever-present need to develop new
reaction-based CN− sensors, as these can help overcome lin-
gering obstacles in its detection, such as selectivity, sensitivity,
response times, sensor stability, reaction conditions, etc.

As brilliant red and strong fluorescent high performance
pigments, diketopyrrolopyrrole (DPP) and its derivatives have
gained wide attention in recent years due to its ease of syn-
thetic modification, high fluorescence quantum yields and
good light and thermal stability [21–25]. To date, only limited
DPP-derived probes for reaction-based cyanide detection have
been reported [26, 27]. In the present work, probe 1 for cya-
nide was designed and synthesized (Scheme 1), in which DPP
was used as the fluorophore and an α,β-unsaturated ketone
moiety was introduced as the cyanide receptor. The probe
displays high selectivity and sensitivity for CN− over other
anions with a fast response.
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Experimental

Chemicals and Instruments

Nuclear magnetic resonance spectra were recorded on Bruker
Avance III 400MHz and chemical shifts are expressed in ppm
using TMS as an internal standard. The UV-vis absorption
spectra were recorded using a Helios Alpha UV-Vis scanning
spectrophotometer. Fluorescence spectra were obtained with a
Hitachi F-4500 FL spectrophotometer with quartz cuvette
(path length = 1 cm). The THF solutions of anions (F−,
CN−, Cl−, Br−, I−, AcO−, HSO4

−, H2PO4
−, NO3

−, ClO4
−) were

prepared from their tetrabutylammonium salts with distilled
tetrahydrofuran.

Other solvents were obtained from commercially
available resources without further purification. 2,5-
Dioctyl-3,6-bis(4′-formylphenyl)pyrrolo[3,4-c] pyrrole-
1,4-dione (compound 5) was synthesized according to
our published literature [28]. Compound 6 was synthe-
sized according to the literature [29].

The recognition between 1 and different anions was inves-
tigated by UV–Vis and fluorescence spectroscopy in THF
solution at room temperature. The stock solution of 1 and
anions was at a concentration of 10.0 mM. After the 1 and
anions with desired concentrations were mixed, they were
measured by UV–Vis and fluorescence spectroscopy.

Synthesis of 1

111.0 mg (0.2 mmol) coumpond 6, 111.6 mg (0.6 mmol)
2,4-dinitrofluorobenzene and 1.00 g (7.25 mmol) K2CO3

were mixed in 10 mL of N,N-dimethylformamide. After
stirring overnight at room temperature, the resultant was
neutralized with dilute HCl solution and extracted by
methylene chloride. The solvent was evaporated under
reduced pressure to get the crude product, which was fur-
ther purified by column chromatography using hexane/di-
chloromethane/ethylacetate (10/60/1) as an eluent to ob-
tain 120 mg pure compound 1 in 52% yield. m.p. 212–
213 °C. 1H NMR (CDCl3, 400 MHz, δ, ppm): 8.84 (d,
J = 2.8 Hz, 2H), 8.31 (dd, J = 2.8 Hz, 2H), 7.87(t,
J = 8.4 Hz, 6H), 7.73 (d, J = 8.4 Hz, 4H), 7.70–7.61
(m, 4H), 7.51 (t, J = 7.6 Hz, 2 H), 7.42 (d, J = 15.6 Hz,
2H), 7.21(d, J = 8 Hz, 2H), 6.93(d, J = 9.2 Hz, 2H), 3.77
(t, J = 7.6 Hz, 4H), 1.60 (t, J = 5.2 Hz, 4H), 1.21 (d,
J = 6.4 Hz, 20H), 0.84 (t, J = 6.8 Hz, 6H), 13C NMR
(CDCl3, 100 MHz, δ, ppm): 190.05, 162.5, 155.96,
151.31, 147.66, 144.43, 141.7, 139.01, 136.74, 133.88,
132.59, 131.33, 130.21, 129.28, 129.03, 127.15, 126.24,
122.25, 121.82, 118.35, 110.66, 42.10, 31.69, 29.43,
29.07, 28.98, 26.69,22.57, 14.04. HRMS-ESI: m/z calcd
(%) for C48H52N10O10: 1136.4066 [M + Na]+; Found:
1159.4060.
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Scheme 1 Synthesis of probe 1
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Results and Discussions

Spectral Characteristics of 1 with CN−

To get insight into sensing behavior of 1 with CN−, the ab-
sorption spectra of 1 in THF upon titration with CN− solution
were recorded. As shown in Fig. 1a, free 1 showed two major
absorption peaks at 336 and 518 nm. Upon addition of CN−,
the absorption peaks of 1 at 336 and 518 nm gradually de-
creased following the formation of two new bands centered at
370 and 421 nm. Meanwhile, two isosbestic points at 358 and
476 nm were observed, which implied new species with less
conjugation were formed. Notably, the ratios of A370/A518 and
A421/A518 increased over 18.8 and 46.8-fold in presence of 30
equiv. CN−, respectively. The corresponding color changes of
1 with the increasing concentrations of cyanide anion are
shown in Fig. 1c, resulting in a rapid color change from pink
to light yellow.

The CN− sensing property was further examined through
fluorescent titration studies in detail. As shown in Fig. 2a, 1

showed a major emission peak at 608 nm. Upon addition of
CN− aqueous solution to 1, the PL intensity at 608 nm was
decreased gradually and blue-shifted to 572 nm. A single
crossover point at 570 nm was observed at low concentration
of cyanide ion (0–10 equiv). A plateau with the addition of 30
equiv. of CN− with 98% fluorescence quenching at 608 nm
was achieved. Fig. 2c showed the emission color photographs
of 1 in the presence of CN− under excitation at 365 nm, where
strong red emission was absent.

To exploit its sensing behavior, we examined the time de-
pendent changes in the absorption spectra of 1 (10 μM) upon
reaction with CN− at room temperature. Generally, reaction-
based chemosensors suffer from a long response time. In our
case, the response of 1 to CN− was found to be very fast. The
absorption increase around 421 nm reached maximum at 4
and 1 min in presence of 10 and 30 equiv. CN−, respectively,
indicating nucleophilic addition reaction between the vinyl
group and CN− was completed (Fig. 3). It is well known that
the nucleophilicity of anions is greatly decreased in water due
to hydrogen bond formation between the anions and water
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changes and c color changes of 1
in THF (10 μM) with increasing
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molecules. For instance, Guo’s group reported that the reac-
tion of anthracene-indanedione Michael receptor and cyanide
could be completed within 2 min at an elevated temperature of
50 °C in 9:1 CH3CN-water, and 10 equiv. of cyanide was
required to reach the spectral saturation [30]. Herein, in the
presence of 10 equiv. of cyanide, the nucleophilic CN− addi-
tion to 1 occurred very rapidly (within 4 min), indicating high
reactivity was the unique feature of 1, which was impressive
as many reported cyanide probes require high equivalents of
cyanide and long reaction time to reach a maximal spectral
signal [31–41].

Selectivity of 1 with CN−

For the purpose of evaluating selectivity of 1 to cyanide, the
absorption spectral change of 1 upon addition of other anions
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was also investigated. Dramatic change of the absorption
spectrum induced by CN− was observed, while almost no
changes could be found in presence of other anions, including
F−, CN−, Cl−, Br−, I−, AcO−, HSO4

−, H2PO4
−, NO3

−, ClO4
−

(Fig. 4a). More importantly, the color change from pink to
light yellow can be clearly observed by the naked eye in

presence of CN−, while other anions did not induce any sig-
nificant color change, which suggested that naked-eye selec-
tive detection of CN− became possible (Fig. 4b).

Meanwhile, only CN− rendered a remarkable BTurn-Off^
fluorescence response, whereas all other anions revealed a
negligible change in the fluorescent spectra of 1 (Fig. 5a). In
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the presence of 30 equivalents of CN −, an emission peak at
601 nm with 98% fluorescence quenching was observed.
Fig. 5b showed the photographs of 1 in the presence of
different anions under excitation at 365 nm using a por-
table UV lamp. The disappearance of intense red color of
the solution upon interaction of 1 with CN− was present.
However, other anions did not induce any significant
emission color change.

Another important feature of 1 is its high selectivity
toward the CN− in presence of other competitive anions.
Changes of fluorescence spectra of 1 (10 μM) caused by
CN− (30 equiv) and miscellaneous competing species (30
equiv) were recorded in Fig. 6. As can be seen, these
competitive species, did not lead to any significant inter-
ference. In the presence of these ions, the CN− still

produced similar optical spectral changes. These results
showed that the selectivity of sensor 1 toward CN− was
not affected by the presence of other anions.

For determination of stoichiometry between 1 and CN−,
Job’s plot analyses were used. Themethod is that keeping total
concentration of 1 and CN− at 10.0 μM, and changing the
molar ratio of CN− (XM; XM = [CN−]/{[1] + [CN−]}) from
0.1 to 0.9. From Fig. 7, when molar fraction of CN− was 0.3,
the I0-I value got to maximum, indicating that forming a 1:2
complex between 1 and CN−.

Moreover, the binding stoichiometry and the binding
constant to CN− were determined by Benesi–Hildebrand
double reciprocal method following Eq. (1). Here I0 and
Imin are the fluorescence intensities at zero and the max-
imum concentrations of CN−, [CN−] is the total CN− con-
centration, Kb is the binding constants for 1:2 binding
mode. For receptor 1, a good linear fit could be obtained
by Eq. (1), indicative of the binding stoichiometry of 1:2,
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which conformed to the presence of two a,b-unsaturated
ketone moiety in receptor 1 (Fig. 8). The binding constant
was found to be 1.24 × 108 M−2.

1

I0−I
¼ 1

K I0−Iminð Þ CN−½ �2 þ
1

I0−Imin
ð1Þ

The detection limit of 1 for CN− was calculated based
on the fluorescence titration data according to a reported
method [42]. Under optimal conditions, calibration graphs
for the determination of CN− were constructed. The de-
creased fluorescence intensity of the system showed a
good linear relationship (R2 = 0.998), as shown in
Fig. 9. The detection limit for CN− was determined as
0.67 μM based on S/N = 3, which was far lower than
the WHO guideline of 1.9 μM cyanide [43–47].

Practical Application

Active materials-based test strips represent a group of
convenient probing substrate for practical utilization. 1-
based test strip was thus fabricated by immersing filter
paper into the THF solution of 1 (1.0 × 10−3 M) and
drying in air, which was energy- and cost-effective. The
corresponding probing experiments were carried out sub-
sequently. The results indicated that this protocol really
took effect. The obvious color change from pink to yellow
was observed by immersing this test strips in aqueous
solutions of CN−, exhibiting colorimetric changes differ-
entiable to naked eyes (Fig. 10a). As shown in Fig.10b,
when the 1-exposed test strip was immersed into aqueous
solutions of CN− (0.01 M), strong red fluorescence disap-
peared and easily distinguished. Since the color change
was rapidly and clearly detected, the test strips could con-
veniently detect CN− in water solutions.

Conclusions

In summary, we developed a new type of DPP-based BTurn-
Off^ fluorescence chemodosimeter, which displayed high se-
lectivity and sensitivity for the detection of cyanide. Addition
of CN− aqueous solution to 1 in THF resulted in a rapid color
change from pink to light yellow, while other anions did not
induce any significant color change, suggesting naked-eye
selective detection of CN− using 1 became possible. In the
presence of CN−, the strong red emission of 1 was completely
quenched. Test strips for use in practical applications are suc-
cessfully realized.
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