Note

Lanthanide-shift-reagent study of some deoxyhexopyranosides

ELIZABETH LEE, PATRICK MCARDLE, PATRICIA BROWNE, AND NOEL GAVIN Chemistry Department, University College, Galway (Ireland) (Received November 21st, 1988; accepted for publication, February 23rd, 1989)

¹H-N.m.r. and ¹³C-n.m.r. spectroscopy have contributed significantly to knowledge of the structure and conformation of the 4,6-O-benzylidene-D-aldo-hexopyranosides and their derivatives, including some deoxy sugars¹⁻⁴. A quantitative investigation of the n.m.r. line shifts (¹H) induced by Eu(fod)₃ in the spectra of the 4,6-O-benzylidene derivatives of methyl 3-deoxy⁵ (1), 3-deoxy-2-O-p-tolyl-sulfonyl⁵ (2), and 2-deoxy⁶ (3) - α -D-*ribo*-hexopyranosides, and of the methyl 2-deoxy- α -D-*arabino*^{7,2} (4) and 3-deoxy- β -D-*ribo*⁸ (5) isomers have now been carried out. The ¹³C-n.m.r. spectra of these systems were completely assigned by selective ¹H-spin-decoupling and off-resonance experiments.

The observed shift data for 1, 2, and 4 were in good agreement with those calculated for the ${}^{4}C_{1}$ conformation of the pyranoid ring, using a single-site model⁹ (Tables I and II), and co-ordination of MeO-1 does not take place. In these compounds, the staggered position away from Eu was chosen for MeO-1. It was not

TABLE I

Proton	1	2	Proton	3	4	Proton	5
H-1	15.07	0.55	H-1	11.20	2.26	H-1	15.07
H-2	15.63	1.03	H-2a	10.30	8.85	H-2	16.13
H-3a	13.12	0.48	H-2e	16.52	6.33	H-3a	7.42
H-3e	10.86	0.48	H-3	14.30	13.54	H-3e	6.17
H-4	b	0.21	H-4	8.47	9.96	H-4	b
H-5	ь	0.25	H-5	12.50	5.52	H-5	4.63
H-6a	3.15	0.10	H-6a	4.80	3.04	H-6a	2.41
H-6e	3.06	0.11	H-6e	3.40	2.30	H-6e	2.58
H-7	2.32	0.11	H-7	3.97	4.14	H-7	1.60
MeO	5.93	0.21	MeO	6.60	1.04	MeO	6.79
но	33.30		но	28.70	ь	HO	24.47

OBSERVED RELATIVE SHIFT-GRADIENTS^a FOR 1-5

^aP.p.m. per mol of Eu(fod)₃ per mol of substrate. ^bObscured.

0008-6215/89/\$ 03.50 © 1989 Elsevier Science Publishers B.V.

TABLE II

Proton	1	2	Proton	3	4	
H- 1	14.99	0.54	H-1	10.95	2.41	
H-2	15.68	1.03	H-2a	10.70	9.23	
H-3a	13.16	0.48	H-2e	16.80	6.37	
H-3e	10.63	0.48	H-3	13.90	13.28	
H-4		0.24	H-4	8.73	10.10	
H-5		0.25	H-5	12.35	4.96	
H-6a	3.27	0.10	H-6a	4.94	2.86	
H-6e	2.82	0.10	H-6e	3.43	2.12	
H-7	2.81	0.10	H-7	3.85	4.14	
Eu…O-2	3.37	3.50	Eu…O-1(Å)	2.34	Eu…O-3(Å)	2.84
R	2.23%	2.34%	EuO-3(Å)	2.48	R	2.60%
			R	2.55%		

CALCULATED RELATIVE SHIFT-GRADIENTS FOR model A FOR 1, 2, AND 4, AND FOR model D FOR 3

possible to fit shift data for the 2-deoxy- α -D- (3) and 3-deoxy- β -D-ribo-hexopyranosides (5) to the simple single-site model. Furthermore, the somewhat larger shifts observed for the resonance of MeO-1 in 3 and 5 relative to 1 suggest some degree of co-ordination of the MeO group. The position chosen for MeO-1 in 3 was again as in 1, 2, and 4 (which is the only position possible if chelation takes place). When the shift data for 3 were fitted to the ${}^{4}C_{1}$ conformation, using the chelation model D¹⁰, the reasonable fit described in Table II resulted.

The fit obtained for 5, using monodentate co-ordination by O-1 and O-2 (when in this example chelation is not possible and not observed) is quite good (Table III). It is surprising perhaps that this implies equal binding constants for O-1 and O-2. However, many other models including weighted averaging of computed shifts were used without success. Therefore, it appears that, in this instance, OMe and OH co-ordination are competitive. An example of reduced reactivity at O-2

Proton	Eu…O-l	Еи… О-2	Average
H-1	17.09	13.45	15.27
H-2	10.93	21.31	16.12
H-3a	2.31	13.53	7.92
H-3e	0.19	12.69	6.44
H-5	4.76	4.48	4.62
H-6a	3.01	1.55	2.78
H-6e	3.29	1.69	2.49
H-7	1.53	2.23	1.88
Eu–O (Å)	3.10	3.39	1100
R		*	2.75%

CALCULATED RELATIVE SHIFT-GRADIENTS FOR 5

TABLE III

>	
TABLE I	

 $^{13}\text{C-n.m.r.}$ chemical shift data (p.p.m. downfield from $Me_4\text{Si})$

1 3-deoxy- <i>a-ribo</i> МеО Н Н ОН Н Н 99.2 67.6 33.8 76.3 64.0 69.4 101.8 3 3 dooxy-a-ribo МеО Н Н ОТе Н Н 96.0 74.7 30.7 76.0 63.5 60.1 101.8	Compound	Hexose configuration	R'	R²	Ŗ	R4	Rź	Ŗ	C-1	C-3	C-3	C-4	C-3	C-6	C-7	ОөМ
3 2-deoxy-a-ribo MeO H H OH H 9.0 3.5 5.0 7.0 5.2 69.4 102.1 3 2-deoxy-a-ribo MeO H H OH H 98.6 35.5 55.0 79.7 58.2 69.4 102.1 4 2-deoxy-a-rabino MeO H H OH 99.1 37.3 65.9 83.9 62.5 69.1 102.1 5 3-deoxy-β-ribo H OH H 106.4 69.2 35.1 76.5 69.1 70.6 101.8	10045	3-deoxy-α-ribo 3-deoxy-α-ribo 2-deoxy-α-ribo 2-deoxy-α-arabino 3-deoxy-β-ribo	MeO MeO MeO H	н Н МеО	нннн	он H н H оН	н но н	н н н н	99.2 96.9 98.6 99.1 106.4	67.6 74.7 35.5 37.3 69.2	33.8 30.2 65.0 35.1	76.3 76.0 79.7 83.9 76.2	64.0 63.5 58.2 62.5 69.1	69.4 69.1 69.4 69.1 70.6	101.8 101.8 102.1 102.1 101.8	55.3 55.3 54.9 57.4

(regioselectivity seems to be better for α - than for β -D-glycosides) is provided by tosylation^{4,12}. The position chosen for Eu co-ordination was along the line defined by the mid-points of the lines joining C-1,C-2 and O-1,O-2 with Eu–O distances of 3.0Å. The orientation of the HO-2 and MeO-1 bonds were such that the bisectors of the C–O–R angles were in the plane of O-1, O-2, and Eu.

¹³C-N.m.r. chemical shift data for the deoxyhexopyranosides are presented in Table IV. Selective ¹H-spin-decoupling allowed complete assignment of signals. For example, the ¹³C-n.m.r. spectrum of the 2-deoxy- α -D-*ribo*-hexopyranoside (**3**) contained four signals at lowest field due to the six aromatic carbons [137.3 (quaternary), 129.1 (*para*), 128.3 and 126.3 p.p.m. (*ortho* and *meta*)] with little or no change in the positions of these signals throughout the series. Selective irradiation at the position of the H-7 signal confirmed that the signal at 102.1 was due to C-7. The signal at 98.6 was assigned to C-1 following selective irradiation at the position of the H-1 signal. Likewise, the signals at 35.5, 65.0, 79.7, and 58.2 were assigned to C-2, C-3, C-4, and C-5, respectively. Finally, examination of the offresonance spectrum showed that the signal at 55.5 p.p.m. was due to the methoxyl carbon, and the signal at 69.4 p.p.m. was assigned to C-6.

Comparison of the ¹³C-n.m.r. data for 1 and the *p*-tolylsulfonyl derivative 2 showed that the sulfonylation caused an upfield shift of 2.3 p.p.m. ($\Delta\delta$ for C-1 in 2 compared to 1) \rightarrow 3.6 p.p.m. ($\Delta\delta$ for C-3 in 2 compared to 1) in the resonances for the β -carbon atoms, and strong deshielding of 7.1 p.p.m. ($\Delta\delta$ for C-2 in 2 compared to 1) for the α -carbon. Comparison of the ¹³C-data (Table IV) for the C-3 epimeric pairs 3 and 4 shows that the greatest difference in their relative chemical shift values occurs for the C-4 and C-5 resonances, which are shifted markedly upfield in 3 (4.2 p.p.m. for C-4 and 4.3 p.p.m. for C-5). As expected, comparison of the data for the anomeric pairs, the 3-deoxy α - and β -D-*ribo*-hexopyranosides 1 and 5, shows that C-5, which is β to C-1, is strongly shielded (5.1 p.p.m.) on changing from the β to the α anomer; C-4, which is γ to C-1, is virtually unaffected.

The additional data now provided should contribute to future n.m.r. assignments for related carbohydrate structures that are in the ${}^{4}C_{1}$ conformation^{4,11}.

EXPERIMENTAL

The deoxy compounds 1-5 were prepared as described^{2,5,8}. N.m.r. spectra were recorded at 24° with a Jeol GX-270 spectrometer for solutions in CDCl₃ (internal Me₄Si). Shift reagent was added until the molar ratio of reagent to substrate was 0.35, and spectra were recorded after each addition. Good straight-line plots of induced shift *vs.* molar ratio of shift reagent to substrate were obtained for all the compounds studied. Calculations were made by the grid-search procedure^{9,10}.

Compound 1 prepared⁵ from methyl 4,6-*O*-benzylidene-2,3-di-*O*-*p*-tolyl-sulfonyl- α -D-glucopyranoside, had m.p. 186–187°, $[\alpha]_D$ +124° (*c* 1, chloroform); lit.⁵ m.p. 186–187°, $[\alpha]_D$ +127° (chloroform). ¹H-N.m.r. data (CDCl₃): δ 7.50–7.35

(m, 5 H, Ph), 5.52 (s, for PhCH), 4.68 (d, $J_{1,2}$ 3.7 Hz, H-1), 4.28 (q, $J_{6a,6e}$ 10, $J_{5,6e}$ 4.5 Hz, H-6e), 3.47 (s, 3 H, OMe), 2.30 (m, H-3e), 2.40 (d, $J_{2,OH}$ 11.3 Hz, HO-2), 1.93–1.84 (q, $J_{3a,3e}$ 11.3 Hz, H-3a). The overlapping four-proton envelope (δ 3.8–3.5) was due to H-2,4,5,6a. During the shift study, partial resolution of these resonances gave a triplet due to H-6a; however, the resonances of H-4 and H-5 were shifted equally throughout the study and were not resolved. The resonance of H-2 was shifted quite rapidly and remained as a broad singlet throughout the shift study.

Compound 2, prepared by treatment of 1 with *p*-toluenesulfonyl chloride in pyridine⁵, had m.p. 122–124°, $[\alpha]_D +54°$ (*c* 1, chloroform); lit.⁵ m.p. 123–124°, $[\alpha]_D +57°$ (chloroform). ¹H-N.m.r. data (CDCl₃): δ 7.83 (d, 2 H, J_{AA^1} , 8.5 Hz, Ts ring AA¹), 7.44–7.26 (m, 7 H, Ph and Ts ring BB¹), 5.47 (s, for PhH), 4.66 (d, $J_{1,2}$ 3.5 Hz, H-1), 4.55 (m, H-2), 4.22 (q, $J_{6a,6e}$ 9.5, $J_{5,6e}$ 4 Hz, H-6e), 3.50 (m, H-4), 3.37 (s, 3 H, OMe), and 2.45 (s, 3 H, Ts-Me), and 2.21–2.10 (m, 2 H, H-3a,3e). The overlapping two-proton envelope (δ 3.8–3.6) was due to H-5,6a. During the shift study, these resonances were resolved to give a triplet due to H-6a ($J_{5,6a}$ 10 Hz) and a multiplet due to H-5. Complete assignment was possible by spin-decoupling of the normal and shifted spectra.

Compound 3, prepared from methyl 2,3-anhydro-4,6-O-benzylidene- α -Dallopyranoside by treatment with lithium aluminium hydride in ether, had m.p. 129–131°, $[\alpha]_D$ +149° (c 1.1, chloroform); lit.⁶ m.p. 127–129°, $[\alpha]_D$ +156° (chloroform). The ¹H-n.m.r. data were essentially in accord with those reported⁴. Additional data: δ 3.61 (dd, $J_{3,4}$ 2.8, $J_{4,5}$ 9.3 Hz, H-4), 3.80 (t, $J_{5,6a}$ 9.7, $J_{6a,6e}$ 10.1 Hz, H-6a), 4.40–4.20 (H-3,5,6e). During the shift study, these protons separated to give a q ($J_{5,6e}$ 4.9 Hz, H-6e), a bm (H-3), and a m (H-5).

Compound 4, obtained by conventional reaction of methyl 2-deoxy- α -Darabino-hexopyranoside with benzaldehyde and anhydrous copper sulphate, had m.p. 138–140°, $[\alpha]_D$ +77.5° (*c* 1, chloroform); lit.⁷ m.p. 137–139°, $[\alpha]_D$ +77° (ethanol). ¹H-N.m.r. data (CDCl₃): δ 7.50–7.36 (m, 5 H, Ph), 5.56 (s, PhCH), 4.80 (d, $J_{1,2}$ 3.5 Hz, H-1), 4.23 (q, $J_{5,6e}$ 3.4, $J_{6a,6e}$ 9.8 Hz, H-6e), 4.20 (m, H-3), 3.42 (t, $J_{3,4} = J_{4,5} = 9.0$ Hz, H-4), 3.34 (s, 3 H, OMe), 2.50 (d, $J_{3,0H}$ 2.6 Hz, HO-3), 2.20 (dd, $J_{2a,2e}$ 13 Hz, H-2e), 1.80 (m, H-2a), and 3.80–3.70 (H-5,6a). During the shift study, these protons gave a t ($J_{5,6a}$ 10 Hz, H-6a) and a m (H-5).

Compound 5, prepared by reduction of methyl 4,6-O-benzylidene-2,3-di-Op-tolylsulfonyl- β -D-glucopyranoside in tetrahydrofuran with lithium aluminium hydride, had m.p. 166–167°, $[\alpha]_D - 62°$ (c 2.5, chloroform); lit.⁸ m.p. 165°, $[\alpha]_D - 60°$ (chloroform). The ¹H-n.m.r. data agreed with those published⁴. In addition, during the shift study, the overlapping six-proton envelope at δ 3.60–3.44 (OMe and H-2,4,5) was resolved to give a s (OMe) and 2 m (H-2 and H-5); the resonance of H-4 was not resolved. The two-proton envelope at δ 2.48–2.44 was assigned to H-2,3*e*. During the shift study, these resonances separated to give a bs (HO-2) and a m (H-3*e*). These assignments were made by spin-decoupling of the normal and shifted spectra.

REFERENCES

- 1 N. BAGGETT, J. M. DUXBURY, A. B. FOSTER, AND J. M. WEBBER, Carbohydr. Res., 1 (1965) 22-30.
- 2 B. COXON, Tetrahedron, 21 (1965) 3481-3503.
- 3 E. CONWAY, R. D. GUTHRIE, S. D. GERO, G. LUKACS, AND A.-M. SEPULCHRE, J. Chem. Soc., Perkin Trans. 2, (1974) 542-546.
- 4 H. H. BAER AND H. R. HANNA, Carbohydr. Res., 110 (1982) 19-41; K. BOCK AND C. PEDERSEN, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-66.
- 5 E. VIS AND P. KARRER, Helv. Chim. Acta, 37 (1954) 378-381.
- 6 D. A. PRINS, J. Am. Chem. Soc., 70 (1948) 3955-3957.
- 7 I. W. HUGHES, W. G. OVEREND, AND M. STACEY, J. Chem. Soc., (1949) 2846-2849
- 8 E. J. HEDGLEY, W. G. OVEREND, AND R. A. C. RENNIE, J. Chem. Soc., (1963) 4701-4711.
- 9 I. M. ARMITAGE, L. D. HALL, A. G. MARSHALL, AND L. G. WERBELOW, J. Am. Chem. Soc., 95 (1973) 1437–1443; P. MCARDLE, J. O. WOOD, E. E. LEE, AND M. J. CONNEELY, Carbohydr. Res., 69 (1979) 39–46.
- 10 P. MCARDLE, J. P. O'REILLY, J. SIMMIE, AND E. E. LEE, Carbohydr. Res., 90 (1981) 165-172; D. CUNNINGHAM, N. GAVIN, E. LEE, P. MCARDLE, J. O'CALLAGHAN, AND T. HIGGINS, *ibid.*, 177 (1988) 1-11.
- 11 S. J. ANGYAL, Angew. Chem. Int. Ed., Engl., 8 (1969) 157-166.
- 12 K. TAKEO AND K. SHIBATA, Carbohydr. Res., 133 (1984) 147-151.