S_N2-type ring opening of substituted-*N*-tosylaziridines with zinc (II) halides: Control of racemization by quaternary ammonium salt

MANAS K GHORAI*, DEO PRAKASH TIWARI, AMIT KUMAR and KALPATARU DAS

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India e-mail: mkghorai@iitk.ac.in

Abstract. Quaternary ammonium salt mediated highly regioselective ring opening of aziridines with zinc(II) halides to racemic and non-racemic β -halo amines in excellent yield and selectivity is described. The reaction proceeds via an S_N2-type pathway and the partial racemization of the starting substrate and the product was effectively controlled by using quaternary ammonium salts to afford the enantioenriched products (er up to 95:5).

Keywords. Haloamines; aziridines; enantioselective; Lewis acid; nucleophilic ring opening; quaternary ammonium salts.

1. Introduction

Small ring aza-heterocycles provide excellent routes for the construction of important synthetic targets via nucleophilic ring opening, cycloaddition and rearrangement reactions.^{1–5} Lewis acid (LA) mediated ring opening of 2-phenyl-*N*-tosylaziridines and azetidines with several nucleophiles to afford non-racemic products in high enantiomeric excess have been reported. We demonstrated the reaction to proceed through an $S_N 2$ pathway instead of a stable 1,3- or 1,4-dipolar intermediate as invoked earlier. In all the cases the enantioselectivity was reduced due to partial racemization of the starting aziridines or azetidines⁵ (scheme 1).

In continuation of our earlier report for synthesis of haloamines,^{5a,6} we describe here our results for the ring opening of aziridines with zinc (II) halides to afford racemic and non-racemic β -halo amines with excellent regio- and stereoselectivity in detail. Several other methods are known in the literature for synthesis of β -haloamines from ring opening of aziridines.⁷ Synthesis of acyclic and cyclic β -haloamines via aziridinium ions intermediates^{8b,c} and imines,^{8a} have also been reported recently. Haloamination⁹ and aminohalogenation¹⁰ methods were also utilized for this purpose. Such haloamines are synthetically¹¹ very important and exhibit several biological activities.¹²

2. Experimental

2.1 *General procedure for ring-opening of aziridines with zinc dihalides*

A suspension of anhydrous zinc dihalide (0.73 mmol) in CH₂Cl₂ (2.0 mL) was refluxed for 5 min, then a solution of *N*-tosylaziridine **1a–d** (0.365 mmol) in anhydrous CH₂Cl₂ (2.0 mL) was added slowly with stirring under a nitrogen atmosphere. The resulting mixture was refluxed for the appropriate time until complete consumption of the substrate (monitored by TLC). The reaction mixture was quenched with saturated aq. NH₄Cl solution (2.0 mL), and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and the solvent was removed under vacuum. The crude product was purified by the column chromatography on silica gel (using ethyl acetate in petroleum ether) to provide the corresponding β -halo amines.

2.2 Procedure for ring-opening of (R)-la with $ZnCl_2/ZnBr_2$ in the presence of TBAHS

To a mixture of $ZnCl_2/ZnBr_2$ (0.1 mmol) and TBAHS (0.1 mmol), a solution of (*R*)-**1a** (0.1 mmol) in dry CH_2Cl_2 (0.2 mL) was added drop-wise at rt and the reaction was continued for appropriate time (table 6). After completion of the reaction (from TLC), it was quenched by adding water (1 mL). The product was extracted by CH_2Cl_2 (2 mL) and dried over anhyd. Na₂SO₄. After removal of the solvent, the crude product

^{*}For correspondence

Scheme 1. Mechanism for LA-mediated S_N 2-type ring opening of activated aziridines and azetidines.

was purified by flash column chromatography on slilica gel (230–400 mesh) using ethyl acetate and petroleum ether as the eluents.

2.2a 2-Chloro-2-phenyl-N-tosylethanamine (2a):^{5a,6} The general method 1 described above was followed when 1a reacted with ZnCl₂ to afford 2a as white solid in 86% yield; ¹H NMR and ¹³C NMR data of the crude reaction mixture showed the presence of only one regioisomer; IR ν_{max} (KBr, cm⁻¹) 3262, 2924, 2854, 1330, 1158, 708, 551; ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 3H, CH₃), 3.31–3.44 (m, 2H, CH₂), 4.74 (t, J = 6.6 Hz, 1 H, NH), 4.79 (dd, J = 7.2, 2.2 Hz,1H), 7.11–7.29 (m, 7H, Ar–H), 7.66 (d, $J = 8.0 \,\text{Hz}$, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 50.3, 61.6, 127.0, 127.1, 128.9, 129.1, 129.8, 136.9, 137.7, 143.5; FAB Mass: m/z 311 (M⁺+2), 310 (M⁺+1), 289, 274, 263, 258, 234, 233, 206, 184, 178, 155, 154, 136, 120, 119, 91, 77. For (S)-2a (general procedure 2 was followed) er = 91:9, enantiomeric purity was determined by chiral HPLC analysis (Chiralpak AD-H column), hexane-isopropanol, 95:5, flow rate = 1.0 mL/min; $t_{\rm R}$ 1: 28.61 min (minor), $t_{\rm R}$ 2: 36.08 min (major).

2.2b 2-Bromo-2-phenyl-N-tosylethanamine (2b):^{5a,6} The general method 1 was followed, when **1a** reacted with ZnBr₂ to afford **2b** as white solid in 83% yield; ¹H NMR and ¹³C NMR data of the crude reaction mixture showed the presence of only one regioisomer; IR ν_{max} (KBr, cm⁻¹) 3263, 2923, 2853, 1331, 1157, 696, 550; ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 3H), 3.47–3.52 (m, 2H), 4.75 (t, J = 6.4 Hz, 1H), 4.83 (t, J = 6.4 Hz, 1H), 7.17–7.26 (m, 7H), 7.65 (d, J =8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 50.0, 52.6, 127.0, 127.6, 129.0, 129.1, 129.8, 136.9, 138.1, 143.8; FAB Mass: m/z 354 (M⁺+1). For (*S*)-**2b** (general procedure 2 was followed) er = 95:5, enantiomeric purity was determined by chiral HPLC analysis (Chiralpak AD-H column), hexane–isopropanol, 95:5, flow rate = 1.0 mL/min; $t_{\mathbf{R}}$ 1: 25.33 min (minor), $t_{\mathbf{R}}$ 2: 31.58 min (major).

2.2c 2-*Iodo*-2-*phenyl*-*N*-*tosylethanamine* (2c):^{5a,6} The general method 1 was followed, when **1a** reacted with ZnI₂ to afford **2c** as white solid in 88% yield; ¹H NMR and ¹³C NMR data of the crude reaction mixture showed the presence of only one regioisomer; IR ν_{max} (KBr, cm⁻¹) 3286, 2923, 2852, 1323, 1153, 847, 697, 667, 551; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H), 3.40–3.48 (m, 1H), 3.59–3.66 (m, 1H), 4.65 (t, *J* = 6.3 Hz, 1H), 4.94 (t, *J* = 7.8 Hz, 1H), 7.18– 7.26 (m, 7H), 7.64 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 29.8, 51.2, 127.0, 127.5, 128.7, 129.1, 129.8, 136.9, 139.8, 143.8; HRMS (ES⁺) for (M⁺+1) C₁₅H₁₇INO₂S, calcd 402.0025; found 402.0025.

2.2d Spectral data of 2d:^{5a} The general method 1 was followed, when 1b reacted with ZnCl₂ to afford 2d as colourless liquid in 65% combined yield; It was isolated as an inseparable mixture of two diastereomers and was characterized by ¹H NMR, ¹³C NMR, DEPT, 2D (¹H-¹H COSY) and mass spectral analysis. The protons of the individual diastereomer were assigned by 2D (¹H-¹H COSY) and D_2O exchange experiments in ¹H NMR to assign the NH proton. For the major diastereomer of 2d (X = Cl): ¹H NMR (400 MHz, CDCl₃) δ 0.01 (s, 6H), 0.87 (s, 9H), 2.38 (s, 3H, CH₃), 3.53 (dd, J = 9.5, 4.4 Hz, 1H), 3.58 (dd, J = 9.8)6.8 Hz, 1H), 3.63–3.68 (m, 1H), 4.92 (d, J = 8.8 Hz, 1H, NH), 5.23 (d, J = 4.6 Hz, 1H), 7.12–7.26 (m, 7H, Ar–H), 7.53 (d, J = 8.3 Hz, 2H); ¹³C NMR (100 MHz, $CDCl_3$) $\delta -5.5, 18.1, 21.4, 25.8, 60.8, 62.1, 62.5, 126.8, 60.8, 62.1, 62.5, 126.8, 60.8, 62.1, 62.5, 126.8, 60.8, 62.1, 62.5, 126.8, 60.8,$ 127.3, 127.8, 128.3, 129.4, 137.2, 137.8, 143.1; for the other diastereomer of **2d** (X = Cl): ¹H NMR (400 MHz, CDCl₃) δ 0.02 (s, 6H), 0.88 (s, 9H), 2.39 (s, 3H, CH₃), 3.46 (dd, J = 10.3, 4.4 Hz, 1H), 3.74–3.81 (m, 1H), 4.02 (dd, J = 10.3, 2.7 Hz, 1H), 4.82 (d, J = 9.5 Hz, 1H, NH), 4.95 (d, J = 7.8 Hz, 1H), 7.12–7.26 (m, 7H, Ar–H), 7.5 (d, J = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ –5.5, 18.2, 21.4, 25.7, 60.1, 60.9, 61.7, 126.9, 127.3, 128.1, 128.4, 129.5, 137.2, 137.6, 143.2; FAB Mass: m/z 455 M⁺+2, 454 M⁺+1, 438, 418, 396, 388, 341, 328, 286, 263, 228, 184, 155, 118, 91. HRMS (ES⁺) for (M⁺+1) C₂₂H₃₂CINO₃SSi, calcd 454.1639; found 454.1638.

2.2e Spectral data of **2e**:^{5a} The general method 1 was followed, when 1b reacted with ZnBr₂ to afford 2e as colourless liquid in 52% combined yield; It was isolated as an inseparable mixture of two diastereomers; For the major diastereomer of **2e** (X = Br): ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta -0.01 \text{ (s, 3H)}, 0.00 \text{ (s, 3H)}, 0.88$ (s, 9H), 2.41 (s, 3H), 3.48 (dd, J = 10.0, 3.8 Hz, 1H), 3.54 (dd, J = 7.08, 4.12 Hz, 1 H), 3.62 - 3.67 (m, 1H),4.99 (d, J = 7.8 Hz, 1H), 5.25 (d, J = 5.6 Hz, 1H), 7.17–7.29 (m, 7H), 7.63 (d, J = 8.3 Hz, 2H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta -5.5, 18.1, 21.4, 25.7, 55.2, 60.6,$ 62.9, 126.9, 128.0, 128.4, 129.5, 137.4, 138.3, 143.3; for the other diastereomer of 2e (X = Br): ¹H NMR (400 MHz, CDCl₃) δ 0.05 (s, 3H), 0.08 (s, 3H), 0.91 (s, 9H), 2.42 (s, 3H), 3.56–3.57 (m, 1H), 3.91–3.93 (m, 1H), 4.15 (dd, J = 9.7, 2.2 Hz, 1H), 4.85 (d, J = 9.5 Hz, 1H), 5.02 (d, J = 8.3 Hz, 1H), 7.17– 7.29 (m, 7H), 7.51 (d, J = 8.0 Hz, 2H); ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3)$ δ -5.6, 18.2, 21.4, 25.8, 52.5, 59.8, 62.5, 127.0, 128.3, 128.4, 129.5, 137.3, 138.2, 143.3. HRMS (ES⁺) for $(M-Br)^+$ C₂₂H₃₂BrNO₃SSi, calcd 418.1872; found 418.1870.

2.2f Spectral data of 2f:^{5a} The general method 1 was followed, when **1b** reacted with ZnI₂ to afford **2f** as colourless liquid in 56% yield as a single regioisomer. It was isolated as an inseparable mixture of two diastereomers. For the major diastereomer of **2f** (X = I): ¹H NMR (400 MHz, CDCl₃) δ -0.04 (d, J = 1.4 Hz, 3H), -0.01 (d, J = 1.4 Hz, 3H), 0.82 (d, J =1.7 Hz, 9H), 2.33 (s, 3H), 3.54–3.58 (m, 1H), 3.78–3.83 (m, 1H), 4.08–4.12 (m, 1H), 4.71 (d, J = 9.0 Hz, 1H), 5.09 (d, J = 9.0 Hz, 1H), 7.06–7.21 (m, 7H), 7.42 (dd, J = 8.3, 1.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -5.6. 18.2, 21.4, 25.8, 31.5, 60.3, 63.8, 127.0, 127.9, 128.4, 128.5, 129.5, 137.3, 140.2, 143.3. HRMS (ES⁺) for (M⁺+1) C₂₂H₃₂INO₃SSi, calcd 546.0995; found 546.0997. 2.2g trans-2-Chloro-N-tosylcyclohexanamine (**2g**):^{5a,6} The general method 1 was followed, when **1c** reacted with ZnCl₂ to afford **2g** as white solid in 82% yield; ¹H NMR (400 MHz, CDCl₃) δ 1.15–1.29 (m, 3H), 1.49–1.65 (m, 3H), 2.08–2.21 (m, 2H), 2.36 (s, 3H), 2.98–3.04 (m, 1H), 3.60–3.66 (m, 1H), 4.86 (d, *J* = 5.4 Hz, 1H, NH); 7.24 (d, *J* = 8.5 Hz, 2H), 7.68–7.72 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) 21.6, 23.4, 24.5, 32.6, 35.0, 58.8, 62.2, 127.3, 129.6, 136.9, 143.5; FAB Mass: *m*/*z* 288 (M⁺+1).

2.2h trans-2-Bromo-N-tosylcyclohexanamine (2h):^{5a} The general method 1 was followed, when 1c reacted with ZnBr₂ to afford 2h as white solid in 78% yield; ¹H NMR (400 MHz, CDCl₃) δ 1.17–1.28 (m, 3H), 1.58–1.76 (m, 3H), 2.20–2.23 (m, 2H), 2.36 (s, 3H), 3.07–3.11 (m, 1H), 3.74–3.80 (m, 1H), 4.88 (d, J =5.1 Hz, 1H, NH), 7.24 (d, J = 8.0 Hz, 2 H), 7.70 (dd, J = 8.2, 1.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 23.4, 25.4, 35.8, 55.1, 58.7, 127.3, 129.6, 136.9, 143.5; FAB Mass: m/z 332 (M⁺+1).

2.2i *trans-2-Iodo-N-tosylcyclohexanamine* (2*i*):^{5a} The general method 1 was followed, when **1c** reacted with ZnI₂ to afford **2i** as white solid in 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 1.18–1.34 (m, 3H), 1.44–1.59 (m, 2H), 1.84–1.97 (m, 1H), 2.15–2.30 (m, 2H), 2.36 (s, 3H), 3.16–3.19 (m, 1H), 3.90–3.92 (m, 1H), 4.92 (d, J = 5.6 Hz, 1H), 7.24 (d, J = 8.1 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) 21.5, 23.6, 26.7, 33.1, 34.9, 37.9, 59.2, 127.4, 129.6, 137.1, 143.5; FAB Mass: m/z 380 (M⁺+1).

2.2j 2-*Chloro-3-phenyl-N-tosylpropan-1-amine*(2j).^{5a,6} The general method 1 was followed, when **1d** reacted with ZnCl₂ to afford a mixture of **2j** and **3j** (28:72) as white solid in 87% combined yield; For regioisomer **2j**: ¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 3H), 2.88–3.07 (m, 3H), 3.20–3.26 (m, 1H), 3.98–4.05 (m, 1H), 4.87 (t, J = 6.8 Hz, 1H, NH), 7.05–7.07 (m, 2H), 7.16–7.24 (m, 5H), 7.62 (d, J = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 41.7, 48.3, 61.7, 127.0, 127.2, 128.6, 129.2, 129.8, 136.3, 136.6, 143.7.

2.2k *1-Chloro-3-phenyl-N-tosylpropan-2-amine* (**3***j*).^{5a} ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 3H), 2.76 (dd, *J* = 13.7, 6.4 Hz, 1H), 2.87 (dd, *J* = 13.6, 7.8 Hz, 1H), 3.41–3.50 (m, 2H), 3.65–3.73 (m, 1H), 4.89 (d, *J* = 8.0 Hz, 1H, NH), 7.03–7.07 (m, 2H), 7.15–7.26 (m, 5H), 7.64 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (100 MHz,

Scheme 2. Ring-opening of N-tosylaziridine with Zn(II) halides.

CDCl₃) δ 21.5, 38.2, 46.8, 55.0, 126.8, 126.9, 128.7, 129.1, 129.7, 136.0, 137.1, 143.5.

2.21 2-Bromo-3-phenyl-N-tosylpropan-1-amine (2k):^{5a} The general method 1 was followed, when **1d** reacted with ZnBr₂ to afford a mixture of **2k** and **3k** (18:82) as white solid in 73% combined yield; For regioisomer **2k**: ¹H NMR (400 MHz, CDCl₃) δ 2.44 (s, 3H), 3.08– 3.23 (m, 2H), 3.31–3.37 (m, 1H), 4.11–4.18 (m, 1H), 4.89 (t, *J* = 6.1 Hz, 1H), 7.11–7.13 (m, 2H), 7.21–7.31 (m, 5H), 7.69 (dd, *J* = 8.3, 1.9 Hz, 2H).

2.2m *1-Bromo-3-phenyl-N-tosylpropan-2-amine* (**3***k*): ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 3H), 2.77 (dd, *J* = 13.9, 6.3 Hz, 1H), 2.87 (dd, *J* = 13.7, 7.8 Hz, 1H), 3.30–3.36 (m, 2H), 3.58–3.66 (m, 1H), 4.85 (d, *J* = 8.5 Hz, 1H, NH), 7.03–7.08 (m, 2H), 7.18–7.25 (m, 5H), 7.64 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 36.9, 39.2, 54.5, 126.9, 127.0, 128.8, 129.1, 129.7, 136.0, 137.2, 143.6.

2.2n *1-Iodo-3-phenyl-N-tosylpropan-2-amine* (3*l*):^{5a} The general method 1 was followed, when **1d** reacted with ZnI₂ to afford a mixture of **2l** and **3l** (2:98), **3l** was obtained as white solid in 78% yield; For major regioisomer **3l**: ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 3H), 2.70–2.83 (m, 2H), 3.15–3.26 (m, 3H), 4.86 (d, J = 7.8 Hz, 1H, NH), 7.05–7.06 (m, 2H), 7.19–7.26 (m, 5H), 7.63 (d, J = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.3, 21.5, 40.9, 54.0, 126.9, 127.0, 128.7, 129.0, 129.6, 136.0, 137.1, 143.5.

3. Results and discussion

Our study began with the ring-opening of racemic 2phenyl-N-tosylaziridine **1a** with one equivalent ZnCl₂ in CH₂Cl₂ as the solvent at rt to produce the corresponding β -chloro amine **2a**. However, this reaction took longer time for completion and 2a was obtained in poor vield. When the same reaction was carried out with 2.0 equiv. $ZnCl_2$ in CH_2Cl_2 under refluxing condition, 2a was formed within 1 h in 86% yield and the regioselectivity was confirmed by ¹H NMR of the crude reaction mixture (scheme 2). Furthermore, lesser equivalent of ZnCl₂ was found to be insufficient and with prolonged reaction time a complex reaction mixture was obtained. Similarly, β -bromo amine derivative **2b** was obtained regioselectively in 83% yield when two equivalents ZnBr₂ were used as the Lewis acid. Interestingly, with ZnI₂ the ring opening took place at room temperature and afforded the corresponding β -iodo amine derivative 2c as a single regioisomer within one hour (scheme 2, table 1). In contrast to the earlier report, 2-phenyl-N-tosylaziridine 1a gave only one regioisomer **2a–c** (table 1) in good yield where the halide ions preferably attacked at the more electrophilic benzylic position and the other regioisomer 3 (scheme 2) did not

Entry	Aziridine 1a	ZnX_2	Product 2a-c	Time (h)	Yield ^a (%)	Ratio ^b 2:3
1	Ph Ts	ZnCl ₂	Ph Cl 2a H NHTs	1	86	>99:1
2	Ph	ZnBr ₂	Ph Br 2b H NHTs	1	83	>99:1
3	Ph	ZnI_2	Ph l 2c H NHTs	1	88	>99:1

 Table 1.
 Regioselective opening of 2-phenyl-N-tosylaziridine 1a with Zn(II) halides.

^aYield of isolated **2a–c** after column chromatographic purification; ^bThe ratio was determined by ¹H-NMR analysis of the crude reaction mixture

	Ts N	ZnX	2 (X = Cl, Br, I) X	NHTs ──∕	TsHN +	× ≺
Ph	CH ₂ OTBDMS	CH	H_2CI_2 , reflux Ph	CH ₂ OT	BDMS Ph	CH ₂ OTBDMS
	1b			2d-f		3d-f
Entry	Aziridine 1b	ZnX_2	Product 2d-f	Time (h)	Yield ^a (%) (trans:cis)	Ratio ^b 2:3
1	,Ts N Ph OTBDMS	ZnCl ₂	Ph Cl TBDMSO NHTs	3	65 (42:58) ^c	86:14
2	Ph OTBDMS	ZnBr ₂	Ph Br 2e TBDMSO NHTs	2	52 (45:55) ^c	82:18
3	Ph OTBDMS	ZnI ₂	Ph I TBDMSO NHTs	1	56 (81:19) ^c	>99:1

 Table 2.
 Regioselective opening of N-tosylaziridine 1b with Zn(II) halides.

^aYield of isolated **2d–f** after column chromatographic purification; ^bThe ratio was determined by ¹H-NMR analysis of the crude reaction mixture. ^c**2** was as obtained as a diastereomeric mixture and the diastereomeric ratio (*trans:cis*) is given in parentheses

form at all. To widen the scope of our strategy, different types of *N*-tosylaziridines **1b–d** were studied under the optimized reaction conditions (two equiv. ZnX_2 : X = Cl, Br or I, CH_2Cl_2 , 40°C) and the results are summarized in tables 2–5.

Racemic disubstituted aziridine **1b** reacted with ZnX_2 under similar experimental conditions to afford the corresponding halo amines **2d–f** and **3d–f** as a mixture of regioisomers and the regioselectivity was found to be dependent on the size of the halide anions (table 2). When ZnI_2 was used as the Lewis acid, only one regioisomer **2f** was obtained from the attack of iodide ion at the more electrophilic benzylic position

of **1b** and the corresponding **3f** was not observed in ¹H NMR spectrum of crude reaction mixture. Furthermore, in all these cases opening of diastereomerically pure trans-**1b** produced a mixture of diastereomers and the diastereoselectivity was also found to depend on ZnX₂ (table 2). To find out and explain the regioselectivity of the opening of **1b** with ZnX₂, we have recorded the ¹H NMR spectrum of the crude reaction mixture. The ratio of regioisomers was measured from the ¹H NMR by comparing the integration of Me protons or ortho aromatic protons of Ts-group. However, for the reaction of **1b** with ZnCl₂ and ZnBr₂, the minor regioisomers **3d** and **3e**, respectively, could not be isolated

	\bigcirc	$\sum_{n=1}^{n} NTs = \frac{ZnX_2(\lambda)}{CH_2C}$	(= CI, Br, I) 2, reflux	NHTs			
	10	;	2	lg−i			
Entry	Aziridine 1c	ZnX_2	Product 2g-i	Time (h)	Yield ^a (%)		
1	N-Ts	$ZnCl_2$	CI 2g NHTs	5	82		
2	N-Ts	ZnBr ₂	NHTs	5	78		
3	N-Ts	ZnI_2	NHTs	1	86		

 Table 3.
 Ring-opening of N-tosylaziridine 1c with Zn(II) halides.

^aIsolated yield of **2g-i** after column chromatographic purification

	Bn	Ts N ∠ Cł	$H_2(X = CI, Br, I)$ $H_2CI_2, reflux$ Bn	NHTs +	TsHN X Bn	
		1d		2j-l	3j-l	
Entry	Aziridine 1d	ZnX_2	Product 3j-l ^a	Time (h)	Yield ^b (%)	Ratio ^c 2j-l:3j-l
1	,Ts N Ph,√√	$ZnCl_2$	Ph NHTs J H CI	12	87 ^d	28:72
2	,Ts N Ph,√√	ZnBr ₂	Ph NHTs 3k H Br	12	73 ^d	18:82
3	,Ts N Ph	ZnI_2	Ph NHTs J H	1	78	2:98

 Table 4.
 Regioselective opening N-tosylaziridine 1d with Zn(II) halides.

^aMajor products shown. ^bIsolated yield after column chromatographic purification. ^cThe ratio was determined by ¹H-NMR analysis of the crude reaction mixture. ^dCombined yield of isolated **2j–l** and **3j–l**

by column chromatography. The major isomers 2d and 2e were isolated as a mixture of diastereomers. A detail of the ratio of regio- and diastereomers of 2d-f has been incorporated in table 2. S_N2 opening of the aziridine 1b with ZnI₂, leads to the formation of the corresponding *trans*-2f as the major diastereomer. Diastereomeric ratio (*trans:cis*) was determined by ¹H NMR spectroscopy and coupling constants.

Ring-opening of bicyclic *N*-tosylcyclohexene aziridine **1c**, leads to the formation of the corresponding *trans*-halo amines **2g–i** in excellent yields (table 3). In **1c** ring strain may be the driving force for the easy attack by the nucleophile. The *trans*-stereochemistry of **2g–i** was established from the coupling constants of the ring CH protons adjacent to hetero atoms.

All the *N*-tosylaziridines shown in tables 1–3 underwent nucleophilic ring opening with halide ions smoothly except for *N*-tosyl-2-benzylaziridine 1d (table 4), which reacted slowly and afforded 3j–1 with lower yields. This can be attributed to the reduced electrophilic nature at the homobenzylic position. As a result, reversal of regioselectivity was observed with preferential attack of halides on the less substituted carbon of aziridine to produce 3j–1 as the major isomer. However, these regioisomers were easily separated by column chromatography and obtained in the pure forms.

To investigate the mechanism, the same reaction was carried out with chiral (*R*)-(–)-2-phenyl-1-(toluene-4-sulfonyl) aziridine (*R*)-**1a** (ee >99%) which afforded non-racemic β -haloamine (*S*)-**2a–c** (scheme 3).

When (*R*)-**1a** was treated with ZnX_2 (X = Cl, Br and I) in CH₂Cl₂, non-racemic β -halo amines (*S*)-**2a–c**

were formed with poor ee. To optimize the reaction conditions for obtaining enhanced enantioselectivity the reaction was studied in different solvents and at different temperature. The results are shown in table 5. When the reaction was performed in CH₃CN as the solvent in the presence of ZnCl₂ as the LA at rt, the corresponding β -chloro amine (*R*)-**1a** was obtained with 68% ee (entry 1, table 5). Similar reaction of (*R*)-**1a** with ZnBr₂ and ZnI₂ afforded the corresponding bromo- and iodo amines in 67% and 78% ee, respectively (figures 1 and 2). Using THF as the solvent and ZnBr₂ as the LA ee was reduced to 46%.

Based on the experimental results, we do believe that the ring-opening step follows an $S_N 2$ type mechanism as we proposed earlier⁵ (scheme 4). Zn(II) coordinates with aziridine nitrogen generating a highly reactive intermediate **A** which undergoes intramolecular $S_N 2$ type ring opening by halides leading to the formation of haloamine (*S*)-**2**. The reduced ee of the products is rationalized by partial racemization of the aziridine before ring-opening via the equilibrium between the intermediates **A** and **B**.^{5i,j} The coordination of Zn(II) with aziridine nitrogen polarizes the benzylic C–N bond, making it labile enough to racemize. The haloamines **2** was also found to racemize during the reaction.

According to this mechanistic proposal, it is possible to obtain haloamine (S)-2 with high ee by tuning the reaction conditions to control/stop the racemization of starting aziridine (R)-1a as well as the haloamines 2. Very recently, we have reported S_N 2-type ring opening of aziridines and azetidines using quaternary ammonium salts with halides as the nucleophilic counter ions

Entry	Aziridine (<i>R</i>)-1a	ZnX ₂	Solvent	Temp (°C)	Time (h)	Product (S)-2a–c	ee ^a	Yield ^b (%)
1	Ts N Ph	ZnCl ₂	CH ₃ CN	25	2	Ph _{//,} Cl (S)-2a NHTs	68	25
2	Ts N Ph	ZnBr ₂	CH ₃ CN	25	2	Ph _{//,} Br (S)-2b NHTs	67	35
3	Ts N Ph	ZnBr ₂	CH ₃ CN	25	6	Ph _{//,} Br (S)-2b NHTs	55	50
4	Ts N Ph	ZnBr ₂	CH ₃ CN	60	0.25	Ph _{//,} Br (S)-2b NHTs	65	10
5	Ts N Ph	ZnBr ₂	THF	25	12	Ph _{//,} Br (S)-2b NHTs	46	30
6	Ts N Ph	ZnBr ₂	DCM	25	0.5	Ph _{//,} Br (S)-2b NHTs	10	55
7	Ts N Ph	ZnI ₂	DCM	25	0.5	Ph _{//,} I (S)-2c NHTs	13	85°
8	Ts N Ph	ZnI ₂	CH ₃ CN	25	2	Ph _{//,} I (S)-2c NHTs	78	75
9	Ts N Ph	ZnI ₂	CH ₃ CN	25	2	Ph _{//,} I (S)-2c NHTs	78	20 ^c
10	Ts N Ph	ZnI ₂	THF	25	2	Ph _{//,} I (S)-2c NHTs	46	15

Table 5. Nucleophilic ring-opening of (R)-1a in the presence of ZnX_2 .

^aDetermined by chiral hplc analysis (ADH column, Hex/IPA: 95/5) when (R)-1a was used. ^bYield of 2 after column chromatographic purification, in most of the cases reaction was stopped before completion to check the ee. ^cOne equiv. of ZnI₂ was used

Scheme 3. Ring-opening of (R)-1a by ZnX₂.

Figure 1. Chromatogram of bromo amine (S)-**2b** (67% ee).

Figure 2. Chromatogram of iodo amine (S)-2c (78% ee).

to afford haloalkylamines with excellent enantioselectivity.⁶ We believe that the dipolar quaternary ammonium salt stabilizes the dipolar intermediate generated from the interaction of aziridine with the LA and the racemization of the starting aziridine was controlled affording haloalkylamines in excellent *ee* (up to 99%).

We anticipated that non-nucleophilic quaternary ammonium salts could be utilized in controlling the racemization process and it could be possible to obtain the ring opening products from aziridines with a nucleophilic Lewis acid with higher enantioselectivity (scheme 5).

Next, to control the racemization we performed the same reaction in the presence of a quaternary ammonium salt, expecting the improvement in yield, efficiency and stereoselectivity. For this purpose, tetrabutylammonium salts with non-nucleophilic counter anions viz. tetrabutylammonium hydrogensulphfate (TBAHS), tetrabutylammonium triflate (TBAT), tetrabutylammonium perchlorate (TBAPC) and tetrabutylammonium hexafluorophosphate (TBAHFP) were used. When (R)-**1a** was treated with ZnCl₂ in the

Scheme 4. Proposed mechanism for the ring-opening of (R)-1a by Zn(II) halides.

 $\mathbf{N}^{\dagger} \mathbf{y}^{-}$ = quaternary ammonium salt

Scheme 5. Stabilization of intermediate A with quaternary ammonium salt.

		Ph (<i>R</i>)-1a 0.1 mmol	ZnX ₂ (1 DCM (0.2 r Additive	.0 equiv) mL), rt (25 °C) (1.0 equiv)	X Ph NHTs X = Cl: (S)-2a X = Br: (S)-2b	
Entry	ZnX_2	Additive	Х	Time	Yield (%)	er
1	ZnCl ₂	-	Cl	3 h	85	69:31
2	$ZnCl_2$	TBAHS	Cl	20 min	95	91:9
3	$ZnBr_2$	TBAHS	Br	10 min	98	95:5
4	$ZnCl_2$	TBAT	Cl	1.5 h	92	67:33
5	ZnCl ₂	TBAPC	Cl	45 min	92	50:50
6	$ZnCl_2^2$	TBAHFP	Cl	1 h	80	50:50

Table 6. Ring-opening of (R)-1a by ZnX_2 in the presence of quaternary ammonium salts.

Additives: n-Bu₄N^{\oplus} HSO^{\ominus}₄ (TBAHS); n-Bu₄N^{\oplus} OTf^{\ominus} (TBAT); n-Bu₄N^{\oplus} ClO^{\ominus}₄ (TBAPC); n-Bu₄N^{\oplus} PF^{\ominus}₆ (TBAHFP)

presence of TBAHS (100 mol%) in DCM medium at room temperature, to our delight, reaction was completed within 20 min affording the chloroamine (S)-2a in 95% yield and the er enhanced to 91:9 (entry 2, table 6). It is worth noting that similar reaction of (R)-1a with ZnCl₂ in the absence of TBAHS took longer time for completion (3h) and the product (S)-2a was obtained with poor ee and lesser yield (table 6, entry 1). Best results were obtained with ZnBr₂ in the presence of TBAHS to afford bromoamine (S)-2b in 98% yield within 10 min with the er 95:5 (entry 3, table 6). Use of other quaternary ammonium salts (TBAT, TBAPC, TBAHFP) had the adverse effect on stereoselectivity, however, rate of the reaction was enhanced as compared to the non-catalyzed reactions (entries 4–6, table 6). TBAHS was found to be the best quaternary

ammonium salt (table 6), in terms of controlled racemization, enhanced reactivity and selectivity.

With lesser amounts of TBAHS (<100 mol%), the stereoselectivity dropped down, although it was unchanged when 200 mol% TBAHS was used. Details of the studies related to the effect of concentration of the quaternary ammonium salt on the reaction outcome is shown in table 7.

4. Conclusion

In conclusion, we have developed a simple strategy for the synthesis of racemic and non-racemic β -halo amines via the ring opening of *N*-tosyl aziridines with Zn (II) halides. We have demonstrated that the ring

Table 7. Study on the ring-opening of (R)-1a by ZnCl₂ in the presence of TBAHS.

	Ph (<i>R</i>)-1a	Ts ZnCl ₂ (1.0 DCM, rt (2 TBAH	equiv) 25 °C) S	Cl Ph NHTs (<i>S</i>)-2a	
	0.1 mmol				
Entry	Amount of TBAHS (mol%)	Amount of DCM (mL)	Time	Yield (%)	er
1	10	0.2	2 h	89	70:30
2	50	0.2	1.5 h	88	86:14
3	100	0.2	20 min	95	91:9
4	200	0.2	1.25 h	95	91:9
5	100	0.5	35 min	91	90:10
6	100	1.0	1.5 h	91	89:11
7	100	1.5	2 h	93	83:17
8	100	2.0	2.25 h	95	82:18

opening step does proceed through an $S_N 2$ type path way instead of a dipolar intermediate. To improve the enantioselectivity of the products the partial racemization of the starting aziridine and the product halo amines was controlled by employing a quaternary ammonium salt as an additive.

Acknowledgements

MKG is grateful to IIT Kanpur and the Department of Science and Technology (DST), India. DPT thanks University Grants Commission (UGC), India for a senior research fellowship.

References

- 1. For some reviews of syntheses and reactions of activated and nonactivated aziridines see: (a) Padwa A, Pearson W H, Lian B W and Bergmeier S C 1996 Comprehensive heterocyclic chemistry, II, A R Katritzky, C W Rees and E F V Scriven (eds) New York. Pergamon: Vol. 1A, pp 1–60; (b) Padwa A and Woolhouse A D 1984 Comprehensive heterocyclic chemistry, W Lwowski (ed.) Oxford, Pergamon; Vol. 7, pp 47; (c) Aziridines and epoxides in organic synthesis, A K Yudin (ed) 2006, Weinheim, Wiley-VCH, pp 1-184; (d) Tanner D 1994 Angew. Chem. Int. Ed. Engl. 33 599; (e) Ibuka T 1998 Chem. Soc. Rev. 27 145; (f) Li A-H, Dai L-X and Aggarwal V K 1997 Chem. Rev. 97 2341; (g) Stamm H 1999 J. Prakt. Chem. 341 319; (h) Enders D, Janeck C F and Raabe G 2000 Eur. J. Org. Chem. 3337; (i) McCoull W and Davis F A 2000 Synthesis 1347; (j) D'hooghe M, Kerkaert I, Rottiers M and De Kimpe N 2005 Tetrahedron 60 3637; (k) D'hooghe M and De Kimpe N 2007 Chem. Commun. 1275; (1) Blyumin E V, Gallon H J and Yudin A K 2007 Org. Lett. 9 4677; (m) Singh G S, D'hooghe M and De kimpe N 2007 Chem. Rev. 107 2080; (n) Paixão M W, Nielsen M, Jacobsen C B and Jørgensen K A 2008 Org. Biomol. Chem. 6 3467; (o) Leemans E, Mangelinckx S and De Kimpe N 2009 Synlett. 8 1265; (p) Alcaide B and Almendros P 2009 Progress in heterocyclic chemisty, G W Gribble and J A Joules (eds) Oxford, UK, Elsevier, Vol. 20, pp 74; (q) Minakata S, Murakami Y, Satake M, Hidaka I, Okada Y and Komatsu M 2009 Org. Biomol. Chem. 7 641; (r) Xu Y, Lin L, Kanai M, Matsunaga S and Shibasaki M 2011 J. Am. Chem. Soc. 133 5791; (s) Ghorai M K, Nanaji Y and Yadav A K 2011 Org. Lett. 13 4256
- For ring opening of aziridines: (a) Hu X E 2004 Tetrahedron 60 2701 and references cited therein; (b) Minakata S, Okada Y, Oderaotoshi Y and Komatsu M 2005 Org. Lett. 7 3509; (c) Ding C-H, Dai L-X and Hou X-L 2005 Tetrahedron 61 9586; (d) Pineschi M, Bertolini F, Haak R M, Crotti P and Macchia F 2005 Chem. Commun. 1426; (e) Minakata S, Hotta T, Oderaotoshi Y and Komatsu M 2006 J. Org. Chem. 71 7471; (f) Fukuta Y, Mita T, Fukuda N, Kanai M and

Shibasaki M 2006 J. Am. Chem. Soc. 128 6312; (g) Crestey F, Witt M, Jaroszewski J W and Franzyk H 2009 J. Org. Chem. 74 5652; (h) Wang Z, Cui Y-T, Xu Z-B and Ou J 2008 J. Org. Chem. 73 2270; (i) Moss T A, Fenwick D R and Dixon D J 2008 J. Am. Chem. Soc. 130 10076; (j) Sureshkumar D, Ganesh V, Vidyarini R S and Chandrasekaran S 2009 J. Org. Chem. 74 7958; (k) D'hooghe M, Vervisch K and De Kimpe N 2007 J. Org. Chem. 72 7329; (1) Banks H D 2010 J. Org. Chem. 75 2510; (m) Bera M and Roy S 2010 J. Org. Chem. 75 4402; (n) Forbeck E M, Evans C D, Gilleran J A, Li P and Joullié M M 2007 J. Am. Chem. Soc. 129 14463; (o) Ochoa-Terán A, Concellón J M and Rivero I A 2009 (ii) ARKIVOC, 288; (p) Concellón J M, Bernad P L and Suárez J R 2005 J. Org. Chem. 70 9411; (q) Couty F, Evano G and Prim D 2005 Tetrahedron Lett. 46 2253; (r) De Rycke N, David O and Couty F 2011 Org. Lett. 13 1836; D'hooghe M, Kenis S, Vervisch K, Lategan C, Smith P J, Chibale K and De Kimpe N 2011 Eur. J. Med. Chem. 46 579; (s) Yadav J S, Satheesh G and Murthy C V S R 2010 Org. Lett. 12 2544; (t) Concellón J M, Rodriguez-Solla H, Amo V and Diaz P 2010 J. Org. Chem. 75 2407; (u) Zeng F and Alper H 2010 Org. Lett. 12 5567; (v) Karikomi M, D'hooghe M, Verniest G and De Kimpe N 2008 Org. Biomol. Chem. 6 1902; Catak S, D'hooghe M, De Kimpe N, Waroquier M and Speybroeck V V 2010 J. Org. Chem. 75 885; D'hooghe M, Rottiers M, Kerkaert I and De Kimpe N 2005 Tetrahedron 61 8746; D'hooghe M, Waterinckx A, Vanlangendonck T and De Kimpe N 2006 Tetrahedron 62 2295; (w) Bhadra S, Adak L, Samanta S, Islam A K M M, Mukherjee M and Ranu B C 2010 J. Org. Chem. 75 8533; (x) Bera M, Pratihar S and Roy S 2011 J. Org. Chem. 76 1475; (y) Brandi A, Cicchi S, Cordero F M 2008 Chem. Rev. 108 3988; (z) Jiang H, Yuan S, Wan W, Yang K, Deng H and Hao J 2010 Eur. J. Org. Chem. 4227

- 3. For cycloaddition of aziridines: (a) Concellón J M, Riego E, Suárez J R, García-Granda S and Díaz M R 2004 Org. Lett. 6 4499; (b) Zhu W, Cai G and Ma D 2005 Org. Lett. 7 5545; (c) Guo H, Xu Q and Kwon O 2009 J. Am. Chem. Soc. 131 6318; (d) Pattenden L C, Wybrow R A J, Smith S A and Harrity J P A 2006 Org. Lett. 8 3089; (e) Kang B, Miller A W, Goyal S and Nguyen S T 2009 Chem. Commun. 3928; (f) Wender P A and Strand D 2009 J. Am. Chem. Soc. 131 7528; For cycloaddition of azetidines: (g) Ungureanu I, Klotz P, Schoenfelder A and Mann A 2001 Chem. Commun. 958; (h) Ungureanu I, Klotz P, Schoenfelder A and Mann A 2001 Tetrahedron Lett. 42 6087; (i) Yadav V K and Sriramurthy V 2005 J. Am. Chem. Soc. 127 16366; (j) Baeg J-O, Bensimon C and Alper H 1995 J. Org. Chem. **60** 253
- 4. For rearrangement: (a) Alcaide B, Almendros P, Aragoncillo C and Salgado N R 1999 J. Org. Chem. 64 9596 and the references cited therein; (b) Vanecko J A and West F G 2005 Org. Lett. 7 2949; (c) Rosser C M, Coote S C, Kirby J P, O'Brien P and Caine D 2004 Org. Lett. 6 4817; (d) Zhao X, Zhang E, Tu Y-Q, Zhang Y-Q, Yuan D-Y, Cao K, Fan C-A and Zhang F-M 2009 Org. Lett. 11 4002; (e) Sugihara Y, Iimura S and Nakayama J

2002 Chem. Commun. 134; (f) Pindinelli E, Pilati T and Troisi L 2007 Eur. J. Org. Chem. 5926

- Ghorai M K, Das K, Kumar A and Ghosh K 2005 Tetrahedron Lett. 46 4103; (b) Ghorai M K and Tiwari D P 2010 J. Org. Chem. 75 6173; (c) Ghorai M K, Das K, Kumar A and Das A 2006 Tetrahedron Lett. 47 5393; (d) Ghorai M K, Ghosh K and Das K 2006 Tetrahedron Lett. 47 5399; (e) Ghorai M K and Ghosh K 2007 Tetrahedron Lett. 48 3191; (f) Ghorai M K, Das K and Kumar A 2007 Tetrahedron Lett. 48 4373; (g) Ghorai M K, Das K and Kumar A 2007 Tetrahedron Lett. 50 1105; (h) Ghorai M K, Kumar A and Das K 2007 Org. Lett. 9 5441; (i) Ghorai M K, Das K, Shukla D 2007 J. Org. Chem. 72 5859; (j) Ghorai M K, Shukla D and Das K 2009 J. Org. Chem. 74 7013 and references cited therein
- Ghorai M K, Kumar A and Tiwari D P 2010 J. Org. Chem. 75 137
- Narender M, Surendra K, Krishnaveni N S, Reddy M S and Rao K R 2004 Tetrahedron Lett. 45 7995; (b) Das B, Reddy V S and Thirupathi P 2006 J. Mol. Catal. A: Chem. 255 28; (c) Gnecco D, Orea F L, Galindo A, Enríquez R G, Toscano R A and Reynolds W F 2000 Molecules 5 998; (d) Righi G, Franchini T and Bonini C 1998 Tetrahedron Lett. 39 2385; (e) Righi G, Potini C and Bovicelli P 2002 Tetrahedron Lett. 43 5867; (f) Sabitha G, Babu R S, Rajkumar M, Reddy C S and Yadav J S 2001 Tetrahedron Lett. 42 3955; (g) Yadav J S, Reddy B V S and Kumar G M 2001 Synlett 1417; (h) Ding C-H, Dai L-X and Hou X L 2004 Synlett 2218; (i) Das B, Krishnaiah M and Venkateswarlu K 2007 Chem. Lett. 36 82; (j) Kumar M, Pandey S K, Gandhi S and Singh V K 2009 Tetrahedron Lett. 50 363

- Concellón J M, Rodríguez-Solla H, Bernad P L and Simal C 2009 J. Org. Chem. 74 2452; (b) D'hooghe M, Vervisch K, Nieuwenhove A V, De Kimpe N 2007 Tetrahedron Lett. 48 1771; (c) D'hooghe M, Aelterman W, De Kimpe N 2009 Org. Biomol. Chem. 7 135 and references cited therein
- 9. For some recent examples of haloamination see (a) Spassova M K, Bornmann W G, Ragupathi G, Sukenick G, Livingston P O and Danishefsky S J 2005 J. Org. Chem. 70 3383; (b) De Castro M and Marzabadi C H 2004 Tetrahedron Lett. 45 6501; (c) Yeung Y Y, Gau X and Corey E J 2006 J. Am. Chem. Soc. 128 9644; (d) Raghavan S, Mustafa S and Sridhar B 2009 J. Org. Chem. 74 4499; (e) Rawal G K, Kumar A, Tawar U and Vankar Y D 2007 Org. Lett. 9 5171
- For a recent review see (a) Li G, Kotti S R S S and Timmons C 2007 *Eur. J. Org. Chem.* 2745 and references therein; (b) Han J-L, Zhi S-J, Wang L-Y, Pan Y and Li G 2007 *Eur. J. Org. Chem.* 1332; (c) Wang Y-N, Ni B, Headley A D and Li G 2007 *Adv. Synth. Catal.* 349 319; (d) Shaikh T M, Karabal P U, Suryavanshi G and Sudalai A 2009 *Tetrahedron Lett.* 50 2815
- Kemp J E G 1991 Comprehensive organic synthesis, B M Trost and I Fleming (eds) Oxford, Pergamon; Vol. 3, pp 471–513; (b) Owens J M, Yeung B K S, Hill D C and Petillo P A 2001 J. Org. Chem. 66 1484; (c) Griffith D A and Danishefsky S J 1991 J. Am. Chem. Soc. 113 5863
- Tang S-S, Simpson D E and Kagan H M 1984 J. Biol. Chem. 259 975; (b) Medda R, Padiglia A, Pedersen J Z, Agraò A F, Rotilio G and Floris G 1997 Biochemistry 36 2595