CHEMISTRY LETTERS, pp. 795-798, 1988.

Iodination of Aromatic Ethers by Use of Benzyltrimethylammonium Dichloroiodate and Zinc Chloride¹⁾

Shoji KAJIGAESHI, ***** Takaaki KAKINAMI, [†] Masayuki MORIWAKI, Masakazu WATANABE, [†] Shizuo FUJISAKI, and Tsuyoshi OKAMOTO [†] Department of Industrial Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755 [†]Department of Industrial Chemistry, Ube Technical College, Tokiwadai, Ube 755

The reaction of aromatic ethers with benzyltrimethylammonium dichloroiodate(1-) in acetic acid in the presence of zinc chloride at room temperature gave iodo-substituted aromatic ethers in good yields.

Usually, iodo-substituted aromatic ethers (1) have been obtained from the Sandmeyer reaction of alkoxyanilines,²⁾ and from the O-alkylation of iodophenols with dialkyl sulfate.³⁾ Otherwise, 1 have been obtained, in only limited cases, from the direct iodination of aromatic ethers (2) by use of a mixture of iodine and appropriate oxidizing agent such as mercuric oxide⁴⁾ and hydrogen peroxide / strong mineral acid.⁵⁾ A mixture of iodine and silver trifluoroacetate can be also used.⁶⁾ Further, iodine monochloride (ICl) have considerably been used as an iodinating agent.⁷⁾ In this case, as a source of ICl produced, dichloramine-T with NaI or HI have been employed.⁸⁾

Recently, we found that benzyltrimethylammonium dichloroiodate(1-) (BTMA ICl₂) was a highly useful reagent to obtain iodo-substituted phenols⁹⁾ and aromatic α -chloroacetyl derivatives.¹⁰⁾ In this paper, we wish to report on a facile synthesis of <u>1</u> from <u>2</u> by use of BTMA ICl₂.

Reaction of 2 with BTMA ICl_2 in AcOH in the presence of $ZnCl_2$ at room temperature gave 1 in good yields. The results are summarized in Table 1.

$$\mathbb{R}^{1} - 0 - \mathbb{O} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{2} \xrightarrow{\text{n PhCH}_{2}(CH_{3})_{3}N^{+}ICl_{2}^{-}}, \qquad \mathbb{Z}nCl_{2} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{1} - 0 - \mathbb{O} \xrightarrow{\mathbb{R}^{2}}_{1} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{1} - 0 - \mathbb{O} \xrightarrow{\mathbb{R}^{2}}_{1} \xrightarrow{\mathbb{R}^$$

 ${
m BTMA \ ICl}_2$ is only slightly soluble in AcOH at room temperature. However, an addition of ${
m ZnCl}_2$ makes this reagent soluble in AcOH, and the iodination reaction of 2 proceeds smoothly under the mild conditions. The combined effect of BTMA ${
m ICl}_2$ and ${
m ZnCl}_2$ in AcOH thus provides a new excellent iodination procedure. Actually, in ${
m CH}_2{
m Cl}_2$ -CH₃OH which was well-suited solvent for these halogenations using quaternary

	Substrate	Molar ratio	Reaction	Reaction Product ^{a)}		Mp/°C or Bp/°C	
	(2)	(BTMA IC12/2)	time	(<u>1</u>)	8	found	reported
a	MeO-	1.1	3 h	MeO-O-I	92	53-54	52 ⁸⁾
b	EtO-	1.1	2 h	EtO-O-I	97	27-28	27 ⁸⁾
с	BuO-	1.1	4 h	BuO-O-I	98	277/760 mmHg	104-106/ ¹¹⁾ 0.5 mmHg
d	MeO-	1.1	30 min	MeO-	97	77.5-78	75-76 ³⁾
е	мео-	1.0	30 min	MeO-	94	42-44	43-45 ¹²⁾
f		2.1	24 h	MeO- I	96	102-103.5	-
g	MeO-O-Me Me Me	1.1	6 h	I MeO-O-Me Me Me	94	30.5-31	30-31 ⁷⁾
h	MeO-	1.1	30 min	Meo-O-I	96	39-40	32-33 ¹⁴⁾
i	MeO-Me	1.1	8 h	MeO- I	.5) 91	255/760 mmHg	-
j	Me MeO-O Me	1.1	30 min	Me MeO-O-I Me	98	47	46-48 ¹⁶⁾
k	Me MeO- Me	1.1	8 h	Me MeO- Me	96	259/760 mmHg	133-135/ ¹⁷⁾ 13 mmHg
1	Me MeO-O-Me	1.1	30 min	MeO-O-Me	92	57-58	57-58 ¹⁸⁾
m	MeO-	2.1	1 h	I MeO- Me	98	124	125 ⁸⁾
n	MeO MeO-	1.0	30 min	MeO MeO-O-I	97	33-34	34-35 ¹⁹⁾
0		2.1	4 h	MeO MeO-O-I I	94	132-133.5	134 ⁸⁾
р	MeO-	2.1	10 min	MeO-OMe	98	200-201	198-199 ⁸⁾
đ	MeO-OMe	2.1	15 h		92	171-172	171 ⁸⁾

Table 1. Iodo Aromatic Ethers(1) from Aromatic Ethers(2) and BTMA ICl_2

r	Eto-	2.1	10 min	Eto OEt 20)	91	110	-
s	MeO-OMe	2.1	10 min	MeO-OMe OMe	97	133.5	-
t		2.1	48 h	I- ◯ -0- ◯ -I	87	140-141	139 ²²⁾
u	()-CH20-()	1.1	2 h	()-CH20-()-I	90	61-62	62-63 ²³⁾
v	(O-OCH2-)2	2.1	4 h	(I-OCH ₂ -) ₂	95	177-178	175-177 ²⁴⁾

a) Structures of known products were also confirmed by their ${}^1\mathrm{H}$ NMR spectra.

b) Yield of isolated product.

ammonium polyhalides, the reaction of $\frac{2}{2}$ with BTMA ICl₂ did not proceed at all, even under reflux for many hours. The reaction scheme which affords $\frac{1}{2}$ (monoiodo-substituted ethers) can be presented as follows;

phCH ₂ (CH ₃) ₃ N ⁺ ICl ₂	+	ZnCl ₂		PhCH ₂ (C	H ₃) ₃ N ⁺ Cl	- +	I,	+	ZnCl ₃	(1)
+										(

 $2 + 1^{+} + 2nCl_{3}^{-} - 1 + 2nCl_{2} + HCl$ (2) overall:

$$2 + PhCH_2(CH_3)_3 N^+ ICL_2^- - 1 + PhCH_2(CH_3)_3 N^+ CL^- + HCL.$$
 (3)

We emphasize that the synthetic procedure for the direct iodination of $\frac{2}{2}$ by use of BTMA ICl₂ and ZnCl₂ in AcOH is a useful method owing to its ease, simplicity, mildness of conditions, and good product yields.

As limitation of these methods, the less reactive $\underline{2}$ such as nitroanisoles gave no product. The reactions of 3,5-dimethylmethoxybenzene($\underline{2m}$), 1,3-dimethoxybenzene ($\underline{2p}$), 1,4-dimethoxybenzene ($\underline{2q}$), 1,3-diethoxybenzene ($\underline{2r}$), and 1,3,5-trimethoxybenzene ($\underline{2s}$) with equimolecular amounts of BTMA ICl₂ were so vigorous that the mixtures of mono-, and di-iodinated products were obtained, respectively.

The following is a typical procedure for the synthesis of 4-iodomethoxybenzene (<u>1a</u>): To a solution of methoxybenzene (<u>2a</u>)(0.50 g, 5.09 mmol) in AcOH (30 ml) were added BTMA ICl₂ (1.77 g, 5.10 mmol) and anhydrous ZnCl_2 (ca. 1 g). The mixture was stirred for 3 h at room temperature. A yellow color of the solution gradually changed to light brown. To the mixture was added water (20 ml) and then aqueous NaHSO₃ (5%, 20 ml). The mixture was extracted with hexane (50 ml x 3). The organic layer was dried with MgSO₄, and passed through a short alumina-column. The hexane solution was concentrated in vacuo to give <u>1a</u> as colorless crystals; yield 0.99 g.

We wish to thank Dr. Mamoru Nakai and Mr. Katsumasa Harada, Ube Laboratory, Ube Industries, Ltd., for the elemental analysis.

```
References
```

- 1) Halogenation Using Quaternary Ammonium Polyhalides XII.
- 2) D. Brennan and A. R. Ubbelohde, J. Chem. Soc., 1956, 3011.
- 3) C. M. Suter and R. D. Schuetz, J. Org. Chem., 16, 1120 (1951).
- 4) L. Jurd, Aust. J. Sci. Res., <u>2</u>, 246 (1949).
- 5) L. Jurd, Aust. J. Sci. Res., 2, 595 (1949).
- 6) R. N. Haszeldine and A. G. Sharpe, J. Chem. Soc., 1952, 993.
- 7) G. H. Beaven, D. M. Hall, M. S. Lesslie, E. E. Turner, and G. R. Bird., J. Chem. Soc., 1954, 131.
- 8) B. Jones and E. N. Richardson, J. Chem. Soc., 1953, 714.
- 9) S. Kajigaeshi, T. Kakinami, H. Yamasaki, S. Fujisaki, M. Kondo, and T. Okamoto, Chem. Lett., 1987, 2109.
- 10) S. Kajigaeshi, T. Kakinami, M. Moriwaki, K. Maeno, and T. Okamoto, Synthesis, 1988, submitted for publication.
- 11) K. Palát, A. Sekera, and C. Vrbz, Chem. Listy., <u>51</u>, 563 (1957); Chem. Abstr., 51, 10404 (1957).
- 12) M. Sletzinger and C. R. Dawson, J. Org. Chem., 14, 670 (1949).
- 13) 2,4-Diiodo-5-methyl-methoxybenzene (<u>1f</u>): mp 102.5-103.5 °C (from aq EtOH
 (3:1)). ¹H NMR (CDCl₃) δ= 2.33 (3H, s, CH₃), 3.78 (3H, s, OCH₃), 6.60 (1H, s,
 2-H), 8.00 (1H, s, 5-H). Found: C, 25.44; H, 2.04%. Calcd for C₈H₈OI₂:
 C, 25.70; H, 2.16%.
- 14) N. Tsuji, Tetrahedron, 24, 1765 (1968).
- 15) 2-Iodo-4,6-dimethyl-methoxybenzene (<u>1i</u>): bp 255 °C/760 mmHg. ¹H NMR (CDCl₃) δ= 2.08 (3H, s, 6-CH₃), 2.27 (3H, s, 4-CH₃), 3.68 (3H, s, OCH₃), 6.87 (1H, s, 5-H), 7.10 (1H, s, 3-H). Found: C, 41.47; H, 4.07%. Calcd for C₉H₁₁OI: C, 41.25; H, 4.23%.
- 16) R. L. Cohen and A. J. Sisti, Can. J. Chem., 42, 1389 (1964).
- 17) A. R. Butler and A. P. Sanderson, J. Chem. Soc., Perkin Trans., 2, 1974, 1784.
- 18) W. Carruthers and A. G. Douglas, J. Chem. Soc., 1959, 2813.
- 19) D. E. Janssen and C. V. Wilson, Org. Synth., Coll. Vol. IV, 547.
- 20) 2,4-Diiodo-1,5-diethoxybenzene (<u>1r</u>): mp 110 °C (from aq EtOH (3:1)). ¹H NMR (CDCl₃) δ= 1.43 (6H, t, J=10 Hz, 2CH₃), 4.00 (4H, q, J=10 Hz, 2CH₂), 6.25 (1H, s, 6-H), 7.97 (1H, s, 3-H). Found: C, 28.59; H, 2.80%. Calcd for C₁₀H₁₂O₂I₂: C, 28.73; H, 2.89%.
- 21) 2,4-Diiodo-1,3,5-trimethoxybenzene (<u>1s</u>): mp 133.5 °C (from aq EtOH (3:1)). ¹H NMR (CDCl₃) δ= 3.47 (3H, s, 3-OCH₃), 3.85 (6H, s, 1 and 5-OCH₃), 6.16 (1H, s, 6-H). Found: C, 25.58; H, 2.36%. Calcd for C₉H₁₀O₃I₂: C, 25.74; H, 2.40%.
- 22) R. Q. Brewster and F. Strain, J. Am. Chem. Soc., 56, 117 (1934).
- 23) D. Matheson and H. McCombie, J. Chem. Soc., 1931, 1103.
- 24) F. B. Dains and F. Eberly, Trans. Kansas Acad. Sci., <u>36</u>, 114 (1933): Chem. Abstr., 28, 2338 (1934).

(Received January 23, 1988)

798