PAPER

Synthesis of Benzo[*c*]Phenanthridine Alkaloids, Using a Novel Palladium– Phosphine Combination System – Pd(OAc)₂, DPPP, and Bu₃P

Takashi Harayama,* Toshihiko Akiyama, Yuichiro Nakano, Kentaro Shibaike, Hisashi Akamatsu, Akihiro Hori, Hitoshi Abe, Yasuo Takeuchi

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan Fax +81(86)2517963; E-mail: harayama@pharm.okayama-u.ac.jp Received 20 September 2001; revised 16 November 2001

Abstract: Total synthesis of several benzo[c]phenanthridine alkaloids was accomplished via an aryl-aryl coupling reaction using a novel Pd reagent prepared from Pd(OAc)₂, DPPP, and Bu₃P. This is a versatile method for the coupling reactions of not only aryl triflates and arenes but also aryl halides and arenes.

Key words: intramolecular aryl-aryl coupling, ring closure, palladium reagent, halo-amide, triflate-amide

Introduction

Fully aromatized benzo[c]phenanthridine alkaloids have a broad range of potent pharmacological activities. They include anti-tumor and antiviral activities, inhibition of DNA topoisomerase I, and so on.¹ Therefore, attention is focused on developing convenient and effective methods for synthesizing these alkaloids and extensive efforts have been directed toward developing a convenient method for synthesizing benzo[c]phenanthridine alkaloids.² However, the reported methods have several disadvantages, such as numerous steps, low yields, and absence of generality. Recently, we succeeded in the total synthesis of several benzo[c]phenanthridine alkaloids, chelerythrine (1),^{3a} nitidine (2),^{3b} norchelerythrine (3),^{3c} and 12-methoxydihydrochelerythrine (4),^{3a} using a biaryl coupling reaction of halo amides with palladium as a catalyst. Subsequently, we investigated a biaryl cyclization reaction of amides possessing a triflate group as a leaving group (instead of a halogen group) in order to examine the diversity of leaving groups for a biaryl coupling reaction. We found a novel palladium reagent system prepared from Pd(OAc)₂, a bidentate ligand {such as DPPP [1,3-bis-(diphenylphosphino)propane]} and Bu₃P achieves this reaction.⁴ Moreover, this method was proven to be effective, not only for triflate leaving groups, but also for halogen groups.⁴ Here, we describe the total synthesis of several benzo[c] phenanthridine alkaloids using this novel method.

Synthesis of Starting Materials 9–12

We designed a common plan for synthesizing ben-zo[c] phenanthridine alkaloids, as shown in Scheme 1.

Synthesis 2002, No. 2, 01 02 2002. Article Identifier: 1437-210X,E;2002,0,02,0237,0241,ftx,en;F07301SS.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0039-7881

Scheme 2 Synthesis of precursor 9a for the biaryl coupling reaction

Triflate-amides 9a and 10a, the starting materials for the coupling reaction, were synthesized as follows. First, the monomethylnaphthylamine 17 was synthesized from 6,7methylenedioxy-1-naphthylamine (15)^{3b} via trifluoroacetylation, N-methylation, and hydrolysis. Thus, 15 was treated with trifluoroacetic anhydride to afford N-(6,7methylenedioxy-1-naphthyl)-2,2,2-trifluoroacetamide 16, which was methylated with methyl iodide in the presence of sodium hydride, and hydrolyzed with alkali to produce 17 in 76% total yield. Triflate-benzoic acid 13 for the synthesis of 9a was prepared as shown in Scheme 2. The reaction of benzofuran $\mathbf{18}^5$ with triflic anhydride and successive treatment with ozone, dimethyl sulfide, and hydrochloric acid provided salicylaldehyde 19 in 45% total yield. Methylation of 19, followed by oxidation with sodium chlorite and 35% hydrogen peroxide afforded 13 in 77% yield. Finally, reaction of the acid chloride of 13 with **17** provided triflate-amide **9a** in 63% yield.

Next, triflate-benzoic acid **14** for synthesis of **10** was prepared as shown in Scheme 3. The reaction of salicylaldehyde 20^6 with triflic anhydride followed by oxidation gave **14**, which was treated with oxalyl chloride, followed by **16**, to afford triflate-amide **10a** in 85% total yield.

Halo-amides **9b**,^{3b} **9c**,^{3a} **10b**,^{3b} **11b**,^{3c} and **12b**^{3a} were synthesized using reported literature procedures.

Scheme 3 Synthesis of precursor 10a for the biaryl coupling reaction

Biaryl Coupling Reactions of Triflate-amides and Halo-amides in the Presence of Palladium Reagent

The biaryl coupling reaction of 9-12 by our novel palladium-phosphine combination system⁴ was examined. As seen in the Table, small amounts of naphthobenzoazepinones 21–24 were obtained with phenanthridones 5–8 in each reaction. The synthetic samples 23^{3b} and 24^{3a} were identical to the authentic sample. The structures of the products 21 and 22 were elucidated on the basis of ¹H NMR spectral data, in which 21 showed only one singlet signal due to an aromatic proton and 22 showed three singlet signals due to aromatic protons in addition to signals due to other aromatic protons (see Experimental). On using diisopropylethyl amine as the base, the coupling reaction of **9a** proceeded quickly and in a higher yield to give oxychelerythrine $(5)^{3a}$ (see runs 1 and 2). Moreover, on applying the novel method to halo-amides **9b** and **9c**,^{3a} both amides gave **5** in excellent yields (see runs 3–6 in Table). Using this procedure, the coupling reaction of **10a** provided oxynitidine $(6)^{3b}$ in excellent yield (see run 7 in Table) and **10b**^{3b} provided **6** in high yield (see runs 8 and 9 in Table).

The synthetic samples **5–8** were identical to authentic samples, which had already been converted to the corresponding natural products 1-4,³ by successive treatment with LiAlH₄ and HCl.

Consequently, the novel combination system consisting of $Pd(OAc)_2$, DPPP, Bu_3P , and base is a very efficient and powerful method for intramolecular aryl-aryl coupling reactions involving either a triflate or halogen as the leaving group. We are now investigating the catalytic ability of this method.

Melting points were measured on a micro melting point hot-stage apparatus (Yanagimoto) and are uncorrected. IR spectra were recorded in Nujol on a JASCO A-102 or JASCO FT/IR 350 spectrophotometer and ¹H NMR spectra in CDCl₃ on a Hitachi R-1500 (60 MHz) or Varian VXR-500 (500 MHz) spectrometer unless otherwise stated. NMR data are reported in parts per million downfield from tetramethylsilane as an internal standard ($\delta = 0.0$) and coupling constants are given in Hertz. Mass spectra were obtained on a VG-70SE spectrometer. Column chromatography was carried out on silica gel (Wako gel C-200 or Merck, silica gel 60, No. 9385). All experiments were carried out in an argon atmosphere and the extract was washed with brine, dried over anhyd MgSO₄, then filtered, and the filtrate was evaporated to dryness under reduced pressure, unless otherwise noted. Pd(OAc)2 was treated with boiling benzene and the mixture was filtered while hot. The hot filtrate was then concentrated to dryness to give purified Pd(OAc)₂.

N-Methyl-6,7-methylenedioxy-1-naphthylamine (17)

To a solution of **15** (100 mg, 0.53 mmol) in anhyd pyridine (3 mL), Tf₂O (0.11 mL, 0.80 mmol) was added. The reaction mixture was stirred at 0 °C for 30 min and poured into 10% HCl (10 mL) and then extracted with Et₂O. The residue was recrystallized from Et₂O-hexanes to afford **16** (140 mg, 93%) as colorless needles, mp 172–174 °C.

IR (KBr): 3300, 1715 cm⁻¹.

¹H NMR (60 MHz): δ = 6.07 (2 H, s, OCH₂O), 7.03–7.74 (5 H, m, ArH), 8.07 (1 H, br s, NH).

MS-FAB: m/z [M + H]⁺ calcd for C₁₃H₈F₃NO₃, 284; found, 284.

To a solution of **16** (105 mg, 0.37 mmol) prepared above and MeI (205 mg, 1.48 mmol) in anhyd acetone (10 mL) was added solid KOH (82.2 mg). The reaction mixture was refluxed for 20 min and solvent removed under reduced pressure. The residue was dissolved in EtOH (5 mL) and aq 5% NaOH solution (5 mL) and refluxed for 10 min. The reaction mixture was diluted with H_2O (40 mL) and ex-

TableResults of Coupling Reaction of Amides (9–12) to Benzo[c] phenanthridones (5–8) and naphthobenzoazepinones (21–24) in DMF under Reflux^a

9 : R=Me, R¹=OMe, R²=R³=H **10** : R=Me, R¹=R³=H, R²=OMe

11 : $R=CH_2OMe$, $R^1=OMe$, $R^2=R^3=H$

12 : R=Me, R¹=R³ =OMe, R²=H

 $\begin{array}{l} \textbf{5} \text{ and } \textbf{21}: R=\!Me, \ R^1=\!OMe, \ R^2=\!R^3=\!H \\ \textbf{6} \text{ and } \textbf{22}: R=\!Me, \ R^1=\!R^3=\!H, \ R^2=\!OMe \\ \textbf{7} \text{ and } \textbf{23}: R=\!CH_2OMe, \ R^1=\!OMe, \ R^2=\!R^3=\!H \\ \textbf{8} \text{ and } \textbf{24}: R=\!Me, \ R^1=\!R^3=\!OMe, \ R^2=\!H \\ \end{array}$

a series X=OTf, b series X=I, c series X=Br

Run	Starting Material	Pd(OAc) ₂ (eq)	Ligand	Bu ₃ P (eq)	Base	Time	Products (Yield, %)			
1	9a	1.0	DPPP	1.0	<i>i</i> Pr ₂ Net	30 min	5	(81)	21	(~ 5)
2		1.0	DPPP	1.0	Ag ₂ CO ₃	4 h		(62)		(~ 3)
3	9b	1.0	DPPP	1.0	<i>i</i> Pr ₂ Net	15 min		(85)		(~ 3)
4		1.0	DPPP	1.0	Ag ₂ CO ₃	15 min		(95)		(~ 3)
5	9c	1.0	DPPP	1.0	<i>i</i> Pr ₂ Net	30 min		(79)		(~ 3)
6		1.0	DPPP	1.0	Ag ₂ CO ₃	30 min		(89)		(~ 2)
7	10a	1.0	DPPP	1.0	<i>i</i> Pr ₂ NEt	30 min	6	(93)	22	(~ 5)
8	10b	1.0	DPPP	1.0	<i>i</i> Pr ₂ Net	30 min		(94)		(~ 2)
9		1.0	DPPP	1.0	Ag ₂ CO ₃	30 min		(88)		(~ 3)
10	11b	1.0	DPPP	1.0	<i>i</i> Pr ₂ NEt	40 min	7	(83)	23	(16)
11	12b	1.0	DPPP	1.0	<i>i</i> Pr ₂ NEt	30 min	8	(90)	24	(9)

^a All reactions were carried out using Pd(OAc)₂ and ligand in a molar ratio of 1:1 and 2 equivalents of base.

tracted with Et₂O (100 mL). The residue was recrystallized from EtOH (10 mL) to afford **17** (60 mg, 82%) as pale yellow prisms, mp 105.5–106.5 °C.

IR (KBr): 3450 cm⁻¹.

¹H NMR (60 MHz): δ = 2.96 (3 H, s, NCH₃), 3.33 (1 H, br s, NH), 5.99 (2 H, s, OCH₂O), 6.52 (1 H, dd, *J* = 7.0, 2.1 Hz, C₂-H), 7.02–7.40 (5 H, m, ArH).

Anal. Calcd for C₁₂H₁₁NO₂: C, 71.63; H, 5.51; N, 6.96. Found: C, 71.65; H, 5.37; N, 6.85.

6-[(Trifluoromethanesulfonyl)oxy]-2-hydroxy-3methoxybenzaldehyde (19)

To a mixture of **18** (2 g, 1.2 mmol) and anhyd NEt₃ (3.13 mL, 22.4 mmol) in anhyd CH_2Cl_2 (40 mL) at 0 °C was added Tf_2O (2.83 mL, 16.8 mmol) in CH_2Cl_2 (10 mL). The mixture was stirred for 20 min at 0 °C. The mixture was diluted with CH_2Cl_2 (300 mL) and washed with 1 N HCl (50 mL), sat. NaHCO₃ (50 mL) and brine (80 mL). The organic layer was dried over anhyd MgSO₄. The residue dissolved in hexanes–EtOAc (2:1) and was subjected to column chromatography on silica gel. Elution with hexanes–EtOAc (2:1) afforded 4-[(trifluoromethanesulfonyl)oxy]-7-methoxy-2-methylbenzo[*b*]furan (3.46 g, 99%) as colorless oil.

IR (CHCl₃): 1145 cm⁻¹.

¹H NMR (60 MHz): δ = 2.50 (3 H, d, *J* = 0.9 Hz, CH₃), 4.01 (3 H, s, OCH₃), 6.48 (1 H, q, *J* = 0.9 Hz, C₃-H), 6.68 (1 H, d, *J* = 8.8 Hz, C₆-H), 7.07 (1 H, d, *J* = 8.8 Hz, C₅-H).

MS-FAB: m/z [M + H]⁺ calcd for C₁₁H₉F₃O₅S, 311; found, 311.

The triflate–benzofuran prepared above (3.46 g, 11.2 mmol) was dissolved in anhyd CH₂Cl₂ (200 mL) and cooled to -78 °C. Ozone was bubbled through the solution for 30 min with stirring. The pale–blue reaction mixture was stirred at the same temperature further for 30 min. Excess ozone was removed by bubbling argon through the solution for 15 min at -78 °C. DMS (2.0 mL, 27 mmol) was added and the reaction mixture was stirred at r.t. for 1 h followed by concentration under reduced pressure. The residue was diluted with H₂O and extracted with EtOAc (300 mL). To the residue dissolved in EtOH (60 mL) was added concd HCl (10 mL). The reaction mixture was refluxed for 1 h, poured into H₂O (100 mL), and extracted with EtOAc (500 mL). The residue dissolved in hexanes–EtOAc (5:1) and subjected to column chromatography on silica gel. Elution with hexanes–EtOAc (5:1) afforded **19** (1.51 g, 45%) as colorless plates (from hexanes) mp 75.5–76.5 °C.

IR (KBr): 3150, 1680, 1140 cm⁻¹.

¹H NMR (60 MHz): δ = 3.94 (3 H, s, OCH₃), 6.85 (1 H, d, *J* = 9.1 Hz, C₄-H), 7.10 (1 H, d, *J* = 9.1 Hz, C₅-H), 10.22 (1 H, s, CHO), 11.96 (1 H, s, OH).

MS-FAB: m/z [M + H]⁺ calcd for C₉H₇F₃O₆S, 301; found, 301.

Anal. Calcd for $C_9H_7F_3O_6S$: C, 36.01; H, 2.35. Found: C, 36.31; H, 2.65.

6-[(Trifluoromethanesulfonyl)oxy]-2,3-dimethoxybenzoic Acid (13)

To a mixture of **19** (1.43 g, 4.76 mmol) and K_2CO_3 (0.49 mg, 3.57 mmol) in anhyd DMF (50 mL) was added MeI (0.36 mL, 5.72 mmol) and the solution was stirred at r.t. for 2 h. The reaction mixture was diluted with H_2O (100 mL) and extracted with Et_2O (300 mL). The residue dissolved in CHCl₃ (20 mL) was subjected to column chromatography on silica gel. Elution with CHCl₃ afforded 6-[(trifluoromethanesulfonyl)oxy]-2,3-dimethoxybenzaldehyde (1.30 g, 87%) as colorless needles (from benzene–hexanes) mp 86–87 °C.

IR (KBr): 1700, 1145 cm⁻¹.

¹H NMR (60 MHz): δ = 3.94 (3 H, s, OCH₃), 4.02 (3 H, s, OCH₃), 7.08 (2 H, m, C₄-H, C₅-H), 10.42 (1 H, s, CHO).

Anal. Calcd for $C_{10}H_9$ F_3O_6S : C, 38.22; H, 2.89. Found: C, 38.38; H, 3.11.

To a stirred mixture of the benzaldehyde (500 mg, 1.59 mmol) prepared above, monobasic NaHSO₃ (62 mg, 0.40 mmol) and 35% H_2O_2 (0.20 mL, 2.39 mmol) in CH₃CN (20 mL) and H_2O (1 mL) were added. A solution of NaClO₂ (80%; 270 mg, 2.39 mmol) in H_2O (1 mL) was added and the mixture was stirred at 10 °C for 6 h. After the decomposition of excess H_2O_2 with 10% aq NaHSO₃ solution (20 mL), the mixture was poured into H_2O (100 mL) and extracted with Et₂O (300 mL). The crystalline residue was recrystallized from Et₂O–hexanes (20 mL) to afford **13** (480 mg, 91%) as colorless needles; mp 75–76.5 °C.

IR (KBr): 2920, 1715, 1140 cm⁻¹.

¹H NMR (60 MHz): δ = 3.93 (3 H, s, OCH₃), 3.98 (3 H, s, OCH₃), 6.43 (1 H, bs, COOH), 7.07 (2 H, m, C₄-H, C₅-H).

Anal. Calcd for $C_{10}H_9$ F_3O_7S : C, 36.37; H, 2.75. Found: C, 36.43; H, 2.92.

6-[(Trifluoromethanesulfonyl)oxy]-2,3-dimethoxy-*N*-methyl-*N*-(6,7-methylenedioxy-1-naphthyl)benzamide (9a)

A few drops of anhyd DMF and oxalyl chloride (232 mg, 1.82 mmol) were added to a solution of **13** (300 mg, 0.91 mmol) in anhyd CH₂Cl₂ (15 mL) under ice-cooling and the mixture was refluxed for 1.5 h. Then the reaction mixture was concentrated to dryness under reduced pressure. To this residue was added a solution of **16** (210 mg, 1.0 mmol) in anhyd CH₂Cl₂ (2 mL) and anhyd Et₃N (0.16 mL, 1.14 mmol) and this mixture was stirred for 30 min at r.t. The reaction mixture was concentrated to dryness and diluted with CH₂Cl₂ (100 mL), then washed with 10% HCl (20 mL), sat. NaHCO₃ solution (20 mL) and subjected to column chromatography on silica gel. Elution with CHCl₃ afforded **9a** (293 mg, 63%) as colorless needles (from benzene–hexanes) mp 213–213.5 °C.

IR (KBr): 1660, 1145 cm⁻¹.

¹H NMR (500 MHz): δ = 3.27–4.10 (9 H, m, NCH₃, 2 × OCH₃, rotamer), 6.06 (2 H, s, OCH₂O), 6.63–7.68 (7 H, m, ArH, rotamer).

Anal. Calcd for $C_{22}H_{18}F_3$ NO₈S: C, 51.46; H, 3.53; N, 2.73. Found: C, 51.30; H, 3.61; N, 2.85.

2-[(Trifluoromethanesulfonyl)oxy]-4,5-Dimethoxybenzoic Acid (14)

To a mixture of 20^6 (1 g, 5.50 mmol) and anhyd Et₃N (1.11 g, 11.0 mmol) in anhyd CH₂Cl₂ (40 mL) at 0 °C was added Tf₂O (2.33 g, 8.25 mmol) in CH₂Cl₂ (10 mL). The mixture was stirred for 1 h at 0 °C. The mixture was diluted with CH₂Cl₂ (300 mL) and washed with 1 N HCl (50 mL), sat. NaHCO₃ (50 mL) and brine (80 mL).

The organic layer was dried over anhyd MgSO₄. The residue was dissolved in CH₂Cl₂–hexanes (1:1) and was subjected to column chromatography on silica gel. Elution with CH₂Cl₂–hexanes (1:1) afforded 2-[(trifluoromethanesulfonyl)oxy]-4,5-dimethoxybenzal-dehyde (1.29 g, 75%) as colorless needles (from hexanes) mp 76.5–78 °C

IR (KBr): 1700, 1140 cm⁻¹.

¹H NMR (60 MHz): δ = 3.96 (3 H, s, OCH₃), 3.99 (3 H, s, OCH₃), 6.84 (1 H, s, C₃-H), 7.42 (1 H, s, C₆-H), 10.17 (1 H, s, CHO).

Anal. Calcd for $C_{10}H_9$ F_3O_6S : C, 38.22; H, 2.89. Found: C, 38.30; H, 2.88.

To a stirred mixture of triflate-benzaldehyde (934 mg, 2.97 mmol) prepared above, monobasic sodium phosphate dihydrate (105 mg, 0.67 mmol) and 35% H_2O_2 (0.39 mL, 4.46 mmol) in CH₃CN (30 mL) and H_2O (3 mL) was added. A solution of NaClO₂ (80%; 487 mg, 4.31 mmol) in H_2O (3 mL) was added to the reaction mixture and then solution was stirred at 10 °C for 3 h. After the decomposition of excess H_2O_2 with 10% aq NaHSO₃ solution (20 mL), the mixture was poured into H_2O (100 mL) and extracted with EtOAc (300 mL). The residue dissolved in hexanes–EtOAc (2:1) was subjected to column chromatography on silica gel. Elution with hexanes–EtOAc (2:1) afforded **14** (954 mg, 97%) as colorless needles (from benzene) mp 168–170 °C.

IR (KBr): 2950, 1700, 1140 cm⁻¹.

¹H NMR (60 MHz): δ = 3.97 (6 H, s, 2 × OCH₃), 6.74 (1 H, s, C₃-H), 7.62 (1 H, s, C₆-H), 8.81 (1 H, s, COOH).

Anal. Calcd for $C_{10}H_9$ F_3O_7S : C, 36.37; H, 2.75. Found: C,36.53; H, 2.87.

2-[(Trifluoromethanesulfonyl)oxy]-4,5-dimethoxy-*N*-methyl-*N*-(6,7-methylenedioxy-1-naphthyl)benzamide (10a)

A solution of **14** (420 mg, 127 mmol) and thionyl chloride (167 mg, 1.40 mmol) in anhyd CH_2Cl_2 (10 mL) and anhyd pyridine (0.2 mL) was refluxed for 1.5 h. Then the reaction mixture was concentrated to dryness under reduced pressure. To this residue was added a solution of **16** (256 mg, 1.27 mmol) in anhyd $CHCl_3$ (10 mL) and anhyd Et_3N (0.2 mL, 1.53 mmol) and the mixture was stirred for 12 h at r.t. The reaction mixture was concentrated to dryness and diluted with CH_2Cl_2 (300 mL), then washed with 10% HCl (50 mL), sat. NaHCO₃ soln (50 mL) and brine (80 mL). The residue dissolved in CHCl₃ (10 mL) was subjected to column chromatography on silica gel. Elution with CHCl₃ afforded **10a** (578 mg, 88%) as colorless prisms (from benzene–hexanes) mp 184–185 °C.

IR (KBr): 1655, 1140 cm⁻¹.

¹H NMR (500 MHz): δ = 3.29 (3 H, s, NCH₃), 3.51 (3 H, s, OCH₃), 3.74 (3 H, s, OCH₃), 6.08 (2 H, s, OCH₂O), 6.52 (1 H, s, ArH), 6.53 (1 H, s, ArH), 7.11–7.17 (3 H, m, ArH), 7.26 (1 H, s, ArH), 7.42 (1 H, dd, *J* = 6.5, 3.0 Hz, ArH).

Anal. Calcd for $C_{22}H_{18}$ F_3 NO₈S: C, 51.46; H, 3.53; N, 2.73. Found: C, 51.74; H, 3.73; N, 2.66.

Coupling Reaction of Amides 9–12 by the Pd Reagent; General Procedure

The reaction of amides 9-12 (0.3 mmol) in anhyd DMF (8 mL) was carried out using Pd(OAc)₂ and DPPP in a molar ratio of 1:1 and one equiv of Bu₃P, and 2 mol equiv of base under reflux. The reaction mixture was diluted with Et₂O (200 mL) and the precipitate was removed by filtration. The filtrate was washed with 1 N HCl (20 mL), sat. NaHCO₃ solution (20 mL) and brine (30 mL). The residue was dissolved in hexanes–EtOAc (4:1) and subjected to column chromatography on silica gel. Elution with hexanes–EtOAc (2:1) gave naphthobenzoazepinones **21–24** and successive elution with the same solvent afforded the phenanthridones **5–8**.

9,10-Dimethoxy-7-methyl-1,2-methylenedioxynaphtho[1,8cd][2]benzazepin-8(7H)-one (21)

Mp 202–204 °C, pale yellow needles (from hexanes–EtOAc).

IR (KBr): 1660 cm⁻¹.

¹H NMR (200 MHz): δ = 3.40 (3 H, s, NCH₃), 3.87 (3 H, s, OCH₃), 4.06 (3 H, s, OCH₃), 6.11 (2 H, s, OCH₂O), 6.92 (1 H, d, *J* = 9.0 Hz, C₁₁-H), 6.97 (1 H, s, C₃-H), 7.16 (1 H, dd, *J* = 7.1, 1.6 Hz, C₆-H), 7.27 (1 H, dd, *J* = 7.9, 7.1 Hz, C₅-H), 7.34 (1 H, dd, *J* = 7.9, 1.61 Hz, C₄-H), 7.39 (1 H, d, *J* = 9.0 Hz, C₁₂-H),

HRMS-FAB: $m/z [M + H]^+$ calcd for $C_{21}H_{18}NO_5$: 364.1185. Found: 364.1138.

10,11-Dimethoxy-7-methyl-1,2-methylenedioxynaphtho[1,8cd][2]benzazepin-8(7H)-one (22)

Mp 232.5-236 °C, colorless needles (from hexanes-EtOAc).

IR (KBr): 1630 cm⁻¹.

¹H NMR (500 MHz): δ = 3.45 (3 H, s, NCH₃), 3.87 (3 H, s, OCH₃), 3.97 (3 H, s, OCH₃), 6.12 (2 H, s, OCH₂O), 7.02 (1 H, s, C₃-H), 7.12 (1 H, dd, *J* = 7.5, 1.0 Hz, C₆-H), 7.20 (1 H, s, C₉-H or C₁₂- H), 7.29 (1 H, dd, *J* = 7.5, 7.5 Hz, C₅-H), 7.36 (1 H, d, *J* = 7.5 Hz, C₄-H), 7.61 (1 H, s, C₁₂-H or C₉- H)

MS-FAB: m/z [M + H]⁺ calcd for C₂₁H₁₈NO₅: 364.1185. Found: 364.1214.

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research (No. 09672144 and 11672103) from the Ministry of Education, Science, Sports, and Culture. The authors are indebted to the SC-NMR Laboratory of Okayama University for the ¹H NMR experiments.

References

- (1) (a) Simanek, V. The Alkaloids, Vol. 26; Brossi, A., Ed.; Academic Press: New York, 1985, 185. (b) Dostal, J.; Potacek, M. Collect. Czech. Chem. Commun. 1990, 55, 2840. (c) Suffiness, M.; Cordell, G. The Alkaloids, Vol. 25; Brossi, A., Ed.; Academic Press: New York, 1985, 178. (d) MacKay, S. P.; Meth-Cohn, O.; Waigh, R. D. Adv. Heterocycl. Chem. 1997, 67, 345. (e) Ishikawa, T.; Ishii, H. Heterocycles 1999, 50, 627. (f) Herert, J. M.; Augereau, J.; Gleye, J. P.; Maffrand, J. Biochem. Biophys. Res. Commun. 1990, 172, 993. (g) Fang, S.-D.; Wang, L.-K.; Hecht, S. M. J. Org. Chem. 1993, 58, 5025. (h) Nakanishi, T.; Suzuki, M. J. Nat. Prod. 1998, 61, 1263. (i) Vavreckova, C.; Gawlik, I.; Müller, K. Planta Med. 1996, 62, 397. (j) Schmeller, T.; Latz-Bruning, B.; Wink, M. Phytochemistry 1997, 44, 257. (k) Nakanishi, T.; Suzuki, M.; Saimoto, A.; Kabasawa, T. J. Nat. Prod. 1999, 62, 864; and references cited therein. (l) Fleury, F.; Sukhanova, A.; Ianoul, A.; Devy, J.; Kudelina, I.; Duval, O.; Alix, A.; Jardillier, J.; Nabiev, I. J. Biol. Chem. 2000, 275, 3501.
- (2) Recent papers for synthesis of benzo[c]phenanthridine alkaloids: (a) Moreno, I.; Tellitu, I.; Etayo, J.; SanMartin, R.; Domingueez, E. *Tetrahedron* 2001, *57*, 5403; and references cited therein. (b) Nakanishi, T.; Suzuki, M. *Org. Lett.* 1999, *1*, 985; and references cited therein. (c) Geen, G. R.; Mann, I. S.; Mullane, V. M.; McKillop, A. *Tetrahedron* 1998, *54*, 9875. (d) Ishikawa, T.; Saito, T.; Ishii, H. *Tetrahedron* 1995, *51*, 8447. (e) Minami, T.; Nishimoto, A.; Hanaoka, M. *Tetrahedron Lett.* 1995, *36*, 9505; and references cited therein. (f) Seraphin, D.; Lynch, M. A.; Duval, O. *Tetrahedron Lett.* 1995, *36*, 5731. (g) Lynch, M. A.; Duval, O.; Pochet, P.; Waigh, R. D. *Bull. Soc. Chim. Fr.* 1994, *131*, 718.
- (3) (a) Harayama, T.; Akiyama, T.; Akamatsu, H.; Kawano, K.; Abe, H.; Takeuchi, Y. *Synthesis* 2001, 444. (b) Harayama, T.; Shibaike, K. *Heterocycles* 1998, 49, 191. (c) Harayama, T.; Akamatsu, H.; Okamura, K.; Miyagoe, T.; Akiyama, T.; Abe, H.; Takeuchi, Y. *J. Chem. Soc., Perkin Trans. 1* 2001, 523.
- (4) Harayama, T.; Akiyama, T.; Nakano, Y. *Chem. Pharm. Bull.* 1997, 45, 1723.
- (5) Ishii, H.; Kenmotsu, K.; Döpke, W.; Harayama, T. *Chem. Pharm. Bull.* **1992**, *40*, 1770.
- (6) Sihababu, A. K.; Borchardt, R. T. J. Org. Chem. **1983**, 48, 1941.

241