

Article

(Trifluoromethyl) Vinyl Sulfide: a Building Block for the Synthesis of CF3S-Containing Isoxazolidines

Alejandra Riesco-Domínguez, Jeroen van de Wiel, Trevor A. Hamlin, Bas van Beek, Stephen D. Lindell, Daniel Blanco-Ania, F. Matthias Bickelhaupt, and Floris P.J.T. Rutjes

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b02639 • Publication Date (Web): 10 Jan 2018

Downloaded from http://pubs.acs.org on January 10, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

(Trifluoromethyl) Vinyl Sulfide: a Building Block for the Synthesis of CF₃S-Containing Isoxazolidines

Alejandra Riesco-Domínguez,† Jeroen van de Wiel,† Trevor A. Hamlin,§ Bas van Beek,§ Stephen D. Lindell, Daniel Blanco-Ania, F. Matthias Bickelhaupt, *,†,§ Floris P. J. T. Rutjes*,†

[†]Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Nether-

§Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, the Netherlands

[‡]Bayer CropScience AG, Industriepark Höchst, G836, 65926 Frankfurt am Main, Germany Supporting Information Placeholder

ABSTRACT: (Trifluoromethyl) vinyl sulfide, a potential building block for pharmaceutically and agrochemically relevant products, is prepared and used for the first time in high-pressure-mediated 1,3-dipolar cycloaddition reactions with nitrones to synthesize (trifluoromethyl)sulfanyl isoxazolidines.

INTRODUCTION

The (trifluoromethyl)sulfanyl group (SCF₃) represents a privileged substituent in agrochemicals and pharmaceuticals because of the strong electron withdrawing effect and the large Hansch lipophilicity parameter ($\pi = 1.44$). Cefazaflur,² a first-generation cephalosporin antibiotic, toltrazuril,3 an antiprotozoal agent, and a losartan analogue,4 developed as potential hypotensive agent, are prominent examples of biologically active compounds bearing the SCF, group (Figure 1).

Figure 1. Bioactive heterocycles containing the SCF₂ group.

Hence, CF₃S-containing compounds are considered appealing targets in the agrochemical and pharmaceutical fields and, consequently, modern research has focused on efficient (trifluoromethyl)sulfanylation methods. The main strategies that have been developed to synthesize CF₃S-containing compounds have focused on direct C-S bond formation⁵ and trifluoromethylation of sulfur-ACS Paragon Plus Environment

containing compounds.⁶ However, incorporation via simple CF₂S-containing building blocks is still unprecedented so that the use of a CF₃S-containing reagent could be an alternative strategy to construct CF₂S-substituted heterocycles. More specifically, (trifluoromethyl) vinyl sulfide (2) could be an attractive building block to provide straightforward access to a wide variety of hetero- and carbocycles via cycloaddition reactions. Previously reported examples of cycloaddition reactions of alkene 2 are rather scarce: there is a single example of a Diels-Alder reaction with 2,3-dimethylbutadiene to yield the corresponding CF₃S-cyclohexene,⁷ and two cyclopropanation examples with organomercury reagents to yield CF₃Ssubstituted cyclopropanes.8

The potential of this unexplored chemistry and the inherent biological attractiveness of these molecules motivated us to further study the reactivity of alkene 2 in cycloaddition reactions. Thus, we herewith present the study of the first 1,3-dipolar cycloaddition reactions of 2 with several nitrones⁹ to synthesize a novel group of isoxazolidines (Scheme 1).

RESULTS AND DICSUSSION

Scheme 1. Synthesis of CF₃S-containing isoxazolidines.

$$CI \longrightarrow SCF_3 \longrightarrow \left[\bigcirc SCF_3 \right] \longrightarrow Ph \longrightarrow SCF_3 \quad R = H, 3$$

$$R = H, 3$$

$$R = Ar, COR$$

$$Cis = A, trans = 4$$

We commenced our investigations by forming alkene 2 in situ. Because of its high volatility,7 we first performed the elimination reactions in deuterated solvents in order to instantly measure conversions from commercially available chloro alkane 1 into alkene 2, with no need for further treatment or isolation of the alkene. We tested several bases (Et₃N, DBU, KO^tBu, KOH and KOTMS) in the presence of various deuterated solvents (CD₂Cl₂, THF-d₈, CD_3OD and $DMF-d_7$; see Supporting Information [SI] for experimental details) to eventually choose a solution of KO^tBu in THF- d_8 at 21 °C for 90 min as the final method for the in situ synthesis of alkene 2 with full conversion. Initially, we focused on the synthesis of 2,5-disubstituted isoxazolidines 3 using N-substituted hydroxylamines 5 and paraformaldehyde as precursors for the in-situ synthesis of the dipoles (Table 1). The nitrone intermediates were used without isolation in a one-pot process with a preformed solution of alkene 2 (3 equiv) and In(OTf)3 (0.06 equiv). In this manner, we obtained isoxazolidine 3a in 22% yield after column chromatography. Increasing the concentration of 2 (6 equiv) resulted in a yield of 38% (entry 1). Isoxazolidines **3b-e** were synthesized in yields between 20-30% applying the same reaction conditions with different substrates (entries 2-5). However, yields were rather low after column chromatography in all cases (see SI for experimental details).

Table 1. Synthesis of isoxazolidines 3a-e.

R, N OH + [In(OT	CH ₂ O) _n F f) ₃ (cat.), THF 21 °C, 16 h	N^{-0} —SCF ₃
Entry	Compound	R	Yield (%)
1	3a	C ₆ H ₅	38
2	3b	3-CF ₃ C ₆ H ₄	20
3	3C	3,5-Cl ₂ C ₆ H ₃	22
4 ^a	3d	C ₆ H ₅ CH ₂	30
5 ^a	3e	Су	23

^aEt₃N (1.0 equiv) was used.

With these results in hand and because of the low yields in the synthesis of **3a-e**, we changed our strategy to the synthesis of **2**,3,5-trisubstituted isoxazolidines **4**, exhibiting a second (hetero)aromatic group on the 3-position and introducing consequently a second chiral center in the molecule (Scheme **2**, Table **2**).

Scheme 2. Formation of compounds 4, 7 and 8.

We first performed the reaction with nitrone 6a (R = H), a

catalytic amount of In(OTf), and alkene 2 at 21 °C in THF, but no conversion into the product was observed. When applying the same conditions at 80 °C with nitrone 6c (R = Me), less than 7% conversion into the final product was observed by 'H NMR, presumably because of the low reactivity of this alkene and perhaps due to its volatility. Therefore, we decided to perform these reactions under high-pressure conditions (Table 2), which is an established and powerful tool to increase the rate of cycloaddition reactions.10 Thus, when using 1.3 equiv of 2 at 21 °C under a 15 kbar pressure (entry 1) we gratifyingly observed an 83% conversion into isoxazolidines 4c and 7c (regioisomeric ratio 4c/7c 13:1, diastereomeric ratio [dr] cis-4c/trans-4c 7:2). Nitrone 6b gave only 56% conversion under the same reaction conditions (entry 4), with similar regio- and diastereoisomeric ratios. When increasing the concentration of alkene 2, 93 and 75% conversions into compounds 4c and 4b were obtained, respectively (entries 2 and 5). Finally, an increase of the temperature to 50 °C gave nearly full conversion into the desired cis- and *trans*-products **4c** and **4b** (entries 3 and 6).

Azoxybenzene¹¹ **8** was formed in all reactions as a side product (Scheme 2) and could not be separated in any case from *trans-4* by column chromatography. Thus, we used galvinoxyl to prevent the formation of compound **8**. We were pleased to see that when using three equiv of alkene **2** at 50 °C, in the presence of 1–3 mol % of galvinoxyl as radical scavenger (entries 7 and 8), not only full conversion into the desired product **4b** was obtained, but also the formation of the azoxy compound **8** was fully suppressed.

Furthermore, our reactions gave the *exo*-products as the major diastereoisomers (the *cis*-isomers), showing a 3:1 diastereomeric ratio (entries 7 and 8). Having these results in hand, the scope of nitrones in this 1,3-dipolar cycloaddition was examined by employing the conditions shown in entry 7. We first synthesized a total of eighteen nitrones (6a-r) with phenyl (containing both electron-donating and electron-withdrawing groups in the 2-, 3- and 4- positions), heterocyclic and carbamoyl substituents in excellent yields (see SI). Then, we studied the scope of the 1,3-dipolar cycloaddition reactions between alkene 2 and nitrones 6a-r (Table 3).

As shown in Table 3, high and excellent yields (total yields) were observed for compounds 4a-c, 4f-i, 4l and 4n. In addition, in most of the cases the major product (cis-4) was separated from the other isomers by column chromatography in good yields (cis-4a-c, cis-4f-j, cis-4m and cis-4q). Unfortunately, in a few cases the isomers 4 were obtained as a mixture that could not be separated (4d,e, 4k,l and 4n). For compounds 4o and 4p, the trans-4 isomer and the corresponding regioisomers 7 were present as a mixture. The assignment of the cis- and transisomers was performed by 2D NMR studies (NOESY).

Table 2. Optimization process for the 1,3-dipolar cycloaddition reaction of nitrones 6 with alkene 2.

En- try	Nitrone	R	equiv)	t (°C)	Scavenger	cis-4/trans-4	8 ^a	Conversion ^a (yield) ^b
1	6с	4-MeC ₆ H ₄	1.3	21	-	76:22	5%	83% (41%)°
2	6с	4-MeC ₆ H ₄	3	21	-	79:21	22%	93% (-)
3	6с	4-MeC ₆ H ₄	3	50	-	76:24	6%	96% (85%) ^c
4	6b	4-FC ₆ H ₄	1.3	21	-	79:21	7%	56% (35%) ^c
5	6b	4-FC ₆ H ₄	3	21	-	79:21	38%	75% (-)
6	6b	4-FC ₆ H ₄	3	50	-	77:23	17%	91% (79%) ^c
7	6b	4-FC ₆ H ₄	3	50	Galvinoxyl (3%)	76:24	о%	100% (78%)
8	6b	4-FC ₆ H ₄	3	50	Galvinoxyl (1%)	76:24	1%	100% (-)

^aCalculated by integration of the ¹H NMR signals of the crude mixtures. ^bIsolated after column chromatography. ^ctrans-Isomer contaminated with 7

Table 3. Scope of the high-pressure-promoted 1,3-dipolar cycloaddition reaction.

^aCombined yield. ^bCalculated by ¹H NMR of the crude. ^cGalvinoxyl was not used in the reaction. ^dcis-**40,p**/trans-**40,p**/(mixture of isomers **7**).

The diastereoselectivity was lower for compounds **40** and **4p**, which contained an indole and a pyrrole substituent, respectively. In these cases, a mixture of *cis*- and *trans*-diastereoisomers was obtained approximately in a 3:2 ratio. In addition, for compounds **40** and **4p**, a 7:3 ratio of a mixture *cis*-**7** and *trans*-**7** from the regioisomer **7** was observed. For these two compounds (**40** and **4p**), the total yields were significantly lower because of incomplete conversion into the products and purification problems. Finally, when using a non-aromatic nitrone, the final benzyl amide isoxazolidine **4r** was synthesized in 60% yield.

To evaluate the apparent regioselectivity of the cycloaddition, high-level DFT calculations were carried out at the BP86/TZ2P¹⁴ level, using the ADF program.¹⁵ Tetrahydrofuran was simulated using the COSMO solvation model.¹⁶ Thermochemical corrections were computed using the temperature and pressure under which the experiments were performed (see SI for computational details).

Scheme 3. Formation of compounds 10 and 11.

We focused on understanding the regioselectivity of the cycloaddition between a simple model nitrone **9** with **2** (Scheme 3). This reaction proceeds in a concerted and asynchronous manner with a Gibbs free energy barrier of **21.3** and **24.0** kcal mol⁻¹ for **10** and **11**, respectively (Table 4). The $\Delta\Delta G^{\ddagger}$ of **2.7** kcal mol⁻¹ facilitates a high degree of regioselectivity, resulting in a calculated product ratio of **98:2** for **10/11**. Furthermore, the experimentally observed regioisomer **10** is more stable than **11** ($\Delta\Delta G_{\text{rxn}} = 3.9$ kcal mol⁻¹). The calculated product ratio for the model nitrone cycloaddition is in line with experimentally observed regioselectivity of reactions involving the majority of the nitrones **6**.

Table 4. Computed activation barriers, reaction energies (kcal mol⁻¹), and product distribution computed at the COSMO(THF)-BP86/TZ₂P level of theo-

Compound	$\Delta E^{\ddagger} (\Delta G^{\ddagger})$	$\Delta E_{\rm rxn} (\Delta G_{\rm rxn})$	Product ratio ^a
10	12.8 (21.3)	-17.6 (-6.1)	98
11	15.0 (24.0)	-14.3 (-2.2)	2

^aCalculated at 50 °C and 15 kbar based on the $\Delta\Delta G^{\ddagger}$ between 10 and 11 (see SI for details).

Insight into why regioisomer **10** is favored over the other, **11**, is provided by the activation strain model (ASM)¹⁷ (also known as the distortion-interaction model).¹⁸ In this framework, the potential energy surface $\Delta E(\zeta)$ is decomposed along the reaction coordinate ζ into the strain $\Delta E_{\text{strain}}(\zeta)$ associated with deforming the individual reactants plus the actual interaction $\Delta E_{\text{int}}(\zeta)$ between the deformed reactants.

$$\Delta E^{\ddagger}(\zeta) = \Delta E_{\text{strain}}(\zeta) + \Delta E_{\text{int}}(\zeta) \tag{1}$$

The $\Delta E_{\rm int}(\zeta)$ between the reactants is further analyzed by an energy decomposition analysis (EDA) in the conceptual framework provided by the Kohn–Sham molecular orbital (KS-MO) model¹⁹ and is decomposed into three physically meaningful terms:

$$\Delta E_{\rm int}(\zeta) = \Delta V_{\rm elstat}(\zeta) + \Delta E_{\rm Pauli}(\zeta) + \Delta E_{\rm oi}(\zeta) \tag{2}$$

The $\Delta V_{\rm elstat}(\zeta)$ term corresponds to the classical electrostatic interaction between unperturbed charge distributions, $\Delta E_{\rm Pauli}(\zeta)$ is responsible for any steric repulsion, and the $\Delta E_{\rm oi}(\zeta)$ accounts for charge transfer (HOMO–LUMO interactions) and polarization.

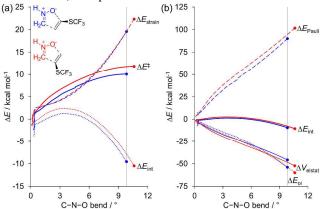


Figure 2. (a) Activation strain and (b) energy decomposition analyses of the cycloaddition reactions of nitrone 9 with dieno-

phile 2 up to their respective TS (indicated by the dot) computed at the BP86/TZ2P level.

Applying the ASM along the reaction coordinate defined by the bending of the 1,3-dipole, it is revealed that reactivity differences in the reaction between 9 and 2 leading to 10 (blue curve) and 11 (red curve) are a result of $\Delta E_{\rm int}$ (Figure 2a). $\Delta E_{\rm strain}$ remains nearly constant for both reactions along the reaction coordinate. Next, the EDA terms were analyzed and the $\Delta E_{\rm Pauli}$ dominates and is chiefly responsible for the difference in the interaction energies (Figure 2b). The more favorable $\Delta V_{\rm elstat}$ and $\Delta E_{\rm oi}$ curves associated with the reaction leading to 11 are unable to overcome for increased steric repulsion associated with this approach. These results highlight the fact that the reaction results from the least hindered approach, leaving the SCF₃ group far away from the CH₂ group. See SI for an ASA and EDA analysis on 6m and 6p.

In summary, we have developed the synthesis of a new class of 5-[(trifluoromethyl)sulfanyl]isoxazolidines. The reactions utilized for their synthesis were high-pressure-promoted 1,3-dipolar cycloaddition reactions between (trifluoromethyl) vinyl sulfide 2 and various easily synthesized nitrones. The results of our DFT computations are in harmony with experimental results and were leveraged to show that the high regioselectivity of these cycloaddition reactions originates from minimizing steric repulsion.

EXPERIMENTAL SECTION

General information. Reagents were obtained from commercial suppliers and were used without purification. Standard syringe techniques were applied for the transfer of dry solvents and air- or moisture-sensitive reagents. Tetrahydrofuran was used as a solvent after distillation. Potassium tert-butoxide was used as a 1.0 M solution in tetrahydrofuran. The high-pressure experiments were run in a high-pressure apparatus equipped with a one-wall-piston cylinder for pressures up to 15 kbar (1.5 GPa).Reactions were performed in 1-1.5-mL PTFE ampules closed by screwed stainless steel stoppers. These ampules were inserted into the high-pressure vessel filled with 80-100 petroleum ether and transmission medium. Reactions were followed, and R_F values were obtained, using thin layer chromatography (TLC) on silica gel-coated plates (Merck 60 F254) with the indicated solvent mixture. Detection was performed with UV light, and/or by charring at ca. 150 °C after dipping into a solution of KMnO₄. Infrared spectra were recorded on an IR-ATR Bruker TENSOR 27 spectrometer. High-resolution mass spectra were recorded on a JEOL AccuTOF (ESI) or a MAT900 (EI, CI, and ESI) GC-TOF. NMR spectra were recorded at 298 K on a Varian Inova 400 (400 MHz), Bruker Avance III 400 MHz or Bruker Avance III 500 MHz spectrometer in the solvent indicated. Chemical shifts are given in parts per million (ppm) with respect to tetramethylsilane (o.oo ppm) as internal standard for 'H NMR; and CDCl₃ (77.16 ppm) as internal standard for ¹³C NMR. Coupling constants are reported as J values in hertz (Hz). H NMR data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, dd = doublet of doublets, dt = doublet of triplets, dtdq = doublet of triplet of doublet of quartets, dq = doublet of quartets, ddd = doublet of doublet of doublets, ddt = doublet of doublets of triplets, dddd= doublet of doublets of doublets of doublets, ddquint = doublet of doublet of quintets, dddquint = doublet of doublet of quintets, quint = quintet, t = triplet, td = triplet of doublets, tt = triplet of triplets m = multiplet, b = broad), coupling constants (Hz), integration and assignment. Compounds were fully characterized by 1H, 13C, 2D gDQCOSY, gHSQC, gHMBC, NOESY and HOESY spectra. The characterization and assignment of isoxazolidines 4a-r were done either from isolated compounds or mixtures of isomers. Column or flash chromatography was carried out using ACROS silica gel (0.035-0.070 mm, and 60 Å pore diameter).

General Procedure for the Synthesis of (Trifluoromethyl) Vinyl Sulfide 2. (2-Chloroethyl) (trifluoromethyl) sulfide (1.0 equiv) was dis-

solved in distilled THF (0.40 M) under inert atmosphere and cooled down to 0 °C. Then, KO t Bu (1.0 equiv, 1.0 M solution in THF) was added slowly and the mixture was warmed up to 21 °C for 90 minutes. This solution was used for the cycloaddition reactions of alkene 2. ¹H NMR [400 MHz, δ (ppm), THF- d_8]: 6.54 (dd, J = 16.5, 9.4 Hz, 1 H), 5.75–5.66 (m, 2 H). 13 C NMR [101 MHz, δ (ppm), THF- d_8]: 129.8 (q, J = 306.5 Hz), 124.4 (q, J = 1.0 Hz), 121.3 (q, J = 3.2 Hz). 19 F NMR [377 MHz, δ (ppm), THF- d_8]: -43.6.7

General Procedure for the Synthesis of Hydroxylamines 5b and 5c. The corresponding nitrobenzene (12b or 12c; 1 equiv) was added to a flame-dried Schlenk tube containing a suspension of Pd/C (0.25 equiv) in dry THF (10 mL). The mixture was cooled to 0 °C and $\rm N_2H_4H_2O$ (2.0 equiv) was added dropwise. The reaction was carefully monitored by TLC until the starting material disappeared. The crude mixture was diluted with THF (10 mL) and filtered over a pad of diatomaceous earth. The solvent was evaporated in vacuo and the crude mixture was purified by column chromatography using $\rm CH_2Cl_2$ under a nitrogen atmosphere.

N-[3-(Trifluoromethyl)phenyl]hydroxylamine (*5b*). According to the general procedure, the reaction of 1-nitro-3-(trifluoromethyl)benzene 12b (1.0 g, 5.23 mmol) afforded hydroxylamine 5b (885 mg, 5.00 mmol) as a pale yellow oil. 1 H NMR [400 MHz, δ (ppm), CDCl $_3$]: 7.41–7.34 (m, 1 H), 7.28–7.26 (m, 1 H), 7.23–7.19 (m, 1 H), 7.15–7.10 (m, 1 H), 6.74–4.98 (bs, 2 H). R_F : 0.31 (CH $_2$ Cl $_2$). Yield: 95%. NMR spectral data are in accordance with previously reported data.

N-(3,5-Dichlorophenyl)hydroxylamine (5c). According to the general procedure, the reaction of 1,3-dichloro-5-nitrobenzene 12c (1.0 g, 5.22 mmol) afforded hydroxylamine 5c (827 mg, 4.65 mmol) as a yellow solid. ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 6.93 (t, J = 1.8 Hz, 1 H), 6.88 (d, J = 1.8 Hz, 2 H), 6.79 (bs, 1 H), 5.31 (bs, 1 H). $R_{\rm F}$: 0.33 (CH₂Cl₂). Yield: 89%. NMR spectral data are in accordance with previously reported data.²⁰

General Procedure for the Synthesis of Isoxazolidines 3a–c. A solution of the corresponding hydroxylamine 5 (1 equiv) in THF (0.22 M) was added to a solution of paraformaldehyde (3 equiv) in THF (0.22 M) at 0 °C. Then, a cooled solution (0 °C) of alkene 2 (6.0 equiv) was subsequently added to the solution containing paraformaldehyde and the hydroxylamine. Finally, a solution of $In(OTf)_3$ (0.06 equiv) in dry THF (44 mM) was added to the reaction mixture. The reaction mixture was warmed up to 21 °C and stirred for 16 hours. Then, the reaction mixture was quenched with a saturated aqueous solution of NaHCO $_3$ (10 mL) and the aqueous layer was extracted with AcOEt (2 × 10 mL). The combined organic layers were dried over MgSO $_4$, filtered off and concentrated in vacuo. The crude mixture was purified by column chromatography using the indicated eluent to afford isoxazolines 3a–c.

2-Phenyl-5-[(trifluoromethyl)sufanyl]isoxazolidine (3a). According to the general procedure, the reaction of *N*-phenylhydroxylamine 5a (17.8 mg, 0.163 mmol) afforded isoxazolidine 3a (15.3 mg, 0.163 mmol) as a brown solid, after column chromatography (heptane/AcOEt, 19:1 \rightarrow 2:1). H NMR [500 MHz, δ (ppm), CDCl₃]: 7.34–7.27 (m, 2 H), 7.08–7.05 (m, 2 H), 7.03 (tt, J = 7.3, 1.1 Hz, 1 H), 5.98 (dd, J = 8.1, 4.3 Hz, 1 H), 3.85–3.71 (m, 1 H), 3.24 (ddd, J = 9.3, 8.2, 7.6 Hz, 1 H), 2.91 (dtdq, J = 13.2, 8.2, 4.0, 0.8 Hz, 1 H), 2.48–2.28 (m, 1 H). CNMR [126 MHz, δ (ppm), CDCl₃]: 149.8, 130.1 (q, J = 307.7 Hz), 129.0, 123.0, 116.1, 81.1 (q, J = 2.2 Hz), 52.0, 36.0 (q, J = 1.1 Hz). PNMR [471 MHz, δ (ppm), CDCl₃]: -39.8. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 2860, 1599, 1491, 1295, 1109, 752, 692. HRMS (EI) m/z: [M $^{+1}$] calcd for $C_{10}H_{10}F_3$ NOS 249.0435; found 249.0458. R_F : 0.56 (heptane/AcOEt, 4:1). Yield: 38%.

2-[3-(Trifluoromethyl)phenyl]-5-[(trifluoromethyl)sulfanyl]isoxazolidine (3b). According to the general procedure, the reaction of hydroxylamine 5b (56.2 mg, 0.318 mmol) afforded isoxazolidine 3b (23.5 mg, 0.071 mmol) as a colorless oil, after column chromatography (heptane/AcOEt/Et₅N, 12.2:1:0.13). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.41 (ddquint, J = 8.2, 7.2, 0.8 Hz, 1 H), 7.29–7.25 (m, 2 H), 7.23–7.19 (m, 1 H), 6.01 (dd, J = 8.0, 4.2 Hz, 1 H), 3.83 (ddd, J = 9.1, 8.2, 4.3 Hz, 1 H), 3.30 (ddd, J = 9.1, 8.5, 7.4 Hz, 1 H), 3.02–2.90 (m, 1 H), 2.48–2.38 (m, 1 H). ³C NMR [126 MHz, δ (ppm), CDCl₃]: 150.1, 131.3 (q, J = 32.3 Hz), 129.8 (q, J = 307.9 Hz), 129.4, 124.0 (q, J = 272.4 Hz), 119.2 (q, J = 3.8 Hz), 119.3 (q, J = 4.0 Hz), 81.1 (q, J = 2.4 Hz), 51.7, 35.8 (q, J = 1.2 Hz). ¹°F NMR [471 MHz, δ (ppm), CDCl₃]: -39.9, -62.8. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 2956, 2925, 2855, 1593, 1328, 1120, 795, 698. HRMS (EI) m/z: [M^{++}] calcd for $C_{11}M_{12}F_{01}N_{12}F_{01}$ (ond 317.0325. R_{F} : 0.44 (heptane/AcOEt, 4:1). Yield: 22%.

2-(3,5-Dichlorophenyl)-5-[(trifluoromethyl)sulfanyl]isoxazolidine (3c). According to the general procedure, the reaction of hydroxylamine 5c (29.3 mg, 0.166 mmol) afforded isoxazolidine 3c (10.33 mg, 0.033 mmol) as a green oil, after column chromatography (heptane/AcOEt/Et₃N, 12.2:1:0.13). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 6.99 (t, J = 1.8 Hz, 1 H), 6.91 (d, J = 1.8 Hz, 2 H), 5.98 (dd, J = 8.0, 4.1 Hz, 1 H), 3.75 (ddd, J = 8.9, 8.1, 4.4 Hz, 1 H), 3.27 (ddd, J = 9.2, 8.6, 7.1 Hz, 1 H), 3.01–2.87 (m, 1 H), 2.47–2.36 (m, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 151.6, 135.4, 129.7 (q, J = 307.9 Hz), 122.5, 114.2, 81.2 (q, J = 2.6 Hz), 51.6, 35.8 (q, J = 1.1 Hz). FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 2924, 2850, 1587, 1260, 1115, 1051, 796. HRMS (EI) m/z: [M $^{*+}$] calcd for $C_{10}H_8$ Cl₂ F_3 NOS 316.9656; found 316.9657. R_F : 0.45 (heptane/AcOEt, 4:1). Yield: 20%.

General Procedure for the Synthesis of Isoxazolidines 3d and 3e. A solution of hydroxylamine hydrochloride 5d or 5e (1 equiv) in THF (0.22 M) and Et₃N (1equiv) was added to a solution of paraformaldehyde (3 equiv) in THF (0.22 M) at 0 °C. Then, a cooled solution (0 °C) of alkene 2 (6.0 equiv) was subsequently added to the solution containing paraformaldehyde and the hydroxylamine. Finally, a solution of $In(OTf)_3$ (0.06 equiv) in dry THF (22 mM) was added to the reaction mixture. The reaction mixture was warmed up to 21 °C and stirred for 16 hours. Then, the reaction mixture was quenched with a saturated aqueous solution of $NaHCO_3$ (10 mL) and the aqueous layer was extracted with AcOEt (2 × 10 mL). The combined organic layers were dried over MgSO₄, filtered off and concentrated in vacuo. The crude mixture was purified by column chromatography using the indicated eluent to afford isoxazolines 3d and 3e.

2-Benzyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (3d). According to the general procedure, the reaction of hydroxylamine hydrochloride 5d (26.8 mg, 0.169 mmol) afforded isoxazolidine 3d (13.2 mg, 0.050 mmol) as a colorless oil, after column chromatography (heptane/AcOEt/Et₃N, 9:10.1). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.40–7.36 (m, 2 H), 7.35–7.30 (m, 2 H), 7.30–7.27 (m, 1 H), 5.86 (dd, J = 8.3, 4.4 Hz, 1 H), 4.35–3.82 (m, 2 H), 3.34–3.11 (m, 1 H), 3.11–2.40 (m, 1 H), 2.83 (dtd, J = 11.9, 8.0, 3.3 Hz, 1 H), 2.40–2.18 (m, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 136.2, 130.3 (q, J = 307.9 Hz), 128.9, 128.4, 127.5, 81.3 (q, J = 2.4 Hz), 61.7, 53.3, 36.5. ¹⁹F NMR [471 MHz, δ (ppm), CDCl₃]: –39.9. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 2849, 1606, 1497, 1455, 1117, 755, 698. HRMS (EI) m/z: [M^{**}] calcd for C₁₁H₁₂F₃NOS 263.0592; found 263.0604. R_F : 0.41 (heptane/AcOEt, 4:1). Yield: 30%.

2-Cyclohexyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (3e). According to the general procedure, the reaction of hydroxylamine hydrochloride 5e (23.1 mg, 0.152 mmol) afforded isoxazolidine 3e (20.4 mg, 0.080 mmol) as a colorless oil, after column chromatography (heptane/AcOEt, 19.1 $\xrightarrow{-5}$:1). H NMR [400 MHz, δ (ppm), CDCl₃]: 5.82 (dd, J = 8.1, 4.2 Hz, 1 H), 3.43–3.13 (m, 1 H), 2.85–2.73 (m, 1 H), 2.68–2.50 (m, 1 H), 2.68–2.18 (m, 1 H), 2.31–2.18 (m, 1 H), 1.83–1.69 (m, 2 H), 1.66–1.52 (m, 2 H), 1.39–1.13 (m, 6 H). Hz, δ (ppm), CDCl₃]: 130.4 (q, J = 308.1 Hz), 80.8 (q, J = 2.2 Hz), 65.8, 51.5, 36.6, 26.0, 24.8, 24.4. FN NMR [377 MHz, δ (ppm), CDCl₃]: –40.0. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 2924, 2854, 1728, 1455, 1258, 1082, 1009, 788. $R_{\rm F}$: 0.44 (heptane/AcOEt, 9.1). Yield: 53%.

General Procedure A for the Syntheses of Nitrones 6d–g, 6i, 6j, 6l–r. The corresponding aldehyde (1.0 equiv, dissolved in 1.5 mL of dry EtOH for solid compounds) was added to a solution of *N*-phenylhydroxylamine (1.05 equiv) in dry EtOH (1.0 mL) at 21 °C under a nitrogen atmosphere. The reaction mixture was stirred for 16–21 h and then the solvent was removed under vacuo. The crude mixture was purified by column chromatography using the indicated eluent to afford nitrones 6d–g, 6i, 6j, 6l–r.

General Procedure B for the Syntheses of Nitrones 6a-c, 6h and 6k. The corresponding aldehyde (1.0 equiv) was added to a solution of *N*-phenylhydroxylamine (1.0 equiv) in dry EtOH (1.0 mL) and the flask was wrapped with aluminum foil. The reaction mixture was stirred at 21 °C for 16-21 h and then the solvent was removed under vacuo. The crude mixture was purified by column chromatography using the indicated eluent to afford nitrones 6a-c, 6h and 6k.

(*Z*)-*N*,*1*-*Diphenylmethanimine oxide* (*6a*). According to the general procedure B, the reaction of benzaldehyde (47.0 μ L, 0.458 mmol) with *N*-phenylhydroxylamine (50 mg, 0.458 mmol) afforded nitrone *6a* (71 mg, 0.360 mmol) as a white solid, after column chromatography (heptane/AcOEt, 5:1 \rightarrow 1:1). H NMR [400 MHz, δ (ppm), CDCl₃]: 8.44–8.36 (m, 2 H), 7.92 (s, 1 H), 7.81–7.74 (m, 2 H), 7.53–7.43 (m, 6 H). Yield: 79%.

(*Z*)-1-(4-Fluorophenyl)-*N*-phenylmethanimine oxide (**6b**).²² According to the general procedure B, the reaction of 4-fluorobenzaldehyde (98.0 μ L, 0.916 mmol) with *N*-phenylhydroxylamine (100 mg, 0.916 mmol) afforded nitrone **6b** (178.5 mg, 0.829 mmol) as a white solid. ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 8.49–8.42 (m, 2 H), 7.91 (s, 1 H), 7.80–7.75 (m, 2 H), 7.55–7.44 (m, 3 H), 7.23–7.14 (m, 2 H). Yield: 91%.

(*Z*)-*N*-*Phenyl-1*-(*4*-tolyl)methanimine oxide (*6c*). ²² According to the general procedure B, the reaction of 4-methylbenzaldehyde (163.0 μL, 1.375 mmol) with *N*-phenylhydroxylamine (127 mg, 1.375 mmol) afforded nitrone **6c** (267.2 mg, 1.26 mmol) as yellow crystals, after column chromatography (heptane/AcOEt, 5:1 \rightarrow 1:1). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 8.34–8.27 (m, 2 H), 7.89 (s, 1 H), 7.81–7.75 (m, 2 H), 7.51–7.43 (m, 3 H), 7.33–7.28 (m, 2 H), 2.42 (s, 3 H). Yield: 92%.

(*Z*)-*N*-*Phenyl-1-[4-(trifluoromethyl)phenyl]methanimine oxide* (*6d*).²³ According to the general procedure A, the reaction of 4-(trifluoromethyl)benzaldehyde (91 mg, 0.523 mmol) with *N*-phenylhydroxylamine (60 mg, 0.549 mmol) afforded nitrone *6d* (139 mg, 0.523 mmol) as a yellow solid. ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 8.54–8.48 (m, 2 H), 8.00 (s, 1 H), 7.83–7.76 (m, 2 H), 7.76–7.70 (m, 2 H), 7.55–7.47 (m, 3 H). Yield: 99%.

(*Z*)-1-[4-(Pentafluoro- $λ^6$ -sulfanyl)phenyl]-*N*-phenylmethanimine oxide (6e). According to the general procedure A, the reaction of 4-(pentafluoro- $λ^6$ -sulfanyl)benzaldehyde (120 mg, 0.517 mmol) with *N*-phenylhydroxylamine (59 mg, 0.543 mmol) afforded nitrone 6e (163.3 mg, 0.505 mmol) as a white-yellow solid. 'H NMR [400 MHz, δ (ppm), CDCl₃]: 8.52-8.45 (m, 2 H), 8.00 (s, 1 H), 7.89-7.81 (m, 2 H), 7.81-7.74 (m, 2 H), 7.58-7.46 (m, 3 H). ¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 154.5, 149.1, 133.6, 132.5, 130.7, 129.5, 128.9, 126.5 (quint, *J* = 4.4 Hz), 121.9. FTIR [\bar{v} (cm $^{-1}$)]: 3057, 1594, 1573, 1074, 821, 810, 765. HRMS (ESI-TOF) m/z: [M + H] $^+$ calcd for C₁₃H₁₁F₃NOS 324.0476; found 324.0482. R_F : 0.45 (CH₂Cl₂). Yield: 98%.

(*Z*)-1-(4-Methoxyphenyl)-N-phenylmethanimine oxide (*6f*).²⁴ According to the general procedure A, the reaction of 4-methoxybenzaldehyde (0.063 mL, 0.514 mmol) with N-phenylhydroxylamine (59 mg, 0.540 mmol) afforded nitrone *6f* (110 mg, 0.484 mmol) as a yellow-brown solid, after column chromatography (CH₂Cl₂ \neg CH₂Cl₂/MeOH, 10:0.2). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 8.44–8.36 (m, 2 H), 7.84 (s, 1 H), 7.79–7.72 (m, 2 H), 7.50–7.37 (m, 3 H), 7.01–6.93 (m, 2 H), 3.86 (s, 3 H). Yield: 94%.

(*Z*)-*i*-(3-*Fluorophenyl*)-*N*-*phenylmethanimine* oxide (**6g**). ²⁵ According to the general procedure A, the reaction of 3-fluorobenzaldehyde (o.o60 mL, 0.564 mmol) with *N*-phenylhydroxylamine (62 mg, 0.564 mmol) afforded nitrone **6g** (18 mg, 0.548 mmol) as a light brown solid, after column chromatography (heptane/CH₂Cl₂, 1:4 \rightarrow CH₂Cl₂/MeOH, 10:1). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 8.44 (ddd, J = 10.6, 2.6, 1.6 Hz, 1 H), 7.94 (s, 1 H), 7.90 (ddt, J = 8.1, 1.6, 0.7 Hz, 1 H), 7.80–7.73 (m, 2 H), 7.54–7.47 (m, 3 H), 7.44 (td, J = 8.1, 5.9 Hz, 1 H), 7.17 (tdd, J = 8.1, 2.6, 1.0 Hz, 1 H). ¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 162.8 (d, J = 245.5 Hz), 149.1, 133.5, 132.6 (d, J = 9.1 Hz), 130.4, 130.1 (d, J = 8.4 Hz), 129.4, 125.1 (d, J = 3.0 Hz), 121.8, 118.0 (d, J = 21.7 Hz), 115.3 (d, J = 24.7 Hz). Yield: 97%.

(*Z*)-*N*-*Phenyl-1*-(*3*-*tolyl*)*methanimine oxide* (*6h*). ²⁵ According to the general procedure B, the reaction of 3-methylbenzaldehyde (42 μL, 0.458 mmol) with *N*-phenylhydroxylamine (50 mg, 0.458 mmol) afforded nitrone **6h** (95.3 mg, 0.451 mmol) as a yellow oil, after column chromatography (heptane/AcOEt, 5:1 \rightarrow t:1). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 8.32 (tq, *J* = 1.8, 0.7 Hz, 1 H), 8.12 (dddquint, *J* = 7.8, 1.8, 1.2, 0.7 Hz, 1 H), 7.89 (s, 1 H), 7.81–7.75 (m, 2 H), 7.53–7.44 (m, 3 H), 7.38 (t, *J* = 7.8 Hz, 1 H), 7.32–7.27 (m, 1 H), 2.43 (s, 3 H). ¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 149.3, 138.5, 134.9, 132.0, 130.8, 130.0, 129.4, 129.3, 128.7, 126.6, 121.9, 21.6. FTIR [\bar{v} (cm $^{-1}$)]: 3092, 2963, 2920, 1652, 1590, 1459, 1088, 781, 692. HRMS (ESI-TOF) m/z: [M + H] $^{+}$ calcd for C₁₄H₁₄NO 212.1070; found 212.1085. Yield: 98%.

(*Z*)-1-[3-(Methoxycarbonyl)phenyl]-*N*-phenylmethanimine oxide (**6i**). According to the general procedure A, the reaction of methyl 3-formylbenzoate (90 mg, 0.548 mmol) with *N*-phenylhydroxylamine (63 mg, 0.576 mmol) afforded nitrone **6i** (112 mg, 0.439 mmol) as a yellow oil, after column chromatography (CH₂Cl₂ \rightarrow CH₂Cl₂/MeOH, 10:1). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 8.88 (dddd, J = 7.9, 1.7, 1.2, 0.5 Hz, 1 H), 8.80 (tt, J = 1.7, 0.5 Hz, 1 H), 8.13 (ddd, J = 7.9, 1.7, 1.2 Hz, 1 H), 8.01 (d, J = 0.5

Hz, 1 H), 7.83–7.75 (m, 2 H), 7.59 (tt, J = 7.9, 0.5 Hz, 1 H), 7.54–7.46 (m, 3 H), 3.95 (s, 3 H). 13 C NMR [101 MHz, δ (ppm), CDCl₃]: 166.5, 149.0, 133.6, 132.6, 131.6, 131.0, 130.6, 130.4, 130.2, 129.3, 129.0, 121.7, 52.4. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 3064, 2952, 1718, 1434, 1278, 1187, 1072, 912, 729, 684. HRMS (ESI-TOF) m/z: [M + H] $^+$ calcd for C_{15} H₁₄NO₃ 256.0968; found 256.0984. R_F : 0.07 (CH₂Cl₂). Yield: 80%.

(*Z*)-1-(3-Methoxyphenyl)-*N*-phenylmethanimine oxide (*6j*). According to the general procedure A, the reaction of 3-methoxybenzaldehyde (o.o63 mL, 0.514 mmol) with *N*-phenylhydroxylamine (59 mg, 0.540 mmol) afforded nitrone *6j* (115 mg, 0.506 mmol) as a yellow oil, after column chromatography (CH₂Cl₂ \rightarrow CH₂Cl₂/MeOH, 10:0.2). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 8.38 (dd, J = 2.7, 1.5 Hz, 1 H), 7.92 (s, 1 H), 7.81–7.75 (m, 2 H), 7.66 (dddd, J = 7.7, 1.5, 1.0, 0.5 Hz, 1 H), 7.52–7.44 (m, 3 H), 7.38 (dd, J = 8.3, 7.7 Hz, 1 H), 7.05 (ddd, J = 8.3, 2.7, 1.0 Hz, 1 H), 3.89 (s, 3 H). ¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 159.7, 149.1, 134.7, 131.9, 130.0, 129.5, 129.2, 122.3, 121.8, 118.1, 112.7, 55.4. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 3060, 2834, 1553, 1270, 1025, 769, 684. HRMS (ESI-TOF) m/z: [M + Na] $^{+}$ calcd for C₁₄H₁₃NO₂Na 250.0839; found 250.0857. R_F : 0.06 (CH₂Cl₂). Yield: 98%.

(*Z*)-*N*-*Phenyl-1-[3-(trifluoromethyl)phenyl]methanimine oxide* (*6k*).²⁵ According to the general procedure B, the reaction of 3-(trifluoromethyl)benzaldehyde (61 μL, 0.458 mmol) with *N*-phenylhydroxylamine (50 mg, 0.458 mmol) afforded nitrone **6k** (116 mg, 0.437 mmol) as a white solid, after column chromatography (heptane/AcOEt, 5:1 \neg t:1). 'H NMR [400 MHz, δ (ppm), CDCl₃]: 8.70 (dq, *J* = 2.3, 1.0 Hz, 1 H), 8.59 (dddd, *J* = 7.9, 1.7, 1.2, 0.6 Hz, 1 H), 8.01 (s, 1 H), 7.84-7.75 (m, 2 H), 7.72 (dq, *J* = 8.5, 1.1 Hz, 1 H), 7.61 (t, *J* = 7.9 Hz, 1 H), 7.55-7.48 (m, 3 H). ¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 149.1, 133.1, 131.8 (q, *J* = 1.0 Hz), 131.5, 131.5, 130.5, 129.5, 129.3, 127.3 (q, *J* = 3.7 Hz), 125.7 (q, *J* = 3.9 Hz), 122.6, 121.9. FTIR [\overline{v} (cm $^{-1}$)]: 3124, 1604, 1330, 1120, 1068, 770, 692. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₄H₁₁F₃NO 266.0787; found 266.0799. R_F : 0.35 (CH₂Cl₂). Yield: 95%.

(Z)-N-Phenyl-1-(2-tolyl)methanimine oxide (61). 26 According to the general procedure A, the reaction of 2-methylbenzaldehyde (0.061 mL, 0.524 mmol) with N-phenylhydroxylamine (60 mg, 0.551 mmol) afforded nitrone 61 (107 mg, 0.508 mmol) as a yellow-brown solid, after column chromatography (CH $_2$ Cl $_2$ -CH $_2$ Cl $_2$ /MeOH, 10:0.2). 1 H NMR [400 MHz, δ (ppm), CDCl $_3$]: 9.42–9.32 (m, 1 H), 8.07 (s, 1 H), 7.81–7.73 (m, 2 H), 7.53–7.44 (m, 3 H), 7.39–7.33 (m, 2 H), 7.28–7.23 (m, 1 H), 2.46 (s, 3 H). Yield: 97%.

(*Z*)-*1*-(2-*Methoxyphenyl*)-*N*-*phenylmethanimine* oxide (*6m*). ²⁵ According to the general procedure A, the reaction of 2-methoxybenzaldehyde (70 mg, 0.514 mmol) with *N*-phenylhydroxylamine (59 mg, 0.540 mmol) afforded nitrone *6m* (106 mg, 0.464 mmol) as an orange-brown solid, after column chromatography (CH₂Cl₂ —CH₂Cl₂/MeOH, 10:0.2). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 9.48 (dd, J = 7.9, 1.7 Hz, 1 H), 8.40 (s, 1 H), 7.85–7.73 (m, 2 H), 7.53–7.39 (m, 4 H), 7.13–7.06 (m, 1 H), 6.93 (dd, J = 8.4, 1.1 Hz, 1 H), 3.89 (s, 3 H). ¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 157.6, 149.8, 132.3, 129.8, 129.4, 129.2, 128.9, 122.0, 121.0, 120.1, 110.0, 55.8. FTIR [$\bar{\nu}$ (cm⁻¹)]: 3058, 1577, 1288, 1046, 746, 691, 611. R_F : 0.07 (CH₂Cl₂), Yield: 90%.

(*Z*)-*N*-*Phenyl-1*-(thiophen-3-yl)methanimine oxide (*6n*). ²⁷ According to the general procedure A, the reaction of thiophene-3-carbaldehyde (o.o47 mL, o.535 mmol) with *N*-phenylhydroxylamine (61 mg, o.562 mmol) afforded nitrone *6n* (109 mg, o.535 mmol) as a white-yellow solid, after column chromatography (heptane/CH₂Cl₂, 1:1 — heptane/CH₂Cl₂, o:1). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 9.16 (ddd, J = 3.1, 1.2, 0.7 Hz, 1 H), 8.06 (d, J = 0.6 Hz, 1 H), 7.82–7.76 (m, 2 H), 7.52–7.46 (m, 3 H), 7.45 (dd, J = 5.2, 1.2 Hz, 1 H), 7.39 (dd, J = 5.1, 3.0 Hz, 1 H). Yield: 99%.

(*Z*)-1-(1*H*-Indol-2-yl)-*N*-phenylmethanimine oxide (**6o**). According to the general procedure A, the reaction of 1*H*-indole-2-carbaldehyde (8o mg, 0.551 mmol) with *N*-phenylhydroxylamine (63 mg, 0.579 mmol) afforded nitrone **6o** (130 mg, 0.551 mmol) as a yellow-brown solid. ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 11.69 (s, 1 H), 8.14 (s, 1 H), 7.87–7.80 (m, 2 H), 7.67 (dd, *J* = 8.1, 1.0 Hz, 1 H), 7.55–7.45 (m, 4 H), 7.32 (ddd, *J* = 8.2, 6.9, 1.1 Hz, 1 H), 7.16 (ddd, *J* = 8.0, 6.9, 1.0 Hz, 1 H), 6.94 (s, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 147.4, 136.0, 130.2, 129.9, 129.4, 127.6, 126.8, 125.2, 121.3, 120.8, 112.3, 108.6. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 3315, 3067, 1593, 1502, 1345, 1234, 818, 733. HRMS (ESI-TOF) *m/z*: [M + Na] $^{+}$ calcd for C₁₅H₁₂N₂ONa 259.0842; found 259.0858. *R*_F: 0.13 (CH₂Cl₂). Yield: 99%.

(*Z*)-*N*-*Phenyl-1*-(*1H*-*pyrrol*-2-*yl*)*methanimine* oxide (**6p**). According to the general procedure A, the reaction of 1*H*-pyrrole-2-carbaldehyde (52 mg, o.547 mmol) with *N*-phenylhydroxylamine (60 mg, o.550 mmol) afforded nitrone **6p** (62 mg, o.333 mmol) as a dark brown solid, after column chromatography (CH₂Cl₂ $^{-}$ CH₂Cl₂/MeOH, 10:0.1). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 12.21 (s, 1 H), 7.95 (s, 1 H), 7.81–7.73 (m, 2 H), 7.52–7.38 (m, 3 H), 7.07 (td, J = 2.7, 1.3 Hz, 1 H), 6.70 (dt, J = 3.6, 1.6 Hz, 1 H), 6.40 (dt, J = 3.9, 2.5 Hz, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 147.1, 129.5, 129.3, 126.1, 125.3, 121.3, 121.0, 115.9, 111.3. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 3317, 3062, 1580, 1403, 1294, 1074, 1045, 740, 686. HRMS (ESI-TOF) m/z: [M + H] $^{+}$ calcd for C₁₁H₁₁N₂O 187.0866; found 187.0885. R_F : 0.45 (heptane/AcOEt, 11). Yield: 61%.

(*Z*)-1-(Furan-2-yl)-*N*-phenylmethanimine oxide (**6q**). ²⁸ According to the general procedure A, the reaction of furan-2-carbaldehyde (0.043 mL, 0.520 mmol) with *N*-phenylhydroxylamine (60 mg, 0.546 mmol) afforded nitrone **6q** (97 mg, 0.520 mmol) as a light brown solid, after column chromatography (CH₂Cl₂ —CH₂Cl₂/MeOH, 10:0.2). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 8.16 (s, 1 H), 8.01 (dt, J = 3.5, 0.7 Hz, 1 H), 7.83–7.77 (m, 2 H), 7.58 (dd, J = 1.8, 0.7 Hz, 1 H), 7.52–7.44 (m, 3 H), 6.65 (dd, J = 3.6, 1.8 Hz, 1 H). Yield: 99%.

(*Z*)-2-(*Benzylamino*)-2-oxo-*N*-phenylethan-1-imine oxide (*6r*). According to the general procedure A, the reaction of *N*-benzyl-2-oxoacetamide (56 mg, 0.343 mmol) with *N*-phenylhydroxylamine (26 mg, 0.240 mmol) afforded nitrone *6r* (34.5 mg, 0.135 mmol) as a white solid. 'H NMR [400 MHz, δ (ppm), CDCl₃]: 10.39 (s, 1 H), 7,72–7.67 (m, 2 H), 7.66 (s, 1 H), 7.58–7.46 (m, 3 H), 7.40–7.27 (m, 5 H), 4.64 (d, J = 5.9 Hz, 2 H). ¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 160.8, 147.5, 137.8, 131.7, 130.3, 129.7, 128.9, 128.0, 127.7, 121.6, 43.3. FTIR [$\bar{\nu}$ (cm⁻¹)]: 3255, 3121, 2945, 1634, 1516, 1059, 768, 751, 683. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₄N₂O₂Na 277.0948; found 277.0956. R_F : 0.68 (CH₂Cl₂/MeOH, 10:0.2). Yield: 39%.

General Procedure for the Synthesis of Isoxazolidines 4a, 4b, 4d-r. The solution containing alkene 2 in distilled THF (3 equiv, 1.48 M) at 0 °C was added to a PTFE tube containing the corresponding nitrone 6 (1 equiv) and galvinoxyl (0.03 equiv). The tube was filled up with distilled THF, closed and brought to 15 kbar at 50 °C for 16 hours. Then, the reaction mixture was filtered off and the solvent was removed under vacuo. The crude mixture was purified by column chromatography using the indicated eluent to afford isoxazolidines 4a, 4b, 4d-r.

2,3-Diphenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (4a). According to the general procedure, the reaction of nitrone 6a (26 mg, 0.119 mmol) and alkene 2 in a 1 mL PTFE high-pressure tube afforded *cis*-4a (24.9 mg, 0.77 mmol, 65%) as a white solid and a mixture of *cis*- and *trans*-4a and regioisomers 7a (12.6 mg, 0.039 mmol, 33%) as a yellow oil, after column chromatography (heptane/CH₂Cl₂, 9:1). Total yield: 98%.

rac-(3R,5R)-2,3-Diphenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (cis-4a).

¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.52–7.47 (m, 2 H), 7.43–7.37 (m, 2 H), 7.35–7.30 (m, 1 H), 7.24–7.18 (m, 2 H), 7.04–6.99, (m, 1 H), 6.99–6.95 (m, 2 H), 6.01 (dd, J = 8.1, 4.4 Hz, 1 H), 4.41 (dd, J = 9.0, 7.1 Hz, 1 H), 3.41 (dddq, J = 13.6, 9.0, 8.1, 0.9 Hz, 1 H), 2.44–2.31 (m, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 148.8, 139.8, 130.2 (q, J = 307.7 Hz), 129.3, 128.8, 128.3, 127.2, 123.8, 117.6, 80.5 (q, J = 2.5 Hz), 68.3, 47.2. FTIR [v (cm $^{-1}$)]: 3070, 2963, 1598, 1489, 1258, 114, 1031, 966, 928, 752, 700. HRMS (EI) m/z: [M*] calcd for C₁₆H₁₄F₃NOS 325.0748; found 325.0765. R_F: 0.20 (heptane/CH₂Cl₂, 9:1).

rac-(3*R*,5*S*)-2,3-Diphenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (trans-4a). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.50–7.45 (m, 2 H), 7.41–7.36 (m, 2 H), 7.35–7.30 (1 H), 7.25–7.18 (m, 2 H), 7.04–6.98 (m, 2 H), 6.98–6.93 (m, 1 H), 6.07 (dd, J = 6.8, 3.8 Hz, 1 H), 4.90 (t, J = 7.3 Hz, 1 H), 3.02–2.92 (m, 1 H), 2.88 (ddd, J = 13.3, 7.3, 3.8 Hz, 1 H). 13 C NMR [126 MHz, δ (ppm), CDCl₃]: 151.0, 139.9, 129.9 (q, J = 307.8 Hz), 129.2, 128.8, 128.2, 126.7, 122.4, 115.2, 82.3 (q, J = 2.0 Hz), 68.1, 46.3. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 3065, 1598, 1489, 1206, 108, 1049, 842, 796, 665. HRMS (EI) m/z: [M $^{+}$] calcd for $C_{16}H_{14}F_{3}$ NOS 325.0748; found 325.0750. $R_{\rm F}$: 0.11 (heptane/CH₂Cl₂, 9:1).

3-(4-Fluorophenyl)-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (4b). According to the general procedure, the reaction of nitrone 6b (27 mg, 0.125 mmol) and alkene 2 in a 1 mL PTFE high-pressure tube afforded *cis*-4b (27.6 mg, 0.080 mmol, 64%) as a white solid, a mixture of *cis*- and *trans*-4b and regioisomers 7b (13.1 mg, 0.038 mmol, 27%) as a yellow oil

and *trans*-4b (3.5 mg, 0.010 mmol, 8%) as a pale yellow oil, after column chromatography (heptane/CH₂Cl₂, 9:1). Total yield: 99%.

rac-(3R,5R)-3-(4-Fluorophenyl)-2-phenyl-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (cis-4b). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.49–7.43 (m, 2 H), 7.25–7.19 (m, 2 H), 7.11–7.05 (m, 2 H), 7.05–7.01 (m, 1 H), 6.99–6.93 (m, 2 H), 6.01 (dd, J = 8.1, 4.3 Hz, 1 H), 4.40 (dd, J = 9.0, 7.0 Hz, 1 H), 3.39 (dddq, J = 13.7, 9.0, 8.1, 0.9 Hz, 1 H), 2.39–2.28 (m, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 162.6 (d, J = 247.0 Hz), 148.6, 135.4 (d, J = 3.1 Hz), 130.1 (q, J = 307.8 Hz), 128.92, 128.91 (d, J = 7.2 Hz), 124.0, 117.7, 116.2 (d, J = 21.6 Hz), 8.05 (q, J = 2.3 Hz), 67.7, 47.1. ¹⁹F NMR [471 MHz, δ (ppm), CDCl₃]: –39.9. FTIR [$\bar{\nu}$ (cm⁻¹)]: 3071, 1597, 1455, 1256, 1226, 1110, 1029, 905, 804, 754. HRMS (EI) m/z: [M⁺¹] calcd for C₁₆H₁₃F₄NOS 343.0654; found 343.0650. R_F : 0.26 (heptane/CH₂Cl₂, 17:3).

rac-(3R,5S)-3-(4-Fluorophenyl)-2-phenyl-5-

[(trifluoromethyl]sulfanyl]isoxazolidine (trans-4b). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.44–7.40 (m, 2 H), 7.25–7.20 (m, 2 H), 7.10–7.04 (m, 2 H), 6.99–6.92 (m, 3 H), 6.05 (dd, J = 6.8, 3.9 Hz, 1 H), 4.88 (t, J = 7.2 Hz, 1 H), 2.98–2.90 (m, 1 H), 2.87 (ddd, J = 13.3, 7.3, 3.9 Hz, 1 H). ³C NMR [126 MHz, δ (ppm), CDCl₃]: 162.3 (d, J = 242.3 Hz), 150.7, 135.6, 128.9, 128.4 (d, J = 8.1 Hz), 122.6, 116.2 (d, J = 21.7 Hz), 115.3, 81.2, 67.4, 46.2. The carbon signal of SCF₃ was not observed. ¹9F NMR [471 MHz, δ (ppm), CDCl₃]: –39.4. FTIR [$\bar{\nu}$ (cm²)]: 3071, 1686, 1598, 1154, 1052, 937, 693. HRMS (EI) m/z: [m/z] calcd for C₁₆H₁₃F₄NOS 343.0654; found 343.0676. R_F : 0.21 (heptane/CH₂Cl₂, 17:3).

2-Phenyl-3-(4-tolyl)-5-[(trifluoromethyl)sulfanyl]isoxazolidine (4c). The solution containing alkene 2 (3.0 equiv) in distilled THF (500 μL) at 0 °C was added to a PTFE tube containing nitrone 6c (1.0 equiv). The tube was filled up with distilled THF, closed and brought to 15 kbar at 50 °C for 16 hours. Then, the reaction mixture was filtered off and the solvent was removed under vacuo. The crude mixture was purified by column chromatography (heptane/CH₂Cl₂, 4:1) to afford isoxazolidine cis-4c (17.1 mg, 0.050 mmol, 50%) as white solid and trans-4c (12.1 mg, 0.36 mmol, 35%) as a brown oil, contaminated with regioisomers 7c and azoxybenzene 8c. Total yield: 85%.

rac-(3*R*,5*R*)-2-Phenyl-3-(4-tolyl)-5-[(trifluoromethyl)sulfanyl]isoxazolidine (cis-4c). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.40–7.34 (m, 2 H), 7.23–7.16 (m, 4 H), 7.03–6.95 (m, 3 H), 6.00 (dd, J = 8.1, 4.3 Hz, 1 H), 4.36 (dd, J = 9.0, 7.2 Hz, 1 H), 3.38 (dddq, J = 13.7, 9.0, 8.1, 0.9 Hz, 1 H), 2.39–2.32 (m, 1 H), 2.36 (s, 3 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 148.9, 138.1, 136.6, 130.2 (q, J = 307.7 Hz), 130.0, 128.8, 127.1, 123.7, 117.6, 80.5 (q, J = 2.2 Hz), 68.1, 47.3, 21.3. ¹⁹F NMR [471 MHz, δ (ppm), CDCl₃]: –39.9. FTIR [$\bar{\nu}$ (cm⁻¹)]: 3056, 2962, 1597, 1489, 1257, 1107, 752, 691. HRMS (EI) m/z: [M^{**}] calcd for $C_{17}H_{16}F_3$ NOS 339.09905; found 339.0890. R_F : 0.21 (heptane/CH₂Cl₂, 41).

rac-(3*R*,5*S*)-2-Phenyl-3-(4-tolyl)-5-[(trifluoromethyl)sulfanyl]isoxazolidine (trans-4c). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.36–7.33 (m, 2 H), 7.25–7.16 (m, 4 H), 7.02–6.98 (m, 2 H), 6.97–6.92 (m, 1 H), 6.06 (dd, J = 6.8, 3.8 Hz, 1 H), 4.85 (t, J = 7.2 Hz, 1 H), 2.95 (dddq, J = 13.2, 7.6, 6.8, 0.9 Hz, 1 H), 2.85 (ddd, J = 13.2, 7.2, 3.8 Hz, 1 H), 2.36 (s, 3 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 151.0, 137.9, 136.9, 130.1 (q, J = 307.7 Hz), 129.8, 128.8, 126.8, 126.2, 152.2, 152.2, 82.3 (q, J = 2.2 Hz), 67.9, 46.4, 21.3. ¹9F NMR [471 MHz, δ (ppm), CDCl₃]: –39.3. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 3063, 2925, 1599, 1487, 1152, 1053, 756, 686. HRMS (EI) m/z: [M $^{+7}$] calcd for $C_{17}H_{16}F_3NOS$ 339.0905; found 339.0924. R_F : 0.13 (heptane/CH₂Cl₂, 4:1).

2-Phenyl-3-[4-(trifluoromethyl)phenyl]-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (4d). According to the general procedure, the reaction of nitrone 6d (50 mg, 0.190 mmol) and alkene 2 in a 1.5 mL PTFE high-pressure tube, containing approximately 300 μ L of glass beads, afforded a mixture of isoxazolidines cis- and trans-4d and regioisomers 7d (53.1 mg, 0.137 mmol, 73%) as a pale yellow solid oil, after column chromatography (heptane/CH₂Cl₂, 17:3). FTIR [$\bar{\nu}$ (cm⁻¹)]: 1597, 1490, 1325, 1104, 1051, 850, 754, 692. HRMS (EI) m/z: [M**] calcd for $C_{17}H_{13}F_6$ NOS 393.0622; found 393.0624. R_F : 0.20 (heptane/CH₂Cl₂, 17:3). Total yield: 73%.

rac-(3R,5R)-2-Phenyl-3-[4-(trifluoromethyl)phenyl]-5-[(trifluoromethyl)sulfanyl]isoxazolidine (cis-4**d**). H NMR [500 MHz, δ (ppm), CDCl₃]: 7.72-7.55 (m, 4 H), 7.25-7.18 (m, 2 H), 7.05-7.00 (m, 1 H), 6.97-6.93 (m, 2 H), 6.00 (dd, J = 8.0, 4.3 Hz, 1 H), 4.50 (dd, J = 9.1, 6.7, 1 H), 3.43 (dddq, J = 13.7, 9.1, 8.0, 0.9, 1 H), 2.33 (ddd, J = 13.7, 6.7, 4.3 Hz, 1

H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 148.4, 144.1, 130.6 (q, J = 32.6 Hz), 130.0 (q, J = 307.8 Hz), 129.0, 127.4, 126.3 (q, J = 3.8 Hz), 124.09 (q, J = 272.1 Hz), 124.05, 117.4, 80.4 (q, J = 2.2 Hz), 67.5, 46.9.

rac-(3*R*,5*S*)-2-Phenyl-3-[4-(trifluoromethyl)phenyl]-5-[(trifluoromethyl)sulfanyl]isoxazolidine (trans-4**d**). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.70–7.56 (m, 4 H), 7.27–7.18 (m, 2 H), 7.00–6.96 (m, 3 H), 6.04 (dd, J = 6.3, 4.6 Hz, 1 H), 4.97 (t, J = 7.1 Hz, 1 H), 3.01–2.83 (m, 2 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 150.5, 144.1, 130.5 (q, J = 32.5 Hz), 130.0 (q, J = 307.8 Hz), 129.0, 127.0, 126.2 (q, J = 3.9 Hz), 122.7, 115.1, 82.2 (q, J = 2.1 Hz), 67.5, 45.9.

 $3-[4-(Pentafluoro-\lambda^6-sulfanyl)phenyl]-2-phenyl-5-$

[(trifluoromethyl)sulfanyl]isoxazolidine (4e). According to the general procedure, the reaction of nitrone 6e (37.8 mg, 0.143 mmol) and alkene 2 in a 1 mL PTFE high-pressure tube afforded a mixture of isoxazolidines cis- and trans-4e and regioisomers 7e (41 mg, 0.091 mmol, 72%) as a white solid, after column chromatography (heptane/CH₂Cl₂, 17:3). FTIR [$\bar{\nu}$ (cm⁻¹)]: 2963, 1670, 1585, 1261, 1120, 1104, 817, 753, 584. HRMS (EI) m/z: [M*] calcd for $C_BH_{19}F_8NOS_2$ 451.0311; found 451.0318. R_F : 0.21 (heptane/CH₂Cl₂, 17:3). Total yield: 72%.

rac-(3R,5R)-3-[4-(Pentafluoro-λ⁶-sulfanyl)phenyl]-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (cis-4e). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.85–7.72 (m, 2 H), 7.64–7.55 (m, 2 H), 7.30–7.21 (m, 2 H), 7.09–7.02 (m, 1 H), 7.02–6.92 (m, 2 H), 6.00 (dd, J = 8.0, 4.3 Hz, 1 H), 4.52 (dd, J = 9.2, 6.6, 1 H), 3.43 (dt, J = 13.7, 8.6, 1 H), 2.32 (ddd, J = 13.7, 6.6, 4.3 Hz, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 153.7–153.4 (m), 148.3, 144.0, 130.0 (q, J = 307.9 Hz), 129.1, 127.3, 127.0, 124.2, 117.3, 80.4 (q, J = 2.3 Hz), 67.1, 46.7.

rac-(3*R*,5*S*)-3-[4-(Pentafluoro-λ⁶-sulfanyl)phenyl]-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (trans-4*e*). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.80–7.74 (m, 2 H), 7.60–7.56 (m, 2 H), 7.28–7.21 (m, 2 H), 7.01–6.97 (m, 3 H), 6.03 (dd, J = 5.9, 5.0, 1 H), 4.97 (t, J = 7.1 Hz, 1 H), 3.01–2.80 (m, 2 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 153.7–153.4 (m), 150.4, 143.9, 130.0 (q, J = 307.9 Hz), 129.0, 127.1, 127.0, 122.8, 115.1, 82.2 (q, J = 2.2 Hz), 67.1, 45.8.

3-(4-Methoxyphenyl)-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (4f). According to the general procedure, the reaction of nitrone 6f (54 mg, 0.238 mmol) and alkene 2 in a 1.5 mL PTFE high-pressure tube afforded isoxazolidine cis-4f (44.3 mg, 0.125 mmol, 53%), a mixture of isoxazolidines cis- and trans-4f (27.3 mg, 0.077 mmol, 32%) and isoxazolidine trans-4f mixed with cis-4f and regioisomers 7f (12.4 mg, 0.035 mmol, 15%) as yellow oils, after column chromatography (heptane/CH₂Cl₂, 7:3). Total yield: 99%.

rac-(3R,5R)-3-(4-Methoxyphenyl)-2-phenyl-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (cis-4f). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.43–7.35 (m, 2 H), 7.23–7.18 (m, 2 H), 7.04–6.99 (m, 1 H), 6.99–6.95 (m, 2 H), 6.94–6.90 (m, 2 H), 6.01 (dd, J = 8.1, 4.3 Hz, 1 H), 4.34 (dd, J = 8.9, 7.3 Hz, 1 H), 3.82 (s, 3 H), 3.37 (dddq, J = 13.8, 8.9, 8.2, 0.9 Hz, 1 H), 2.46–2.25 (m, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 159.6, 148.8, 131.4, 130.2 (q, J = 307.8 Hz), 128.8, 128.4, 123.8, 117.8, 114.6, 80.5 (q, J = 2.2 Hz), 68.0, 55.4, 47.2. ¹⁹F NMR [471 MHz, δ (ppm), CDCl₃]: –39.9. FTIR [$\bar{\nu}$ (cm⁻¹)]: 3003, 1614, 1515, 1298, 1103, 1031, 816, 773. HRMS (EI) m/z: [M^*] calcd for $C_{17}H_{16}F_{3}NO_{2}S$ 355.0854; found 355.0861. R_{F} : 0.15 (heptane/CH₂Cl₂, 4:1).

rac-(3R,5S)-3-(4-Methoxyphenyl)-2-phenyl-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (trans-4f). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.38–7.35 (m, 2 H), 7.22–7.18 (m, 2 H), 7.01–6.98 (m, 2 H), 6.97–6.93 (m, 1 H), 6.92–6.89 (m, 2 H), 6.06 (dd, J = 6.8, 3.7 Hz, 1 H), 4.87–4.77 (m, 1 H), 3.81 (s, 3 H), 3.00–2.90 (m, 1 H), 2.84 (ddd, J = 13.2, 7.2, 3.7 Hz, 1 H). ³C NMR [126 MHz, δ (ppm), CDCl₃]: 159.5, 151.0, 131.8, 130.0 (q, J = 307.8 Hz), 128.8, 127.9, 122.4, 115.4, 114.5, 82.3 (q, J = 2.3 Hz), 67.7, 55.5, 46.3. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 3002, 1512, 1489, 1248, 1109, 1030, 794, 693. HRMS (EI) m/z: [M $^{+1}$] calcd for $C_{17}H_{16}F_3NO_2S$ 355.0854; found 355.0855. R_F : 0.10 (heptane/CH₂Cl₂, 4:1).

3-(3-Fluorophenyl)-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (4g). According to the general procedure, the reaction of nitrone 6g (52 mg, 0.242 mmol) and alkene 2 in a 1.5 mL PTFE high-pressure tube afforded isoxazolidine cis-4g (46.6 mg, 0.136 mmol, 56%) as a white solid, a mixture of cis- and trans-6g (27.8 mg, 0.081, 34%) as a yellow oil, and isoxazolidine trans-6g mixed with cis-6g and regioisomers 7g (8.5 mg,

o.o25 mmol, 10%) as a yellow solid, after column chromatography (heptane/CH₂Cl₂, 9:1). Total yield: 99%.

rac-(3R,5R)-3-(3-Fluorophenyl)-2-phenyl-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (cis-4g). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.34 (td, J = 8.1, 5.9 Hz, 1 H), 7.28–7.18 (m, 4 H), 7.06–6.98 (m, 2 H), 6.98–6.93 (m, 2 H), 5.98 (dd, J = 8.1, 4.3 Hz, 1 H), 4.41 (dd, J = 9.1, 6.8 Hz, 1 H), 3.39 (dddq, J = 13.7, 9.1, 8.1, 0.9 Hz, 1 H), 2.33 (dddd, J = 13.7, 6.8, 4.3 Hz, 1 H). ³C NMR [126 MHz, δ (ppm), CDCl₃]: 163.4 (d, J = 247.0 Hz), 148.6, 142.5 (d, J = 7.2 Hz), 130.9 (d, J = 8.3 Hz), 130.1 (q, J = 307.9 Hz), 128.9, 123.9, 122.7 (d, J = 2.9 Hz), 117.4, 115.3 (d, J = 21.3 Hz), 114.1 (d, J = 22.4 Hz), 80.4 (q, J = 2.4 Hz), 67.5 (d, J = 1.9 Hz), 46.9. ¹9F NMR [471 MHz, δ (ppm), CDCl₃]: ~39.9. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 3062, 1594, 1489, 1448, 1258, 111, 1044, 915, 833, 752, 690. HRMS (EI) m/z: [M^{+1}] calcd for $C_{16}H_{13}F_{4}$ NOS 343.0654; found 343.0675. R_{F} : 0.22 (heptane/CH₂Cl₂, 17:3).

rac-(3R,5S)-3-(3-Fluorophenyl)-2-phenyl-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (trans-4g). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.35 (td, J = 8.1, 5.9 Hz, 1 H), 7.25–7.20 (m, 4 H), 7.04–6.94 (m, 4 H), 6.05 (dd, J = 6.8, 4.0 Hz, 1 H), 4.90 (t, J = 7.4 Hz, 1 H), 2.99–2.91 (m, 1 H), 2.33 (ddd, J = 13.2, 7.4, 4.0 Hz, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 163.4 (d, J = 247.1 Hz), 150.6, 142.6 (d, J = 7.2 Hz), 130.7 (d, J = 8.3 Hz), 128.9, 122.6, 122.2 (d, J = 2.8 Hz), 115.2 (d, J = 21.6 Hz), 115.1, 113.7 (d, J = 22.7 Hz), 80.2 (q, J = 2.5 Hz), 67.4 (d, J = 21.1 Hz), 46.0. ¹°F NMR [471 MHz, δ (ppm), CDCl₃]: –39.4. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 3070, 1593, 1488, 1451, 1256, 1109, 947, 787, 691. HRMS (EI) m/z: [M*] calcd for C₁₆H₁₃F₄NOS 343.0654; found 343.0667. R_F : 0.15 (heptane/CH₂Cl₂, 17:3).

2-Phenyl-3-(3-tolyl)-5-[(trifluoromethyl)sulfanyl]isoxazolidine (4h). According to the general procedure, the reaction of nitrone 6h (49 mg, 0.234 mmol) and alkene 2 in a 1.5 mL PTFE high-pressure tube afforded isoxazolidine cis-4h (46 mg, 0.136 mmol, 57%) as an off white solid and isoxazolidine trans-4h and regioisomers 7h (26 mg, 0.077 mmol, 31%) as a yellow solid, after column chromatography (heptane/CH₂Cl₂, 17:3 —7:3). Total yield: 88%.

rac-(3*R*,5*R*)-2-Phenyl-3-(3-tolyl)-5-[(trifluoromethyl)sulfanyl]isoxazolidine (cis-4*h*). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.31–7.28 (m, 1 H), 7.27–7.24 (m, 2 H), 7.22–7.17 (m, 2 H), 7.14–7.10 (m, 1 H), 7.02–6.94 (m, 3 H), 5.98 (dd, J = 8.1, 4.4 Hz, 1 H), 4.35 (dd, J = 9.0, 7.2 Hz, 1 H), 3.37 (dddq, J = 13.6, 9.0, 8.1, 0.9 Hz, 1 H), 2.38–2.32 (m, 1 H), 2.36 (s, 3 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 148.9, 139.7, 139.1, 130.2 (q, J = 307.7 Hz), 129.1, 129.1, 128.8, 127.6, 124.2, 123.6, 117.5, 80.5 (q, J = 2.2 Hz), 68.3, 47.2, 21.6. FTIR [$\bar{\nu}$ (cm⁻¹)]: 3028, 1599, 1489, 1040, 1001, 839, 737, 724, 692. HRMS (EI) m/z: [M^{+*}] calcd for C_{17} H₁₆F₃NOS 339.0905; found 339.0925. R_F : 0.41 (heptane/CH₂Cl₂, 4:1).

rac-(3*R*,5*S*)-2-Phenyl-3-(3-tolyl)-5-[(trifluoromethyl)sulfanyl]isoxazolidine (trans-4*h*). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.31–7.18 (m, 5 H), 7.14–7.10 (m, 1 H), 7.03–6.98 (m, 2 H), 6.98–6.91 (m, 1 H), 6.06 (dd, J = 6.8, 3.7 Hz, 1 H), 4.85 (t, J = 7.3 Hz, 1 H), 2.95 (dddq, J = 13.2, 7.6, 6.8, 0.9 Hz, 1 H), 2.86 (ddd, J = 13.2, 7.3, 3.7 Hz, 1 H), 2.36 (s, 3 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 151.2, 139.9, 139.0, 130.0 (q, J = 307.8 Hz), 129.0, 128.9, 128.8, 127.1, 123.7, 122.23, 115.1, 82.4 (q, J = 2.1 Hz), 68.1, 46.4, 21.6. ¹⁹F NMR [471 MHz, δ (ppm), CDCl₃]: –39.3. FTIR [$\bar{\nu}$ (cm⁻¹)]: 3029, 1598, 1489, 150, 111, 1045, 785, 692. HRMS (EI) m/z: [M⁺¹] calcd for C₁₇H₁₆F₃NOS 339.0905; found 339.0931. R_F : 0.34 (heptane/CH₂Cl₂, 4:1).

Methyl 3-{2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidin-3-yl]benzoate (4i). According to the general procedure, the reaction of nitrone 6i (26 mg, 0.102 mmol) and alkene 2 in a 1 mL PTFE high-pressure tube, containing approximately 150 μL of glass beads, afforded isoxazolidine cis-4i (17.3 mg, 0.045 mmol, 44%) as an off white solid and a mixture of isoxazolidines cis- and trans-4i and regioisomers 7i (18.2 mg, 0.047 mmol, 47%) as a brown-yellow solid, after column chromatography (heptane/CH₂Cl₂, 3:2). Total yield: 91%.

Methyl-3-{rac-(3*R*,5*R*)-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidin-3-yl]benzoate (cis-4*i*). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 8.11 (t, J = 1.8 Hz, 1 H), 8.01 (dt, J = 7.7, 1.4 Hz, 1 H), 7.76 (dddd, J = 7.7, 1.8, 1.2, 0.5 Hz, 1 H), 7.48 (t, J = 7.7 Hz, 1 H), 7.24–7.19 (m, 2 H), 7.07–7.00 (m, 1 H), 6.98–6.94 (m, 2 H), 6.01 (dd, J = 8.0, 4.5 Hz, 1 H), 4.50 (dd, J = 8.9, 7.0 Hz, 1 H), 3.93 (s, 3 H), 3.43 (dddq, J = 13.6, 8.9, 8.0, 0.9 Hz, 1 H), 2.42–2.30 (m, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 166.8, 148. 6, 140.4, 131.6, 131.1, 130. (q, J = 307.7 Hz), 129.6, 129.0, 128.3, 124.0, 117.6, 80.4 (q, J = 2.5 Hz), 67.9, 52.4, 46.9. ¹⁹F NMR [471 MHz, δ (ppm), CDCl₃]: –39.9. FTIR [$\bar{\tau}$ (cm $^{-1}$)]: 3015, 1729, 1598, 1489, 1301, 1247, 1114, 1025, 786, 692, 674. HRMS (EI) m/z:

Methyl-3-{rac-(3R,5S)-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidin-3-yl}benzoate (trans-4i). 'H NMR [500 MHz, δ (ppm), CDCl₃]: 8.12 (t, J = 1.8 Hz, 1 H), 8.02–7.98 (m, 1 H), 7.69 (dt, J = 7.8, 1.6 Hz, 1 H), 7.47 (t, J = 7.7, 1 H), 7.26–7.18 (m, 2 H), 7.00–6.98 (m, 2 H), 6.97–6.94 (m, 1 H), 6.06 (dd, J = 6.7, 4.0 Hz, 1 H), 4.96 (t, J = 7.3 Hz, 1 H), 3.93 (s, 3 H), 3.01–2.94 (m, 1 H), 2.91 (ddd, J = 13.3, 7.4, 4.0 Hz, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 166.8, 150.7, 140.5, 131.19, 131.14, 130.0 (q, J = 307.9 Hz), 129.57, 129.55, 128.9, 127.8, 122.6, 115.2, 82.3 (q, J = 2.2 Hz), 67.6, 52.4, 46.1. ¹⁹F NMR [471 MHz, δ (ppm), CDCl₃]: 39.4. FTIR [$\bar{\nu}$ (cm⁻¹)]: 3064, 1720, 1598, 1489, 1285, 1107, 1020, 799, 751, 692. HRMS (EI) m/z: [M**] calcd for $C_{18}H_{16}F_3NO_3S$ 383.0803; found 383.0810. R_F : 0.22 (heptane/CH₂Cl₂, 3:2).

3-(3-Methoxyphenyl)-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (4j). According to the general procedure, the reaction of nitrone 6j (50 mg, 0.190 mmol) and alkene 2 in a 1.5 mL PTFE high-pressure tube, containing approximately 300 μL of glass beads, afforded isoxazolidine *cis*-4j (33.8 mg, 0.095 mmol, 53%) as a white solid, a mixture of isoxazolidines *cis*-and *trans*-4j (3 mg, 0.0084 mmol, 5%) as a yellow oil and isoxazolidines *trans*-4j and 7j (18.2 mg, 0.051 mmol, 22%) as a yellow oil, after column chromatography (heptane/CH₂Cl₂, 7:3). Total yield: 80%.

rac-(3*R*,5*R*)-3-(3-*Methoxyphenyl*)-2-*phenyl*-5-[(*trifluoromethyl*)*sulfanyl*]*isoxazolidine* (*cis-4j*). 'H NMR [400 MHz, δ (ppm), CDCl₃]: 7.29 (t, J = 7.9 Hz, 1 H), 7.24–7.17 (m, 2 H), 7.09–6.95 (m, 5 H), 6.85 (ddd, J = 8.3, 2.7, 1.1 Hz, 1 H), 5.99 (dd, J = 8.1, 4.3 Hz, 1 H), 4.37 (dd, J = 9.1, 7.0 Hz, 1 H), 3.81 (s, 3 H), 3.43–3.32 (m, 1 H), 2.36 (ddd, J = 13.7, 7.0, 4.3 Hz, 1 H). '³C NMR [101 MHz, δ (ppm), CDCl₃]: 160.4, 148.9, 141.6, 130.3, 130.2 (q, J = 307.7 Hz), 128.8, 123.6, 119.3, 117.3, 113.8, 112.4, 80.5 (q, J = 2.5 Hz), 68.0, 55.4, 47.2 (q, J = 1.2 Hz). '⁹F NMR [377 MHz, δ (ppm), CDCl₃]: −39.9. FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 3006, 2838, 1599, 1490, 1117, 757, 694. HRMS (EI) m/z: [M $^{+1}$] calcd for $C_{17}H_{16}F_3NO_2S$ 355.0854; found 355.0868. R_F : 0.16 (heptane/CH₂Cl₂, 7:3).

rac-(3*R*,5*S*)-3-(3-*Methoxyphenyl*)-2-*phenyl*-5-[(*trifluoromethyl*)*sulfanyl*]*isoxazolidine* (*trans*-4*j*). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 7.29 (t, J = 8.1 Hz, 1 H), 7.25–7.19 (m, 2 H), 7.07–6.92 (m, 5 H), 6.89–6.81 (m, 1 H), 6.06 (dd, J = 6.8, 3.8, 1 H), 4.86 (t, J = 7.4 Hz, 1 H), 3.81 (s, 3 H), 2.96 (dddq, J = 13.3, 7.6, 6.8, 0.9 Hz, 1 H), 2.87 (ddd, J = 13.3, 7.3, 3.8 Hz, 1 H). ¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 160.3, 151.0, 141.6, 130.2, 130.0 (q, J = 307.8 Hz), 128.8, 122.3, 118.8, 115.1, 113.7, 112.0, 82.3 (q, J = 2.3 Hz), 68.0, 55.5, 46.3. ¹9F NMR [377 MHz, δ (ppm), CDCl₃]: −39.3. FTIR [\overline{v} (cm²¹)]: 3064, 1720, 1598, 1489, 1347, 1107, 1020, 799, 750, 692. HRMS (ESI-TOF) m/z: [M + H]* calcd for $C_{17}H_{17}F_3NO_2S$ 356.0932; found 356.0939. R_F : 0.13 (heptane/CH₂Cl₂, 7:3).

2-Phenyl-3-[3-(trifluoromethyl)phenyl]-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (4k). According to the general procedure, the reaction of nitrone 6k (49 mg, 0.234 mmol) and alkene 2 in a 1.5 mL PTFE high-pressure tube afforded a mixture of isoxazolidines cis- and trans-4k and 7k (87.4 mg, 0.222 mmol, 95%) as a white-yellow solid, after column chromatography (heptane/CH₂Cl₂, 17:3 \rightarrow 7:3). FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 2927, 1598, 1490, 1263, 1144, 1045. HRMS (EI) m/z: [M *1] calcd for C₁₇H₁₃F₆NOS 393.0622; found 393.0639. R_F : 0.38 (heptane/CH₂Cl₂, 4:1). Total yield: 95%.

rac-(*3R*,5*R*)-2-*Phenyl-*3-[3-(*trifluoromethyl*)*phenyl*]-5-[(*trifluoromethyl*)*sulfanyl*]*isoxazolidine* (*cis-*4*k*). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.73–7.69 (m, 2 H), 7.60–7.56 (m, 1 H), 7.54–7.48 (m, 1 H), 7.26–7.20 (m, 2 H), 7.05–7.00 (m, 1 H), 6.98–6.93 (m, 2 H), 5.99 (dd, J = 8.0, 4.5 Hz, 1 H), 4.51 (dd, J = 9.0, 6.7 Hz, 1 H), 3.41 (dddq, J = 13.6, 9.0, 8.0, 0.8 Hz, 1 H), 2.37–2.28 (m, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 148.6, 141.1, 131.6 (q, J = 32.4 Hz), 130.4 (q, J = 1.2 Hz), 129.9 (q, J = 308.0 Hz), 129.9, 129.0, 125.2 (q, J = 3.8 Hz), 124.0 (q, J = 272.4 Hz), 124.1, 123.9 (q, J = 3,8 Hz), 17.4, 80.4 (q, J = 2.5 Hz), 67.8, 46.8.

rac-(3R,5S)-2-Phenyl-3-[3-(trifluoromethyl)phenyl]-5-[(trifluoromethyl)sulfanyl]isoxazolidine (trans-4k). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.73–7.70 (m, 1 H), 7.68–7.64 (m, 1 H), 7.60–7.56 (m, 1 H), 7.53–7.48 (m, 1 H), 7.26–7.20 (m, 2 H), 6.92–6.88 (m, 3 H), 6.06–6.02 (m, 1 H), 4.96 (t, J=7.2 Hz, 1 H), 2.98–2.86 (m, 2 H). ³G NMR [126 MHz, δ (ppm), CDCl₃]: 150.6, 141.1, 131.6 (q, J=32.4 Hz), 130.4 (q, J=1.2 Hz), 129.7, 128.9, 125.1 (q, J=4.0 Hz), 123.5 (q, J=3.8 Hz), 122.7, 115.2, 82.3 (q, J=2.4 Hz), 67.5, 46.0.

2-Phenyl-3-(2-tolyl)-5-[(trifluoromethyl)sulfanyl]isoxazolidine (41). According to the general procedure, the reaction of nitrone 61 (49 mg, 0.234 mmol) and alkene 2 in a 1.5 mL PTFE high-pressure tube afforded isoxazolidine cis-41 (1.9 mg, 0.0056 mmol; used for characterization) as a colorless oil and a mixture of isoxazolidines cis- and trans-41 (79.5 mg, 0.234 mmol, 99%) as a yellow solid, after column chromatography (heptane/CH₂Cl₂, 4:1). FTIR [$\bar{\nu}$ (cm⁻¹)]: 3025, 1596, 1489, 1258, 1109, 1041, 972, 754, 695. HRMS (EI) m/z: [M⁺] calcd for C_{ν} H₁₆F₃NOS 339.0905; found 339.0923. R_F : 0.23 (heptane/CH₂Cl₂, 4:1). Total yield: 99%.

rac-(3*R*,5*R*)-2-Phenyl-3-(2-tolyl)-5-[(trifluoromethyl)sulfanyl]isoxazolidine (cis-4*I*). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.72 (dd, J = 7.2, 1.7 Hz, 1 H), 7.26–7.17 (m, 5 H), 7.00 (tt, J = 7.4, 1.2 Hz, 1 H), 6.96–6.88 (m, 2 H), 6.01 (dd, J = 8.1, 4.2 Hz, 1 H), 4.61 (dd, J = 9.1, 7.1 Hz, 1 H), 3.44 (dddq, J = 13.5, 9.1, 8.1, 0.9 Hz, 1 H), 2.35 (s, 3 H), 2.25 (ddd, J = 13.5, 7.1, 4.2 Hz, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 148.9, 138.0, 134.6, 130.8, 130.1 (q, J = 307.4 Hz), 128.9, 127.8, 127.3, 126.6, 123.5, 117.2, 80.5 (q, J = 2.2 Hz), 64.5, 45.6, 19.7. ¹⁹F NMR [471 MHz, δ (ppm), CDCl₃]: -40.0.

rac-(3*R*,5*S*)-2-*Phenyl-*3-(2-tolyl)-5-[(trifluoromethyl)sulfanyl]isoxazolidine (trans-4l). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.65–7.62 (m, 1 H), 7.27–7.15 (m, 5 H), 6.97–6.93 (m, 3 H), 6.06 (dd, J = 6.7, 3.9 Hz, 1 H), 5.04 (t, J = 7.5 Hz, 1 H), 2.89 (ddd, J = 13.1, 7.5, 3.9 Hz, 1 H), 2.80 (dddq, J = 13.1, 7.5, 6.7, 0.9 Hz, 1 H), 2.39 (s, 3 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 151.1, 137.8, 134.3, 130.8, 128.7, 127.8, 127.0, 126.2, 122.1, 114.7, 82.2 (q, J = 2.3 Hz), 65.3, 44.6, 19.4.

3-(2-Methoxyphenyl)-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (4m). According to the general procedure, the reaction of nitrone 6m (53 mg, 0.234 mmol) and alkene 2 in a 1.5 mL PTFE high-pressure tube afforded isoxazolidine cis-4m (35.6 mg, 0.100 mmol, 43%) as an off white solid and a mixture of isoxazolidines cis- and trans-4m (29.6 mg, 0.083 mmol, 28%) as a yellow solid, after column chromatography (heptane/CH₂Cl₂, 7:3). Total yield: 71%.

rac-(3*R*,5*R*)-3-(2-Methoxyphenyl)-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (cis-4*m*). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.65 (dd, J = 7.6, 1.7 Hz, 1 H), 7.28 (ddd, J = 8.2, 7.5, 1.8 Hz, 1 H), 7.25–7.19 (m, 2 H), 7.01–6.94 (m, 4 H), 6.91 (dd, J = 8.3, 1.0 Hz, 1 H), 5.94 (dd, J = 8.0, 4.5 Hz, 1 H), 4.87 (dd, J = 9.1, 6.1 Hz, 1 H), 3.86 (s, 3 H), 3.40 (dddq, J = 13.6, 9.1, 8.0, 0.9 Hz, 1 H), 2.30–2.20 (m, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 156.3, 149.4, 130.3 (q, J = 307.7 Hz), 128.9, 128.4, 127.5, 123.1, 121.3, 116.7, 110.5, 80.6 (q, J = 2.4 Hz), 62.1, 55.5, 45.0. FTIR [$\bar{\nu}$ (cm⁻¹)]: 3075, 1599, 1490, 1243, 1106, 1027, 897, 751, 664. HRMS (EI) m/z: [M⁺] calcd for C_{17} H₁₆F₃NO₂S 355.0854; found 355.0875. R_F : 0.19 (heptane/CH₂Cl₂, 7:3).

rac-(3*R*,5*S*)-3-(2-Methoxyphenyl)-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (trans-4*m*). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.59 (dd, J = 7.6, 1.5 Hz, 1 H), 7.31-7.26 (m, 2 H), 7.06-7.02 (m, 2 H), 7.00-6.88 (m, 4 H), 5.99-5.96 (m, 1 H), 5.26 (dd, J = 7.5, 5.8 Hz, 1 H), 3.88 (s, 3 H), 2.90 (ddd, J = 12.7, 7.5, 5.0 Hz, 1 H), 2.84-2.76 (m, 1 H). ³C NMR [126 MHz, δ (ppm), CDCl₃]: 156.3, 151.2, 128.9, 128.8, 128.1, 127.2, 122.0, 121.1, 114.9, 110.4, 82.4 (q, J = 2.2 Hz), 62.9, 55.5, 43.7. The carbon signal of SCF₃ was not observed. FTIR [$\bar{\nu}$ (cm⁻¹)]: 2839, 1599, 1490, 1256, 106, 1026, 751, 692. HRMS (EI) m/z: [M^{+*}] calcd for $C_{17}H_{16}F_3NO_2S$ 355.0854; found 355.0862. R_F : 0.15 (heptane/CH₂Cl₂, 7;3).

2-Phenyl-3-(thiophen-3-yl)-5-[(trifluoromethyl)sulfanyl]isoxazolidine (4n). According to the general procedure, the reaction of nitrone 6n (48 mg, 0.234 mmol) and alkene 2 in a 1.5 mL PTFE high-pressure tube afforded a mixture of isoxazolidines cis- and trans-4n (68.4 mg, 0.206 mmol, 88%) as a yellow solid, after column chromatography (heptane/CH₂Cl₂, 3:2). FTIR [$\bar{\nu}$ (cm⁻¹)]: 3095, 1598, 1489, 1257, 1163, 1110, 1031, 837, 792, 754, 692. HRMS (EI) m/z: [M^{*+}] calcd for $C_{14}H_{12}F_3NOS_2$ 331.0312; found 331.0330. R_F : 0.19 (heptane/CH₂Cl₂, 17:3). Total yield: 88%.

rac-(*3R*,5*R*)-2-*Phenyl-*3-(*thiophen-*3-*yl*)-5-[(*trifluoromethyl*)*sulfanyl*]*isoxazolidine* (*cis-*4*n*). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.36 (dd, J = 5.0, 3.0 Hz, 1 H), 7.30–7.27 (m, 1 H), 7.25–7.20 (m, 2 H), 7.19 (dd, J = 5.0, 1.3 Hz, 1 H), 7.02 (tt, J = 7.4, 1.2 Hz, 1 H), 7.00–6.96 (m, 2 H), 6.00 (dd, J = 8.2, 4.2 Hz, 1 H), 4.51 (dd, J = 8.8, 6.7 Hz, 1 H), 3.36–3.28 (m, 1 H), 2.38 (ddd, J = 13.6, 6.7, 4.2 Hz, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 148.9, 140.4, 130.2 (q, J = 307.7 Hz), 128.8, 127.3, 126.1, 123.9, 122.7, 117.5, 80.5 (q, J = 2.5 Hz), 64.6, 45.9.

rac-(*3R*,5*S*)-2-*Phenyl-*3-(*thiophen-*3-*yl*)-5-[(*trifluoromethyl*)*sulfanyl*]*isoxazolidine* (*trans-*4*n*). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.32 (dd, J = 5.0, 3.0 Hz, 1 H), 7.30–7.27 (m, 1 H), 7.26–7.20 (m, 2 H), 7.09 (dd, J = 5.0, 1.4 Hz, 1 H), 7.06–6.95 (m, 3 H), 6.03 (dd, J = 7.2, 4.9 Hz, 1 H), 5.01 (t, J = 6.5 Hz, 1 H), 2.96 (dt, J = 13.0, 6.4 Hz, 1 H), 2.78 (ddd, J = 12.7, 7.3, 4.7 Hz, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 150.2, 140.6, 130.2 (q, J = 307.7 Hz), 128.8, 127.0, 125.8, 122.7, 122.4, 115.7, 81.9 (q, J = 2.2 Hz), 64.2, 44.6.

3-(1H-Indol-2-yl)-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (40). According to the general procedure, the reaction of nitrone 60 (56 mg, 0.237 mmol) and alkene 2 in a 1.5 mL PTFE high-pressure tube afforded isoxazolidines cis- and trans-40 (20.3 mg, 0.056 mmol, 24%; contaminated with 8) as an brown-yellow oil and a mixture of isoxazolidine trans-40 and regioisomers 70 (35.6 mg, 0.098 mmol, 41%) as a brown oil, after column chromatography (heptane/CH₂Cl₂, 11:9). FTIR [$\bar{\nu}$ (cm⁻¹)] of isoxazolidines cis- and trans-40: 3413, 3060, 2962, 1599, 1436, 1258, 1110, 1022, 788, 756, 684, 660. FTIR [$\bar{\nu}$ (cm⁻¹)] of isoxazolidine trans-40 and regioisomers 70: 3406, 3059, 2963, 1597, 1455, 1231, 1107, 1014, 793, 693. Total yield: 65%.

rac-(3R,5R)-3-(1H-Indol-2-yl)-2-phenyl-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (cis-40). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 8.67 (bs, 1 H), 7.61–7.58 (m, 1 H), 7.40–7.37 (m, 1 H), 7.25–7.18 (m, 3 H), 7.15–7.12 (m, 1 H), 7.05–7.02 (m, 3 H), 6.50 (d, J = 2.0 Hz, 1 H), 6.07 (dd, J = 8.3, 3.5 Hz, 1 H), 4.77 (dd, J = 9.4, 5.6 Hz, 1 H), 3.44–3.32 (m, 1 H), 2.50 (ddd, J = 13.8, 5.6, 3.5 Hz, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 148.6, 136.2, 135.6, 130.0 (q, J = 306.8 Hz), 129.1, 128.6, 123.9, 122.6, 120.6, 120.4, 116.7, 111.5, 100.9, 80.7 (q, J = 2.4 Hz), 62.2, 44.9. RF: 0.51 (heptane/CH₂Cl₃, 13).

rac-(3R,5S)-3-(1H-Indol-2-yl)-2-phenyl-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (trans-40). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 8.50 (bs, 1 H), 7.57–7.47 (m, 3 H), 7.32 (dt, J = 8.2, 0.9 Hz, 1 H), 7.06–7.03 (m, 1 H), 6.98–6.90 (m, 2 H), 6.86–6.82 (m, 2 H), 6.40 (d, J = 2.1 Hz, 1 H), 5.84 (dd, J = 8.3, 4.0 Hz, 1 H), 4.28 (dd, J = 9.4, 5.7 Hz, 1 H), 2.82 (dt, J = 13.7, 8.9 Hz, 1 H), 2.16–2.09 (m, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 148.5, 134.4, 132.7, 129.0, 128.6, 122.6, 122.5, 120.6, 119.5, 116.2, 111.3, 100.5, 82.1 (q, J = 2.4 Hz), 59.8, 44.6. R_F : 0.42 (heptane/CH₂Cl₃, 1:1).

3-(1H-Indol-2-yl)-2-phenyl-4-[(trifluoromethyl)sulfanyl]isoxazolidine (70). $^1\text{H NMR [500 MHz, }\delta\text{ (ppm), CDCl}_3\text{]: }7.64-7.59\text{ (m, 2 H), }7.38-6.97\text{ (m, 16 H), }6.59-6.55\text{ (m, 2 H), }5.25\text{ (d, }J=8.2\text{ Hz, 1 H), }4.94\text{ (d, }J=4.4\text{ Hz, 1 H), }4.67-4.61\text{ (m, 1 H), }4.61-4.56\text{ (m, 1 H), }4.31\text{ (q, }J=7.6\text{ Hz, 1 H), }4.25-4.18\text{ (m, 2 H), }4.11\text{ (dd, }J=9.3, 6.2\text{ Hz, 1 H).} \quad ^{13}\text{C NMR [126\text{ MHz, }\delta\text{ (ppm), }CDCl}_3\text{]: }149.3, 148.9, 135.9, 135.7, 135.5, 132.8, 129.2, 129.2, 129.2, 128.5, 127.9, 123.4, 123.2, 122.7, 122.5, 120.8, 120.6, 120.3, 115.1, 115.0, 111.3, 111.2, 103.1, 100.6, 73.2, 72.7, 70.1, 65.6, 52.4, 48.1.$

2-Phenyl-3-(1H-pyrrol-2-yl)-5-[(trifluoromethyl)sulfanyl]isoxazolidine (4p). According to the general procedure, the reaction of nitrone 6p (44 mg, 0.234 mmol) and alkene 2 in a 1.5 mL PTFE high-pressure tube afforded a mixture of isoxazolidines *cis*- and *trans*-4p and 7p (33 mg, 0.105 mmol, 45%) as a brown oil, after column chromatography (heptane/CH₂Cl₂, 4:1 \rightarrow CH₂Cl₂/MeOH, 10:1). FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 3421, 2960, 1597, 1489, 1154, 1109, 1082, 1029, 756, 722. HRMS (EI) m/z: [M $^{*+}$] calcd for C₁₄H₁₃F₃N₂OS 314.0701; found 314.0706. R_F (unassigned mixture): 0.46, 0.30, 0.24, 0.20 (heptane/CH₂Cl₂, 1:1). Total yield: 45%.

rac-(3R,5R)-2-Phenyl-3-(1H-pyrrol-2-yl)-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (cis-4p). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 8.65 (bs, 1 H), 7.28–7.22 (m, 2 H), 7.08–6.98 (m, 3 H), 6.81–6.77 (m, 1 H), 6.21–6.18 (m, 1 H), 6.15–6.12 (m, 1 H), 6.03 (dd, J = 8.3, 3.6 Hz, 1 H), 4.62 (dd, J = 8.9, 5.6 Hz, 1 H), 3.34–3.17 (m, 1 H), 2.48–2.36 (m, 1 H). ³C NMR [101 MHz, δ (ppm), CDCl₃]: δ 148.9, 130.0 (q, J = 307.9 Hz), 129.0, 128.8, 123.8, 116.8, 115.2, 109.1, 106.7, 80.7 (q, J = 2.3 Hz), 62.5, 44.6.

rac-(3R,5S)-2-Phenyl-3-(1H-pyrrol-2-yl)-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (trans-4p). ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 8.57 (bs, 1 H), 7.31–6.66 (m, 7 H), 6.27–6.15 (m, 1 H), 5.97 (t, J = 6.4 Hz, 1 H), 5.07 (dd, J = 7.0, 4.4 Hz, 1 H), 3.00 (ddd, J = 12.2, 7.1, 4.4 Hz, 1 H), 2.68 (dt, J = 13.1, 6.4 Hz, 1 H). ¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 150.0, 129.9, 128.9, 123.8, 118.0, 115.8, 107.2, 106.3, 82.1, 62.7, 43.2. The carbon signal of SCF₃ was not observed.

2-Phenyl-3-(1H-pyrrol-2-yl)-4-[(trifluoromethyl)sulfanyl]isoxazolidine (7p).
¹H NMR [400 MHz, δ (ppm), CDCl₃]: 8.65 (bs, 1 H), 7.30–7.23 (m, 2 H), 7.06–6.99 (m, 3 H), 6.81–6.77 (m, 1 H), 6.27–6.19 (m, 1 H), 6.19 (m, 1 H), 5.11 (d, J = 7.8 Hz, 1 H), 4.66–4.55 (m, 1 H), 4.22 (q, J = 7.5 Hz, 1 H), 4.15 (dd, J = 8.6, 6.8 Hz, 1 H).
¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 149.2, 129.3, 126.0, 123.4, 118.8, 115.2, 109.0, 108.8, 73.5, 65.3, 48.7 (q, J = 1.3 Hz). The carbon signal of SCF₃ was not observed.

2-Phenyl-3-(1H-pyrrol-2-yl)-4-[(trifluoromethyl)sulfanyl]isoxazolidine (7p).
¹H NMR [500 MHz, δ (ppm), CDCl₃]: 8.57 (bs, 1 H), 7.31–6.66 (m, 7 H), 6.27–6.15 (m, 1 H), 4.82 (d, J = 4.2 Hz, 1 H), 4.65–4.50 (m, 2 H), 4.26–4.10 (m, 1 H).
¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 149.6, 129.4, 126.0, 124.1, 118.1, 115.2, 109.1, 108.7, 70.3, 65.3, 48.7. The carbon signal of SCF₃ was not observed.

3-(Furan-2-yl)-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine (4q). According to the general procedure, the reaction of nitrone 6q (44 mg, 0.234 mmol) in a 1.5 mL PTFE high-pressure tube afforded isoxazolidine cis-4q (33.2 mg, 0.105 mmol, 45%) as an off white solid and isoxazolidines trans-4q and 7q (24.7 mg, 0.078 mmol, 34%) as a yellow oil, after column chromatography (heptane/CH₂Cl₂, 23:2 \rightarrow heptane/CH₂Cl₂, 0:1). Total yield: 79%.

rac-(3R,5R)-3-(Furan-2-yl)-2-phenyl-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (cis-4q). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 7.45 (dd, J = 1.8, 0.9 Hz, 1 H), 7.31–7.22 (m, 2 H), 7.10–6.98 (m, 3 H), 6.37 (dd, J = 3.2, 1.8 Hz, 1 H), 6.35 (d, J = 3.2 Hz, 1 H), 6.00 (dd, J = 8.1, 4.5 Hz, 1 H), 4.50 (dd, J = 8.8, 6.5 Hz, 1 H), 3.23 (dddq, J = 13.5, 8.8, 8.1, 0.9 Hz, 1 H), 2.63 (ddd, J = 13.5, 6.5, 4.5 Hz, 1 H). ¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 151.0, 148.7, 143.0, 130.2 (q, J = 307.7 Hz), 128.9, 124.2, 117.5, 110.8, 109.0, 80.5 (q, J = 2.6 Hz), 63.0, 42.4 (q, J = 1.2 Hz). FTIR [$\bar{\nu}$ (cm⁻¹)]: 2922, 1489, 1453, 1254, 1106, 1037, 936, 743, 680. HRMS (EI) m/z: [M^{**}] calcd for $C_{14}H_{12}F_3NO_2S$ 315.0541; found 315.0538. R_F : 0.48 (heptane/CH₂Cl₂, 7:3).

rac-(3R,5S)-3-(Furan-2-yl)-2-phenyl-5-

[(trifluoromethyl)sulfanyl]isoxazolidine (trans-4q). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 7.37 (dd, J = 1.8, 0.9 Hz, 1 H), 7.27–7.22 (m, 2 H), 7.09–7.05 (m, 2 H), 6.98 (tt, J = 7.3, 1.2 Hz, 1 H), 6.30 (dd, J = 3.3, 1.8 Hz, 1 H), 6.26 (dt, J = 3.3, 0.8, 1 H), 6.11 (dd, J = 7.4, 5.2 Hz, 1 H), 5.00 (dd, J = 7.7, 4.3, 1 H), 3.17 (dddq, J = 13.7, 7.4, 4.3, 0.8, 1 H), 2.77–2.67 (m, 1 H). ¹³C NMR [101 MHz, δ (ppm), CDCl₃]: 151.6, 149.2, 142.8, 130.0 (q, J = 307.7 Hz), 128.8, 123.0, 116.2, 110.6, 108.4, 81.8 (q, J = 2.5 Hz), 61.6, 41.6 (q, J = 1.2 Hz). FTIR $[\bar{\nu}$ (cm²¹)]: 2872, 1599, 1490, 1262, 1118, 1046, 757, 694. HRMS (EI) m/z: [M²¹] calcd for $C_{14}H_{12}F_3NO_2S$ 315.0541; found 315.0545. R_F : 0.39 (heptane/CH₂Cl₂, 7:3).

N-Benzyl-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine-3-carboxamide (4r). According to the general procedure, the reaction of nitrone **6r** (25 mg, 0.098 mmol) and alkene **2** in a 1 mL PTFE high-pressure tube afforded isoxazolidine cis-4r (3.2 mg, 0.0084 mmol, 9%; used for NMR characterization) as a white solid and a mixture of isoxazolidines cis- and trans-4r (16.1 mg, 0.042 mmol, 51%) as a yellow-white solid, after column chromatography (heptane/CH₂Cl₂, 17:3 \rightarrow CH₂Cl₂/MeOH, 24:1). FTIR [$\bar{\nu}$ (cm $^{-1}$)]: 3385, 3309 2930, 1668, 1597, 1454, 1161, 1029, 697. HRMS (EI) m/z: [M^{*+}] calcd for $C_{18}H_{17}F_3N_2O_2S$ 382.0963; found 382.0964. Total yield: 60%.

rac-(3*R*,5*R*)-*N*-Benzyl-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine-3-carboxamide (cis-4*r*). ¹H NMR [400 MHz, δ (ppm), CDCl₃]: 7.59–7.52 (m, 1 H), 7.37–7.27 (m, 7 H), 7.11–7.03 (m, 1 H), 7.02–6.97 (m, 2 H), 5.88 (dd, J = 8.1, 4.7 Hz, 1 H), 4.56 (dd, J = 14.8, 6.1 Hz, 1 H), 4.49 (dd, J = 14.8, 5.9 Hz, 1 H), 4.31 (dd, J = 9.6, 3.5 Hz, 1 H), 3.19–3.07 (m, 1 H), 2.75–2.65 (m, 1 H). ³C NMR [101 MHz, δ (ppm), CDCl₃]: 169.7, 148.8, 137.6, 129.6 (q, J = 308.1 Hz), 129.5, 128.9, 127.9, 127.8, 123.9, 115.1, 80.3 (q, J = 2.5 Hz), 67.6, 43.7, 39.4

rac-(*3R*,5*S*)-*N-Benzyl-2-phenyl-5-[(trifluoromethyl)sulfanyl]isoxazolidine-3-carboxamide (trans-4r).* ¹H NMR [500 MHz, δ (ppm), CDCl₃]: 7.52–7.43 (m, 1 H), 7.36–7.23 (m, 7 H), 7.11–7.02 (m, 3 H), 5.91 (t, J = 6.8 Hz, 1 H), 4.54–4.49 (m, 2 H), 4.46 (dd, J = 15.0, 5.6 Hz, 1 H), 3.29 (ddd, J = 13.5, 7.3, 3.9 Hz, 1 H), 2.62 (ddd, J = 13.9, 8.1, 6.2 Hz, 1 H). ¹³C NMR [126 MHz, δ (ppm), CDCl₃]: 169.1, 149.4, 137.6, 129.6 (q, J = 308.1 Hz), 129.0, 128.8, 127.7, 127.6, 123.6, 115.1, 82.3 (q, J = 2.5 Hz), 67.1, 43.5, 39.0.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website. Detailed optimization reaction conditions, ¹H NMR, ¹³C NMR spectra (PDF), computational details, ASA and EDA of **6m** and **6p** and Cartesian coordinates.

AUTHOR INFORMATION

Corresponding Author

*E-mail: f.m.bickelhaupt@vu.nl

*E-mail: floris.rutjes@ru.nl

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work has been supported by the FP7 Marie Curie Actions of the European Commission via the ITN ECHONET Network (MCITN-2012-316379) and NWO via the Planetary and Exo- Planetary Science program (PEPSci) and the Dutch Astrochemistry Network (DAN). We thank Dr. Paul B. White for his help in the assignment of the diastereo- and regioisomers.

REFERENCES

- (1) (a) Xu, X. H.; Matsuzaki, K.; Shibata, N. *Chem. Rev.* **2015**, *115*, 731–764. (b) Liu, J.; Chu, L.; Qing, F. L. *Org. Lett.* **2013**, *15*, 894–897. (c) Yang, Y. D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. *J. Am. Chem. Soc.* **2013**, *135*, 8782–8785. (d) Zhang, C. P.; Vicic, D. A. *J. Am. Chem. Soc.* **2012**, *134*, 183–185. (e) Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Xikaitani, D.; Lien, E. J. *J. Med. Chem.* **1973**, *16*, 1207–1216.
- (2) Aswapokee. N.; Neu. H. C. Antimicrob. Agents Chemother. **1979**, *1*5, 444–446.
- (3) Pommier, P.; Keita, A.; Wessel-Robert, S.; Dellac, B.; Mundt, H. C. *Rev. Med. Vet.* **2003**, *154*, 41.
- (4) Yagupolskii. L. M.; Maletina. I. I.; Petko. K. I.; Fedyuk. D. V.; Handrock. R.; Shavaran. S. S.; Klebanov. B. M.; Herzig. S. *J. Fluorine Chem.* **2001**, 109, 87–94.
- (5) (a) Jiang, L.; Qian, J.; Yi, W.; Lu, G.; Cai, C.; Zhang, W. Angew. Chem. Int. Ed. 2015, 54, 14965–14969. (b) Shao, X.; Wang, X.; Yang, T.; Lu, L.; Shen, Q. Angew. Chem. Int. Ed. 2013, 52, 3457–3460. (c) Weng, Z.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.; Yuan, Y.; Huang, K. W. Angew. Chem. Int. Ed. 2013, 52, 1548–1552. (d) Yang, Y. D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am. Chem. Soc. 2013, 135, 8782–8785. (e) Zhang, C. P.; Vicic, D. A. J. Am. Chem. Soc. 2012, 134, 183–185. (f) Teverovskiy, G.; Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 7312–7314.
- (6) (a) Kieltsch, I.; Eisenberger, P.; Togni, A. *Angew. Chem. Int. Ed.* **2007**, *46*, 754–757. (b) Pooput, C.; Dolbier, W. R., Jr.; Médebielle, M. *J. Org. Chem.* **2006**, *71*, 3564–3568. (c) Pooput, C.; Médebielle, M.; Dolbier, W. R., Jr. *Org. Lett.* **2004**, *6*, 301–303. (d) Billard, T.; Large, S.; Langlois, B. R. *Tetrahedron Lett.* **1997**, *38*, 65–68.
- (7) Harris, J. F. Jr. J. Org. Chem. 1967, 32, 2063-2074.
- (8) Haas, A.; Hinsken, W. J. Fluorine Chem. 1985, 28, 303-317.
- (9) For examples of 1,3-dipolar cycloaddition reactions between alkenes and nitrones, see: (a) Chakraborty, B.; Luitel, G. P. *Tetrahedron Lett.* **2013**, 54, 765–770. (b) Gothelf, K. V.; Jørgensen, K. A. *Chem. Commun.* **2000**, 1449–1458. (c) Simonsen, K. B.; Bayón, P.; Hazell, R. G.; Gothelf, K. V.; Jørgensen, K. A. *J. Am. Chem. Soc.* **1999**, 121, 3845–3853.
- (10) (a) Blanco-Ania. D.; Aben. R. W. M.; van Berkom. L. W. A.; Scheeren. H. W.; Rutjes. F. P. J. T. *Eur. J. Org. Chem.* **2017**, 3729–3737. (b) Blanco-Ania. D.; Aben. R. W. M.; van Berkom. L. W. A.;

- Scheeren. H. W.; Rutjes. F. P. J. T. *Eur. J. Org. Chem.* **2014**, 1438–1444. (c) Matsumoto, K.; Hamana H.; Iida, H. *Helv. Chim. Acta* **2005**, 88, 2033–2234. (d) Jenner, G. *Tetrahedron* **2002**, 58, 5185–5202.
- (11) Becker, A. R.; Sternson, L. A. PNAS 1981, 78, 2003-2007.
- (12) Penoni A.; Volkmann, J.; Nicholas, K. M. *Org. Lett.* **2002**, *4*, 699–701.
- (13) It is important to note that the assignment of the *cis* and *trans*-diastereoisomers of **7** could not be clarified by NMR studies.
- (14) (a) Becke, A. D. *Phys. Rev. A: At., Mol., Opt. Phys.* **1988**, *38*, 3098–3100. (b) Perdew, J. P. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1986**, *33*, 8822–8824. (c) Lenthe, E. V.; Baerends, E. J. *J. Comput. Chem.* **2003**, *24*, 1142–1156.
- (15) (a) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. *J. Comp. Chem.* **2001**, *22*, 931–967. (b) Fonseca Guerra, C.; Snijders, J. G;te Velde, G.; Baerends, E. J. *Theor. Chem. Acc.* **1998**, *99*, 391–403.
- (16) (a) Pye, C. C.; Ziegler, T. *Theor. Chem. Acc.* **1999**, *101*, 396–408. (b) Klamt, A.; Schüürmann, G. *J. Chem. Soc., Perkin Trans.* **2 1993**, 799–805. (c) Klamt, A. *J. Phys. Chem.* **1995**, *99*, 2224–2235. (d) Klamt, A, Jonas, V. *J. Chem. Phys.* **1996**, *105*, 9972–9981.
- (17) (a) Bickelhaupt, F. M.; Houk, K. N. *Angew. Chem. Int. Ed.* **2017**, 56, 10070–10086. (b) Wolters, L. P.; Bickelhaupt, F. M. *WIRES Comput. Mol. Sci.* **2015**, 5, 324–343; (c) Bickelhaupt, F. M. *J. Comput. Chem.* **1999**, 20, 114–128.
- (18) (a) Ess, D. H.; Houk, K. N. *J. Am. Chem. Soc.* **2008**, *1*30, 10187–10198. (b) Ess, D. H.; Houk, K. N. *J. Am. Chem. Soc.* **2007**, *129*, 10646–10647.
- (19) Bickelhaupt, F. M.; Baerends, E. J. In *Reviews in Computational Chemistry*; Lipkowitz, K. B., Boyd, D. B., Eds.; VCH: New York, 2000; Vol. 15, pp 1–86.
- (20) Ung, S.; Falguières, A.; Guy, A.; Ferroud, C. Tetrahedron Lett. 2005, 46, 5913-5917.
- (21) Wheeler, O. H.; Gore, P. H.; *J. Am. Chem. Soc.* **1956**, *78*, 3363–3366.
- (22) Raunak; Kumar, V.; Mukherjee, S.; Poonam; Prasad, A. K.; Olsen, C. E.; Schaeffer, S. J. C.; Sharma, S. K.; Watterson, A. C.; Errington, W.; Parmar, V. S. *Tetrahedron* 2005, *61*, 5687–5697.
- (23) Jiao, P.; Nakashima, D.; Yamamoto, H. *Angew. Chem. Int. Ed.* **2008**, 47, 2411–2413.
- (24) Ito, S.; Kubota, Y.; Asami, M. Tetrahedron Lett. 2014, 55, 4930-4932.
- (25) Xie, L.; Bai, H.; Li, J.; Yu, X.; Zhang, Z.; Fu, B. *Tetrahedron* **2017**, 73, 2923–2930.
- (26) Poulsen, P. H.; Vergura, S.; Monleón, A.; Jørgensen, D. K. B.; Jørgensen, K. A. *J. Am. Chem. Soc.* **2016**, *138*, 6412–6415.
- (27) Dooley, B. M.; Bowles, S. E.; Storr, T.; Frank. N. L. *Org. Lett.* **2007**, *9*, 4781–4783.
- (28) Andrade, M. M.; Barros, M. T.; Pinto, R. C. *Tetrahedron* **2008**, *64*, 10521–10530.