ORGANOMETALLICS

Catalytic Synthesis of Cyclic and Linear Germoxanes Mediated by an Iron Complex

Masahiro Kamitani,[†] Kozo Fukumoto,[‡] Ryosuke Tada,[†] Masumi Itazaki,[†] and Hiroshi Nakazawa^{*,†}

[†]Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan [‡]Kobe City College of Technology, Nishi-ku, Kobe 651-2194, Japan

Supporting Information

ABSTRACT: Six-membered cyclic germoxanes $(R_2GeO)_3$ were selectively prepared via the thermal reaction of $(alkyl)_2$ -GeH₂ in dimethylformamide (DMF). Linear metallagermoxanes with an E–O–Ge–O–E backbone (E = Si, Ge, Sn) were prepared by the reaction of Ph₂GeH₂ with R₃EH in DMF. Their cyclic and linear germoxane formations were achieved using an iron catalyst, (η^5 -C₃H₅)Fe(CO)₂Me. An iron carbene complex was proposed to be an intermediate in the catalytic reaction.

O olysiloxanes with a $(-Si-O-)_n$ backbone have been widely used in chemical synthesis because of their stability toward water and air as well as their insulation and heatproof properties. The germanium analogues, cyclic and linear polyand oligogermoxanes and their derivatives with Ge-O-E fragments (E = Si, Ge, Sn), have recently attracted considerable attention owing to their high refractive index, low dielectric constant, and biocompatible properties.¹ The most common method for the formation of (poly)germoxanes is the hydrolysis of germyl halides. However, the hydrolysis of R₂GeCl₂, for example, gives various types of germoxanes such as cyclic oligomers and linear oligomers/polymers. In addition, the selectivity and dispersity of these compounds have not yet been controlled. To construct an unsymmetrical Ge-O-E fragment, hydrolysis of a mixture of R₃GeCl and R₃ECl and dehydration of a mixture of R₃GeOH and R₃EOH can be employed; however, the desired product R₃Ge-O-ER₃ is always contaminated by homocondensation products such as R₃Ge-O-GeR₃ and R₃E-O-ER₃ because of the lack of selectivity.^{2,3} Selective formation of compounds with a Ge-O-E fragment has been achieved by condensation of germanium chloride with silanol (silanolate) (Scheme 1i),^{2d,4} germamine with silanol or stannanol (Scheme 1ii),⁵ and germoxane with silvl azides (Scheme 1iii).⁶ However, these processes have drawbacks: the removal of corrosive or explosive byproducts produced stoichiometrically is necessary, and the use of germanium, silicon, and tin substrates result in these methods being unstable toward moisture. To the best of our knowledge, there are only three reports of catalytic methods for Ge-O-Si bond formation. One is based on $B(C_6F_5)_3$ -catalyzed dehydrogenative coupling of hydrogermanes with silanols and dealkylative coupling of alkoxygermanes with hydrosilanes (Scheme 1iv).⁷ Another is based on Ru-catalyzed de-ethylene coupling of vinylgermane with silanol (Scheme 1v).⁸ The last process is scandium-catalyzed deisobutene coupling of allylgermane with silanol (Scheme 1vi).9

Scheme 1. Reported Methods for Preparation of an Unsymmetrical Ge–O–E Fragment

R ₃ GeCl	+ (M	MOSiR' ₃ = H, Li, Na)	-MCI	R₃Ge-O-	SiR'3	(i) ^{2d, 4}
R ₃ GeNR" ₂	+	HOER' ₃ (E = Si, Sn)	-HNR"2	R₃Ge-O-	ER'3	(ii) ⁵
R_3 GeOGe R_3	+	N ₃ SiR' ₃	-N ₃ GeR ₃	R ₃ Ge-O-	SiR'3	(iii) ⁶
R ₃ GeH	+	HOSiR'3	cat. B(C ₆ F ₅) ₃ -H ₂ ►	R₃Ge-O-	SiR'3	(iv) ⁷
R ₃ Ge(OEt)	+	HSiR'3	cat. B(C ₆ F ₅) ₃ −EtH	R₃Ge-O-	SiR'3 J	. ,
Et Ge∕ Et	+	HOSiR'3	cat. Ru ₃ (CO) ₁₂ -C ₂ H₄	I R' ₃ Si−O−G I	∃t }e−O−Sil ¦t	R' ₃ (v) ⁸
R ₃ Ge	+	HOSIR'3	$\frac{\text{cat. Sc(OTf)}_3}{-C_4H_8}$	R₃Ge-O-	SiR'3	(vi) ⁹

However, the catalytic formation of Ge–O–Ge and Ge–O–Sn bonds has not been reported to date. 10

Several reactions of hydrosilanes with amides such as dimethylformamide (DMF) in the presence of catalyst of iron complexes¹¹ and other transition-metal complexes¹² have been reported to form disiloxanes.¹³ In these reactions, the oxygen atom in the produced siloxane stems from amide, and the amide is finally reduced to amine. Although some reaction mechanisms have been proposed, there is little experimental evidence supporting such a reaction mechanism.

Herein, we report the first example of catalytic and selective synthesis of cyclic germoxanes and linear germoxanes with an E-O-Ge-O-E backbone (E = Si, Ge, Sn). In addition, we show

Received:March 5, 2012Published:April 4, 2012

an unprecedented reaction mechanism involving an iron carbene complex that could be isolated and characterized by X-ray analysis.

The reaction of an iron methyl complex, $CpFe(CO)_2Me$ (1; $Cp = \eta^5 \cdot C_5H_5$), with an excess of tertiary germanes R_3GeH (R = Et, Ph) in DMF gave no coupling products. This is in complete contrast to the formation of $R_3Si-O-SiR_3$ in the reaction of 1 with R_3SiH in DMF.^{11a,b} In contrast, a treatment of Et_2GeH_2 with a catalytic amount of 1 in DMF produced 1,1,3,3,5,5-hexaethylcyclotrigermoxane in an excellent yield (Table 1, entry 1). The product was identified on the basis

Table 1. Catalytic Synthesis of Germoxane by an Iron $Complex^a$

R	H Ge-R + H	NR'2	ca R" 100	t. 1 R₂) °C	$\begin{array}{c} \text{Ge} & \text{GeR}_2 \\ \text{I} & \text{I} \\ \text{O} & \text{O} \\ \text{Ge} \\ \text{R}_2 \end{array} + $	H H NR'2 R"
entry	R	R'	R″	time/h	cat. ^b /mol %	yield ^c /% (TON)
1	Et	Me	Н	6	5	>99 (20)
2	Et	Me	Me	6	5	70 (14)
3	Et	Bu	Н	6	5	56 (11)
4	Et	Ph	Н	6	5	23 (5)
5	Et	none		6	5	NR^d
6	Et	Me	Н	24	1	>99 (99)
7	Et	Me	Н	48	0.5	84 (168)
8	Et	Me	Н	48	0.1	38 (380)
9	"Bu	Me	Н	24	1	>99 (99)
10	^c Hex	Me	Н	24	1	>99 (99)
11	CH_2Ph	Me	Н	24	1	27 (27)
12	Ph	Me	Н	24	1	NR

^{*a*}Reaction conditions: 100 °C, sealed glass tube, $[R_2GeH_2]/[amide] = 1/10$. ^{*b*}On the basis of the $[R_2GeH_2]:[1]$ ratio. 'Isolated yield of the cyclic germoxane. ^{*d*}NR = no reaction.

of ¹H and ¹³C NMR and high-resolution mass spectra. The same cyclization reaction occurred using other amides as solvents but the conversion yields decreased (entries 2-4). No coupling products were obtained in the absence of amide (entry 5), indicating that amide serves as an oxygen supplier in this reaction. The cyclization reaction can even be achieved by reducing the amount of catalyst 1 from 5 to 0.1 mol % (entries 1, 6-8). The TON of 380 in entry 8 is the highest value shown by an iron catalyst in amide reduction reactions.¹¹ This cyclization reaction was effective for other secondary germanes, such as "Bu2GeH2, CHex2GeH2, and (PhCH2)2GeH2 (entries 9-11); however, interestingly, it was not effective for Ph_2GeH_2 (entry 12). This unreactivity of Ph2GeH2 appears to occur for electrical reasons, because the sterically more bulky cyclohexylsubstituted germane ('Hex2GeH2) gave the corresponding product in excellent yield under the same conditions (entry 10).

In general, the reaction of Et_2GeH_2 with R_3EH (E = Si, Ge, Sn) in DMF yields the cross coupling product $R_3E-O-GeEt_2-O-ER_3$ and homocoupling products such as $(Et_2GeO)_3$ and $R_3E-O-ER_3$, whereas the reaction of Ph_2GeH_2 with R_3EH may prevent the formation of $(Ph_2GeO)_3$. Therefore, it is possible that Ph_2GeH_2 is an appropriate starting material for selective metallagermoxane formation. We examined the reaction of Ph_2GeH_2 with hydrosilane, hydrogermane, and hydrostannane in DMF with an iron catalyst. The results are shown in Table 2. The treatment of Ph_2GeH_2 with 2 equiv of

Table 2. Synthesis of Linear Sila-, Germa-, and Stannagermoxanes a

2 R ₃ EH + R' ₂ GeH ₂							
cat. : CpFe(CO) ₂ Me (1), (η ⁵ -C ₅ Me ₅)Fe(CO) ₂ Me (2), Fe(CO) ₅ (3), [CpFe(CO) ₂] ₂ (4)							
entry	Е	R ₃	R'	cat.	yield ^b /%		
1	Si	Et ₃	Ph	1	88		
2	Si	Et ₃	Ph	2	TR^{c}		
3	Si	Et ₃	Ph	3	TR^{c}		
4	Si	Et ₃	Ph	4	38		
5^d	Si	Me2 ^t Bu	Ph	1	67		
6	Si	Me ₂ Ph	Ph	1	$TR^{c,e}$		
7	Si	Ph_3	Ph	1	$TR^{c,e}$		
8	Ge	Et ₃	Ph	1	42		
9	Ge	ⁿ Bu ₃	Ph	1	54		
10	Sn	ⁿ Bu ₃	Ph	1	35		
11	Si	Et ₃	Et	1	38 ^f		
12	Si	Et ₃	Bu	1	28 ^f		
Reaction	conditions:	100 °C. 2	24 h. sealed	glass tube.	[R ₂ GeH ₂]		

"Reaction conditions: 100 °C, 24 h, sealed glass tube, $[R_2GeH_2]/[R_3SiH]/[amide]/[1] = 10/20/50/1. ^bIsolated yield. ^cTR = trace amount of silagermoxane and a nearly quantitative yield of disiloxane were isolated. ^d48 h. ^cWhen other hydrosilanes, such as R₃SiH (R₃ = MePh₂, ("Hex)₃, (CHex)₃, (OEt)₃, Me₂(CH=CH₂)) were used, the corresponding disiloxanes were mainly obtained. ^fCyclogermoxane was also formed.$

 Et_3SiH in DMF in the presence of 1 (10 mol %) at 100 °C led to complete consumption of Ph_2GeH_2 and Et_3SiH after 24 h, and disilagermoxane, $Et_3Si-O-GePh_2-O-SiEt_3$, was obtained as a single product in 88% isolated yield (entry 1).

This is the first example of the selective formation of a compound with a Si-O-Ge-O-Si backbone. The catalytic activity of this reaction was examined for the following iron complexes: $Cp^*Fe(CO)_2Me$ (2; $Cp^* = \eta^5 - C_5Me_5$), $Fe(CO)_5$ (3), and $[CpFe(CO)_2]_2$ (4). In the cases of 2 and 3, Et_3Si-O- SiEt₃ was the main product (entries 2 and 3). Complex 4 gave the cross-coupling product in 38% yield with the formation of disiloxane (entry 4). Thus, complex 1 among these iron complexes showed the best catalytic activity toward the crosscoupling reaction. The reaction of ^tBuMe₂SiH formed the corresponding disilagermoxane (entry 5). The reactions of PhMe₂SiH and Ph₃SiH produced only a trace amount of disilagermoxane and yielded the corresponding disiloxanes as the main products (entries 6 and 7). Both silanes have reportedly been converted into disiloxanes by 1 in DMF.^{11a} This cross-coupling reaction could be applied to the coupling of tertiary germane (R_3GeH) or stannane (R_3SnH) with Ph₂GeH₂ (entries 8–10). The use of secondary germanes other than Ph2GeH2 caused formation of the corresponding disilagermoxanes, but cyclic germoxanes were also obtained (entries 11 and 12).

As described above, $CpFe(CO)_2Me(1)$ has been shown to be a good catalyst precursor for reactions in which R_2GeH_2 (R = Et, "Bu, °Hex, CH_2Ph) and DMF are converted into cyclic germoxane and NMe₃, and Ph₂GeH₂, DMF, and R₃EH (E = Si, Ge, Sn) are converted into $R_3E-O-GePh_2-O-ER_3$ and NMe₃. In these reactions, the essence is dehydrogenative oxygenation of an E-H portion by amide catalyzed by an iron complex to construct an E-O-E framework and NMe₃. It should be noted that there are two interesting aspects to these reactions. One is selective E-O-E bond formation,^{11a,b} and the other is amide reduction to amine via the E-H bond.^{11c,d,e,12} However, the role of an iron complex in the catalytic cycle remains to be determined. To elucidate this role, we attempted several related experiments, and found that stoichiometric reactions of germyl complexes, $Cp*Fe(CO)(py)(GeR_3)$ (R = Et (5), Ph (6)), with *N*,*N*-dimethylthioformamide corresponding to the thio derivative of DMF provided some information regarding the catalytic reaction mechanism (Scheme 2).

Scheme 2. Formation of Iron-Carbene Complexes (7, 8) and Their Reactivity

The reaction led to the isolation of carbene complexes, $Cp*Fe(CO)(CHNMe_2)(SGeR_3)$ (R = Et (7), Ph (8)). X-ray analysis was conducted, as single crystals of 8 were obtained. The molecular structure of 8 is depicted in Figure 1. Complex 8

adopts a three-legged piano-stool geometry in which the iron center bears one Cp*, one carbonyl, one thiogermoxy group, and one amino-substituted carbene ligand. The Fe1–C3 bond distance (1.883 Å) is shorter than that of a typical Fe=C bond in a Fischer-type carbene ligand.¹⁴ The bond length between the nitrogen atom N1 and the carbene carbon atom C3 (1.300 Å) is also shorter than that of a typical N–C single bond (1.47 Å). The sum of angles around N1 is 360.0°, which is consistent with the sp² hybridization of N1. These results indicate that the nitrogen lone pair is delocalized in the carbene carbon plane.

If the carbene complex bearing a SGeR₃ ligand is an intermediate, reaction of the isolated complexes with Ph_2GeH_2 would form NMe₃ and $Ph_2HGe-S-GeR_3$. Thermal reactions of 7 and 8 with Ph_2GeH_2 in C_6D_6 were performed, and the generation of NMe₃ was confirmed by ¹H NMR (a singlet at 2.05 ppm) analysis of both complexes, while formations of $Ph_2HGe-S-GeEt_3$ and $Ph_2HGe-S-GePh_3$ were confirmed by GC-MS for 7 and 8, respectively (Scheme 2). These results indicate that the carbene complexes 7 and 8 are the intermediates in the reduction of dimethylthioformamide by hydrogermane to give amine and thiogermoxane and that it is highly likely that an analogous carbene complex is formed in the catalytic reaction of formamide.

A part of the catalytic cycle proposed in the reaction of Ph_2GeH_2 with R_3EH in DMF promoted by $CpFe(CO)_2Me(1)$ to give $R_3E-O-GePh_2-O-ER_3$ is shown in Scheme 3. CpFe-(CO)₂Me reacts with Ph₂GeH₂ to generate an actual catalyst, the 16e species $CpFe(CO)(GePh_2H)$ (A), via CO insertion into the Fe-Me bond, oxidative addition of a Ge-H bond of Ph₂GeH₂, and reductive elimination of MeC(O)H (the formation was confirmed by ¹H NMR, with a quintet signal at 9.23 ppm and a doublet signal at 2.34 ppm in C_6D_6).¹⁵ Next, amide coordinates to the active species in an η^2 fashion using the C=O π electrons to give **B**, followed by germyl migration to the oxygen atom to generate C. A similar silvl migration to nitrile nitrogen in a transition-metal coordination sphere has been proposed for the reaction of $CpFe(CO)_2Me$ with R_3SiH and RCN^{16} and for reactions of $CpFe(CO)_2Me$ and CpMo(CO)₃Me with R₃SiH and R₂NCN.¹⁷ Dissociation of the oxygen in C from the iron and subsequent C–O oxidative addition of the ligand to Fe forms the Fischer-type carbene complex D. The analogous iron complex with thiogermoxy and carbene ligands has been isolated and characterized as mentioned above. If E-H bond addition of R₃EH to the Fe=C double bond occurs, complex E will be formed. A similar addition of silane to a carbene complex has been proposed.¹⁸ Reductive elimination of R₃E-O-GePh₂H from E gives F. Pannell and co-workers proposed a similar complex F as an intermediate in the formation of disiloxane by 1.^{11b} Although a stepwise mechanism is proposed in the progression from D to F, a concerted mechanism cannot be ruled out. Oxidative addition of a Ge-H bond in Ph₂GeH₂ toward F results in the formation of G. Subsequent reductive elimination of H and CH₂NMe₂ ligands yields NMe₃ with regeneration of A. R₃E-O-GePh₂H formed in this cycle can be involved in the catalytic cycle in place of Ph₂GeH₂ to finally give R₃R-O-GePh₂ $-O-ER_3$. In the reaction of CpFe(CO)₂Me with (alkyl)₂GeH₂ and DMF where R₃EH does not exist, a complex corresponding to D reacts with $(alkyl)_2GeH_2$ to give (alkyl)₂HGe–O–Ge(alkyl)₂H. This compound is subsequently involved in the catalytic cycle to finally give the six-membered cyclic germoxane.

In summary, $CpFe(CO)_2Me$ was found to be a good precursor for dehydrogenative oxygenation of $(alkyl)_2GeH_2$ in the reaction with DMF to form six-membered cyclic germoxanes. The iron complex also works as a precursor of selective preparation of the E–O–Ge–O–E backbone (E = Si, Ge, Sn) in the reaction of Ph₂GeH₂ with R₃EH in DMF. This is the first example of the selective preparation of compounds in which five group 14 elements and oxygen are used and in which the elements are arrayed linearly and alternately. The catalytic cycle including an iron carbene complex was proposed on the basis of the isolation and characterization of the iron carbene complex bearing the thiogermoxyl ligand prepared in the reaction of an iron germyl complex with thioformamide. The findings presented here will open a new field of material chemistry of E–O–E' compounds (E, E' = Si, Ge, Sn) that has not yet been

Scheme 3. Proposed Catalytic Cycle

thoroughly explored and will have a strong impact on wellinvestigated silicon chemistry.

ASSOCIATED CONTENT

S Supporting Information

Text giving detailed experimental procedures and the characterization data for the products and a CIF file giving crystallographic data for **8**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: nakazawa@sci.osaka-cu.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by a Challenging Exploratory Research grant (No. 23655056) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

 (a) Murugavel, R.; Voigt, A.; Walawalkar, M. G.; Roesky, H. W. Chem. Rev. 1996, 96, 2205. (b) Duverneuil, G.; Mazerolles, P.; Perrier, E. Appl. Organomet. Chem. 1994, 8, 119. (c) Seyferth, D.; Alleston, D. L. Inorg. Chem. 1963, 2, 418. (d) Schmidbaur, H.; Schmidt, M. Chem. Ber 1961, 94, 2137. (e) Malisch, W.; Kuhn, M. Chem. Ber 1974, 107, 979. (2) Formation of Ge–O–Ge bonds: (a) Metlesicasn, W.; Zeiss, H. J. Am. Chem. Soc. 1960, 82, 3324. (b) Nanjo, M.; Sasage, T.; Mochida, K. J. Organomet. Chem. 2003, 667, 135. (c) Drager, M.; Haberle, K. J. Organomet. Chem. 1985, 280, 183. (d) Puff, H.; Bockmann, M. P.; Kok, T. R.; Schuh, W. J. Organomet. Chem. 1984, 268, 197.

(3) Beckmann, J.; Jurkschat, K.; Rabe, S.; Schurmann, M.; Dakternieks, D.; Duthie, A. *Organometallics* **2000**, *19*, 3272.

(4) (a) Mazzah, A.; Haoudi-Mazzah, A.; Noltemeyer, M.; Roesky, H. W. Z. Anorg. Allg. Chem. **1991**, 604, 93. (b) Schmidbaur, H.; Hussek, H. J. Organomet. Chem. **1964**, 1, 235. (c) Schmidbaur, H.; Schmidt, M. Chem. Ber. **1961**, 94, 1138. (d) Puff, H.; Kok, T. R.; Nauroth, P.; Schuh, W. J. Organomet. Chem. **1985**, 281, 141.

(5) Mysin, N. I.; Dergunov, Yu. I.; Vodop'yanov, V. G.; Gerega, V. F.; Yurkova, N. N. Zh. Obshch. Khim. **1982**, *52*, 1190.

(6) Zhou, Q.; Weber, W. P. J. Organomet. Chem. 1988, 342, 291.

(7) Ignatovich, L.; Muravenko, V.; Grinberga, S.; Lukevics, E. Chem. Heterocycl. Compd. 2006, 42, 268.

(8) Hreczycho, G.; Frackowiak, D.; Pawluc, P.; Marciniec, B. *Tetrahedron Lett.* **2011**, *52*, 72.

(9) Hreczycho, G.; Pawłuć, P.; Marciniec, B. New J. Chem. **2011**, 35, 2743. (10) Catalytic Ge–O–Ge synthesis and stoichiometric E–O–E' (E, E' = Si, Ge, Sn) bond formation using a Mo complex was very recently reported: Arias-Ugarte, R.; Sharma, H. K.; Morris, A. L. C.; Pannel, K. H. J. Am. Chem. Soc. **2012**, 134, 848.

(11) (a) Itazaki, M.; Ueda, K.; Nakazawa, H. Angew. Chem., Int. Ed.
2009, 48, 3313. (e) *ibid*, 48, 6938. (b) Sharma, H. K.; Pannell, K. H. Angew. Chem., Int. Ed. 2009, 48, 7052. (c) Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 9507. (d) Sunada, Y.; Kawakami, H.; Motoyama, Y.; Nagashima, H. Angew. Chem., Int. Ed. 2009, 48, 9511.

(12) (a) Kopylova, L. I.; Ivanova, N. D.; Voronkov, M. G. Zh. Obshch. Khim. **1985**, 55, 1649. (b) Matsubara, K.; Iura, T.; Maki, T.; Nagashima, H. J. Org. Chem. **2002**, 67, 4985. (c) Sasakuma, H.; Motoyama, Y.; Nagashima, H. Chem. Commun. **2007**, 4916. (d) Hanada, S.; Motoyama, Y.; Nagashima, Y. Tetrahedron Lett. **2006**, 47, 6137. (e) Igarashi, M.; Fuchigami, T. Tetrahedron Lett. **2001**, 42, 1945. (f) Ohta, T.; Kamiya, M.; Nobutomo, M.; Kusui, K.; Furukawa, I. Bull. Chem. Soc. Jpn. **2005**, 78, 1856. (g) Kuwano, R.; Takahashi, M.; Ito, Y. Tetrahedron Lett. **1998**, 39, 1017. (h) Motoyama, H.; Mitsui, K.; Ishida, T.; Nagashima, H. J. Am. Chem. Soc. **2005**, 127, 13150. (i) Selvakumar, K.; Harrod, J. F. Angew. Chem. **2001**, 113, 2187; Angew. Chem., Int. Ed. **2001**, 40, 2129. (j) Sakai, N.; Fuhji, K.; Konakahara, T. Tetrahedron Lett. **2008**, 49, 6873. (k) Hanada, S.; Ishida, T.; Motoyama, Y.; Nagashima, H. J. Org. Chem. **2007**, 72, 7551. (l) Parl, S.; Brookhart, M. J. Am. Chem. Soc. **2012**, 134, 640.

(13) Reactions of hydrosilane with thioamide catalyzed by Fe and Mo complexes to form disilathiane were recently reported:
(a) Fukumoto, K.; Sakai, A.; Oya, T.; Nakazawa, H. *Chem. Commun.* **2012**, 48, 3809. (b) Arias-Ugarte, R.; Sharma, H. K.; Metta-Magana, A. J.; Pannell, K. H. *Organometallics* **2011**, 30, 6506.

(14) For example see: Dillen, J. L. M.; van Dyk, M. M.; Lotz, S. J. Chem. Soc., Dalton Trans. 1989, 2199.

(15) Itazaki, M.; Kamitani, M.; Nakazawa, H. *Chem. Commun.* **2011**, 47, 7854.

(16) (a) Nakazawa, H.; Kawasaki, T.; Miyoshi, K.; Suresh, C. H.; Koga, N. Organometallics **2004**, 23, 117. (b) Nakazawa, H.; Kamata, K.; Itazaki, M. Chem. Commun. **2005**, 4004. (c) Nakazawa, H.; Itazaki, M.; Kamata, K.; Ueda, K. Chem. Asian J. **2007**, 2, 882.

(17) Fukumoto, K.; Oya, T.; Itazaki, M.; Nakazawa, H. J. Am. Chem. Soc. 2009, 131, 38.

(18) (a) Parisi, M.; Solo, A.; Wulff, W. D. Organometallics **1998**, *17*, 3696. (b) Rankin, M. A.; MacLean, D. F.; McDonald, R.; Ferguson, M. J.; Lumsden, M. D.; Stradiotto, M. Organometallics **2009**, *28*, 74.