## Asymmetric Synthesis of the Carbocyclic Nucleoside Building Block (*R*)-(+)-4-Aminocyclopentenone Using $\delta$ -Amino $\beta$ -Ketophosphonates and Ring-Closing Metathesis (RCM)

LETTERS 2004 Vol. 6, No. 8 1269–1272

ORGANIC

## Franklin A. Davis\* and Yongzhong Wu

Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122

fdavis@temple.edu

Received February 4, 2004

ABSTRACT





Amino keto-2,7-dienes undergo ring-closing metathesis (RCM) to give 4-aminocyclopentenones, valuable intermediates in the asymmetric construction of carbocyclic nucleosides. The key amino ketodienes were prepared using  $\delta$ -amino  $\beta$ -ketophophonates, a new sulfinimine-derived chiral building block, and HWE chemistry.

(*R*)-(+)-4-Aminocyclopentenone **1** is a valuable chiral building block for the asymmetric synthesis of structurally diverse antiviral and anticancer carbocyclic nucleosides such as aristeromycin and noraristeromycin (Scheme 1).<sup>1</sup> For example, stereoselective reduction of **1** would provide the (1S,4R)-(+)-4-aminocyclopent-2-enol derivative **2**.<sup>2</sup> Palladium(0)-catalyzed coupling reactions, via the  $\pi$ -allylpalladium complex, are available for stereoselective introduction of a variety of substituents at either the hydroxy or amino positions in **2**.<sup>1a</sup> For instance, Trost et al. devised methodology for conversion of the benzoate of **2** to a carbomethoxy group using phenylsulfonyl nitro-methane and an oxidative Nef reaction.<sup>3</sup> Miller and co-workers demonstrated that nitrogen bases such as adenine could be attached with retention of configuration via the corresponding acetate.<sup>4</sup> Miller has also developed a procedure for replacing the hydroxy with a carbomethoxy group.<sup>5</sup> Similarly, the amino group can also be replaced with a suitable nitrogen base.<sup>6</sup> Asymmetric palladium-catalyzed desymmetrization of *meso*-



<sup>(1)</sup> For reviews on carbocyclic nucleosides and their syntheses, see: (a) Crimmins, M. T. *Tetrahedron* **1998**, *54*, 9229. (b) Mansour, T. S.; Storer, R. *Curr. Pharm. Des.* **1997**, *3*, 227. (c) Marquez, V. E. In *Advances in Antiviral Drug Design*; De Clercq, E., Ed.; JAI Press: Greenwich, CT, 1966; Vol. 2, p 89. (d) Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, S. R.; Earl, R. A.; Guedj, R. *Tetrahedron* **1994**, *50*, 10611. (e) Borthwick, A. D.; Boggadike, K. *Tetrahedron* **1992**, *48*, 571.

<sup>(2)</sup> For related methods for the synthesis of **2**, see: (a) Schaudt, M.; Blechert, S. J. *Org. Chem.* **2003**, 68, 2913. (b) O'Brien, P.; Towers, T. D.; Voith, M. *Tetrahedron Lett.* **1998**, *39*, 8175.

<sup>(3)</sup> Trost, B. M.; Stenkamp, D.; Pulley, S. R. Chem. Eur. J. 1995, 1, 568.

3,5-dihydroxy-1-cyclopentene was the key step in Trost's synthesis of **2**,<sup>3</sup> while Miller employed a Diels–Alder strategy using a chiral auxiliary<sup>4,7</sup> or an enzyme kinetic resolution<sup>8</sup> process to obtain enantiomerically pure **2**. To date, the only asymmetric synthesis of 4-aminocyclopentenone (**1**, NAc) is that described by Zwanenburg et al., which involved the pyrolysis of tricyclic[5.2.1.0<sup>2,6</sup>]decenyl enaminones.<sup>9</sup> The tricyclic decadienone system was prepared in a series of steps and employed a dynamic kinetic resolution to give enantiopure material.<sup>9,10</sup> We describe here a new synthesis of (*R*)-(+)-**1** that is highlighted by a novel olefin-enone ring-closing metathesis reaction and utilizes  $\delta$ -amino  $\beta$ -ketophosphonates, new sulfinimine-derived chiral building blocks.<sup>11</sup>

Initially, we envisioned that (+)-1 could be prepared using ring-closing olefin metathesis (RCM) with an appropriate amino ketodiene;<sup>12</sup> however, we found only a single example of RCM leading to a cyclic enone with less than six-carbons.<sup>13</sup> We were also aware that the RCM reaction is sensitive to the electronic and steric properties of the alkene,<sup>12–14</sup> as well as the substituent on nitrogen,<sup>12,15</sup> so we knew our amino ketodiene synthesis had to be flexible enough to allow a variety of substituents to be easily installed in the alkenes and at nitrogen. Sulfinimine-derived  $\delta$ -amino  $\beta$ -ketophosphonates appeared to meet these synthetic objectives: diversely substituted sulfinimines are readily available<sup>16</sup> and Horner–Wadsworth–Emmons (HWE) chemistry would provide the  $\alpha,\beta$ -unsaturated keto portion (Scheme 2).

Although  $\beta$ -ketophosphonates are well-known, there are few examples of enantiomerically pure  $\delta$ -amino  $\beta$ -ketophosphonates.<sup>17</sup> Nucleophilic ring opening of  $\beta$ -lactams with methyl phosphonate anions has generally been employed for the synthesis of enantiomerically pure samples;<sup>18,19</sup> however,

(6) Jung, M. E.; Rhee, H. J. Org. Chem. **1994**, 59, 4719.

(11) For leading references to sulfinimine derived chiral building blocks, see: Davis, F. A.; Rao, A.; Carroll, P. J. *Org. Lett.* **2003**, *5*, 3855.

(12) For reviews and leading references on ring-closing metathesis, see:
(a) Grubbs, R. H.; Chang, S. *Tetrahedron* **1998**, *54*, 4413. (b) Hanessian, S.; Margarita, R.; Hall, A.; Johnstone, S.; Tremblay, M.; Parlanti, L. J. Am. Chem. Soc. **2002**, *124*, 13342. (c) Felpin, F.-X.; Lebreton, J. *Eur. J. Org. Chem.* **2003**, 3693. (d) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.;

Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 11360.

(13) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 3783.

(14) Kirkland, T. A.; Grubbs, R. H. J. Org. Chem. 1997, 62, 7310.

(15) (a) Chippindale, A. M.; Davies, S. G.; Iwamoto, K.; Parkin, R. M.;
Smethurst, C. A. P.; Smith, A. D.; Rodriguez-Solla, H. *Tetrahedron* 2003, 59, 3253 and references therein. (b) Miller, S. J.; Blackwell, H. E.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 9606.

(16) For reviews on the chemistry of sulfinimines, see: (a) Zhou, P.; Chen, B.-C.; Davis, F. A. In *Advances in Sulfur Chemistry*; Rayner, C. M., Ed.; JAI Press: Stamford, CT, 2000; Vol. 2, pp 249–282. (b) Davis, F. A.; Zhou, P.; Chen, B.-C. *Chem. Soc. Rev.* **1998**, *27*, 13. (c) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. **2002**, *35*, 984.

(17) For a review, see: McKenna, C. E.; Kashemirov, B. A. Top. Curr. Chem. 2002, 220, 201.

(18) (a) Baldwin, J. E.; Adlington, R. M.; Russell, A. T.; Smith, M. L. *Tetrahedron* **1995**, *51*, 4733. (b) Lee, H. K.; Kim, E.-K.; Pak, C. S. *Tetrahedron Lett.* **2002**, *43*, 9641.



this procedure lacks generality, and  $\beta$ -lactams with diverse functionality are not easily available. We found that the reaction of sulfinimine-derived  $\beta$ -amino esters<sup>20</sup> with lithium dimethyl methyl phosphonate produced N-sulfinyl  $\delta$ -amino  $\beta$ -ketophosphonates in excellent yield. Thus, treatment of N-sulfinyl  $\beta$ -amino esters  $(S_{S},R)$ -(+)-4 with 5 equiv of lithium dimethyl methylphosphonate afforded the corresponding N-sulfinyl  $\delta$ -amino  $\beta$ -ketophosphonates (S<sub>S</sub>,R)-(+)-5 in 81–83% isolated yield (Scheme 2). Lesser amounts of lithium phosphonate resulted in incomplete reaction. Workup consisted of flash chromatography followed by Kugelrohr distillation to remove the excess dimethyl methylphosphonate. Next (+)-5 was treated with 10 equiv of acetaldehyde followed by DBU to afford the  $\alpha,\beta$ -unsaturated amino ketone (+)-6 in nearly quantitative yield. The 16.4 Hz coupling constant suggests that (+)-6 has the *E* geometry. The  $\beta$ -amino ester (+)-4 was prepared by reaction of the sulfinimine (S)-(+)- $3^{20}$  with an excess of the sodium enolate of methyl acetate, as previously described.<sup>21</sup>

Initial studies aimed at ring closure using RCM were performed using amino ketodienes (+)-**6a** (R = H) and **6b** (R = Me) with Grubb's first-generation catalyst **I** (Scheme 3). With 2–30 mol % catalyst, for up to 40 h in refluxing DCM, no reaction was observed and starting material was quantitatively recovered (Table 1, entries 1 and 3). With the second-generation catalyst **II**, **6a** and **6b** gave (+)-**9** in 85 and 25% yields, respectively (Table 1, entries 2 and 4). Because we believed that the *N*-sulfinyl group may be poisoning the catalyst, **6a** and **6b** were transformed into *N*-Ts derivatives (-)-**7a** and **7b** in 83 and 85% yields, respectively, by *m*-CPBA oxidation. The *N*-Boc derivatives (-)-**8** were also prepared in 85–89% yield by reaction of (+)-**6** with

(20) Davis, F. A.; Reddy, R. E.; Szewczyk, J. M.; Reddy, G. V.; Portonovo, P. S.; Zhang, H.; Fanelli, D.; Reddy, T.; Zhou, P.; Carroll, P. J. J. Org. Chem. **1997**, 62, 2555.

<sup>(4)</sup> Ghosh, A.; Ritter, A. R.; Miller, M. J. J. Org. Chem. 1995, 60, 5808.
(5) Mineno, T.; Miller, M. J. J. Org. Chem. 2003, 68, 6591.

<sup>(7)</sup> Vogt, P. F.; Hansel, J.-G.; Miller, M. J. Tetrahedron Lett. 1997, 38, 2803.

<sup>(8)</sup> Mulvihill, M. J.; Gage, J. L.; Miller, M. J. J. Org. Chem. 1998, 63, 3357.

<sup>(9)</sup> Ramesh, N. G.; Klunder, A. J. H.; Zwanenburg, B. J. Org. Chem. 1999, 64, 3635.

<sup>(10)</sup> Bakkeren, F. J. A. D.; Ramesh, N. G.; de Goot, D.; Klunder, A. J. H.; Zwanenburg, B. *Tetrahedron Lett.* **1996**, *37*, 8003.

<sup>(19)</sup> Rudisill, E. E.; Whitten, J. P. Synthesis 1994, 85.

<sup>(21)</sup> Davis, F. A.; Reddy, R. E.; Szewczyk, J. M. J. Org. Chem. 1995, 60, 7037.



TFA/MeOH followed by treatment with Boc<sub>2</sub>O/Et<sub>3</sub>N and the catalyst DMAP. Results of RCM cyclization of these amino ketodienes derivatives with catalysts **I** and **II** are summarized in Table 1. Inspection of Table 1 reveals that in all cases, with one exception, both catalysts gave good to excellent yields of the amino cyclopentenones, **1**, **9**, and **10**, when R = H in amino ketodienes **6a**, **7a**, and **8a** (Table 1, entries 2, 5, 6, 9, and 10). The exception was *N*-sulfinylamino ketodiene (+)-**6a** where there was no reaction with catalysts **I** (Table 1, entry 1). When R = Me in **6b**, **7b**, and **8b**, no

 Table 1. Ring-Closing Metathesis of Amino Ketodienes with

 Grubb's Catalysts in DCM at Reflux

|       |                          |                            | products                |
|-------|--------------------------|----------------------------|-------------------------|
|       | amino                    |                            | (% isolated             |
| entry | ketodiene                | catalyst/conditions        | yields)                 |
| 1     | (+)-6a (R = H)           | <b>I</b> (2–30 mol %) 40 h | NR                      |
| 2     |                          | II (5 mol %) 16 h          | (R)-(+)- <b>9</b> (85)  |
| 3     | (+)- <b>6b</b> (R = Me)  | I (2-30 mol %) 40 h        | NR                      |
| 4     |                          | <b>II</b> (5 mol %) 16 h   | (R)-(+)- <b>9</b> (25)  |
| 5     | (-)-7a (R = H)           | <b>I</b> (2 mol %) 18 h    | (R)-(+)- <b>10</b> (94) |
| 6     |                          | II (5 mol %) 18 h          | (R)-(+)- <b>10</b> (95) |
| 7     | (−)- <b>7b</b> (R = Me)  | I (2-30 mol %) 40 h        | NR                      |
| 8     |                          | II (5 mol %) 18 h          | (R)-(+)- <b>10</b> (8)  |
| 9     | (-)- <b>8a</b> (R = H)   | I (2 mol %) 18 h           | (R)-(+)-1 (97)          |
| 10    |                          | II (2 mol %) 16 h          | (R)-(+)-1 (97)          |
| 11    | (–)- <b>8b</b> (R = Me)  | <b>I</b> (2 mol %) 16 h    | NR                      |
| 12    |                          | <b>II</b> (2 mol %) 16 h   | (R)-(+)- <b>1</b> (21)  |
| 13    | (+)-13a (R = H)          | I (20 mol %) 18 h          | (+)-14 (58)             |
| 14    |                          | II (5 mol %) 18 h          | (+)-14 (93)             |
| 15    | (+)- <b>13b</b> (R = Me) | <b>I</b> (10 mol %) 16 h   | NR                      |
| 16    |                          | <b>II</b> (5 mol %) 16 h   | (+)- <b>14</b> (84)     |
|       |                          |                            |                         |

reaction was observed with catalyst **I** (Table 1, entries 3, 7, and 11), and poor yields of 8-25% were noted for catalyst **II** (Table 1, entries 4, 8, and 12). These results suggest a steric effect in which the methyl group R may hinder formation of the initial "ruthenacycle" necessary for meta-thesis. While the poor results with (+)-6 and catalyst **I**, which is less reactive than **II**, suggest mild poisoning of the catalyst by the *N*-sulfinyl moiety, additional studies will be necessary to confirm this.

The *N*-Boc group in (R)-(+)-1 was removed by treatment with 1.5 N HCl to give the hydrochloride (R)-(+)-11 in quantitative yield (Scheme 4). Luche reduction (NaBH<sub>4</sub>/



CeCl<sub>3</sub>) afforded a separable 8:1 mixture of diastereomeric 1,4-amino alcohols and a 76% yield of the major diastereoisomer (1*S*,4*R*)-(+)-**2**. These materials had properties consistent with literature values, which further establishes their structures.<sup>8,10</sup> With 2.3 equiv of MeLi at -40 °C, (*R*)-(+)-**1** gave a 10:1 mixture of isomeric alcohol (Scheme 4). The major isomer (1*S*,4*R*)-(+)-**12** was isolated in 75% yield, and NOE studies were used to determine its structure. Methylmagnesium bromide resulted in lower ratios (2:3) and incomplete reaction. The stereochemistry of the methyllithium reaction is consistent with attack of this reagent from the sterically least hindered direction. Roy and Schneller reported related results.<sup>22</sup>

Amino ketodiene  $(S_S,R)$ -(+)-**6a** was stereoselectively reduced with LiHBEt<sub>3</sub> (Super-Hydride) at -78 °C to give exclusively (+)-**13** in 76% isolated yield (Scheme 5). The anti stereochemistry was assigned to (+)-**14** on the basis of similar reductions of *N*-sulfinyl  $\beta$ -amino ketones<sup>23</sup> and its conversion to a product of known absolute configuration (see below). With catalysts **I** and **II**, (+)-**13a** (R = H) gave 58 and 93% isolated yields, respectively, of the amino cyclopentenone (+)-**14** (Table 1, entries 13 and 14). With (+)-**13b** (R = Me), there was no reaction with catalyst **I**, but **II** afforded (+)-**14** in 84% yield (Table 1, entries 15 and 16). These results may suggest that the metathesis process is

<sup>(22)</sup> Roy, A.; Schneller, S. W. J. Org. Chem. 2003, 68, 9269.

<sup>(23)</sup> Davis, F. A.; Prasad, K. R.; Nolt, B. M.; Wu, Y. Org. Lett. 2003, 5, 925.



inhibited to some extent by the electron-deficient nature of the  $\alpha$ , $\beta$ -unsaturated carbonyl unit (Table 1, compare entries 1 and 2 with entries 13 and 14), but additional studies are necessary to validate this hypothesis.<sup>24</sup>

Treatment of the *N*-Boc 1,4-amino alcohol (-)-15, prepared as before from (+)-13a, with 5 mol % catalyst I resulted in the 1,4-amino alcohol carbocycle (+)-16 in 91% yield (Scheme 5). This material had properties consistent with literature values<sup>25</sup> and confirms the anti stereochemistry for the reduction of the  $\beta$ -amino ketones (+)-6. Furthermore, this result illustrates that it is possible to readily obtain the *trans*-1,4-amino alcohol carbocycle (+)-16 by stereoselective reduction of the amino ketodiene prior to RCM cyclization.

In summary, ring-closing metathesis has been employed in the asymmetric synthesis of (*R*)-(+)-aminocyclopentenone **1**, a valuable chiral building block for the synthesis of antiviral and anticancer carbocyclic nucleosides.  $\delta$ -Amino  $\beta$ -ketophosphonates, a new sulfinimine-derived chiral building block, and HWE chemistry were employed in the synthesis of the key amino ketodienes units.

**Acknowledgment.** We thank Seung H. Lee for preliminary studies. This work was supported by a grant from the National Institute of General Medical Sciences 57870.

**Supporting Information Available:** Experimental procedures and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

## OL049795V

<sup>(24) (</sup>a) Fu, G. C.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. **1993**, 115, 9856. (b) Rutjes, F. P. J. T.; Schoemaker, H. E. Tetrahedron Lett. **1997**, 38, 677. (c) Krikstolaityte, S.; Hammer, K.; Undheim, K. Tetrahedron Lett. **1998**, 39, 7595. (d) Paquette, L. A.; Efremov, I. J. Am. Chem. Soc. **2001**, 123, 4492.

<sup>(25)</sup> Wu, Y.; Woster, P. M. J. Med. Chem. 1992, 35, 3196.