
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gpss20

Phosphorus, Sulfur, and Silicon and the Related Elements

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gpss20

Optimized synthesis of selected 4-
oxybenzaldehyde and 2,2-dioxybiphenyl
cyclotriphosphazene derivatives

Jipeng Chen , Le Wang , Yunxia Yang , Mengsheng Xu , Jinhua Xie & Pan Liu

To cite this article: Jipeng Chen , Le Wang , Yunxia Yang , Mengsheng Xu , Jinhua Xie &
Pan Liu (2020): Optimized synthesis of selected 4-oxybenzaldehyde and 2,2-dioxybiphenyl
cyclotriphosphazene derivatives, Phosphorus, Sulfur, and Silicon and the Related Elements, DOI:
10.1080/10426507.2020.1802275

To link to this article:  https://doi.org/10.1080/10426507.2020.1802275

View supplementary material 

Published online: 25 Aug 2020.

Submit your article to this journal 

Article views: 6

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gpss20
https://www.tandfonline.com/loi/gpss20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10426507.2020.1802275
https://doi.org/10.1080/10426507.2020.1802275
https://www.tandfonline.com/doi/suppl/10.1080/10426507.2020.1802275
https://www.tandfonline.com/doi/suppl/10.1080/10426507.2020.1802275
https://www.tandfonline.com/action/authorSubmission?journalCode=gpss20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gpss20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10426507.2020.1802275
https://www.tandfonline.com/doi/mlt/10.1080/10426507.2020.1802275
http://crossmark.crossref.org/dialog/?doi=10.1080/10426507.2020.1802275&domain=pdf&date_stamp=2020-08-25
http://crossmark.crossref.org/dialog/?doi=10.1080/10426507.2020.1802275&domain=pdf&date_stamp=2020-08-25


Optimized synthesis of selected 4-oxybenzaldehyde and 2,2-dioxybiphenyl
cyclotriphosphazene derivatives

Jipeng Chen, Le Wang, Yunxia Yang, Mengsheng Xu, Jinhua Xie, and Pan Liu

College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China

ABSTRACT
Selected 4-oxybenzaldehyde and 2,2-dioxybiphenyl cyclotriphosphazene derivatives were synthe-
sized via substitution reactions through tailored control. The reactions of cyclotriphosphazene with
4-oxybenzaldehyde and 2,2-dioxybiphenyl gave the following synthesized derivatives: one mono-
substituted open-chain compound, N3P3Cl5(O2C7H5) (1, 69%); mono spiro, N3P3Cl4(O2C12H8) (2,
91.1%); non-gem tri-substituted, N3P3Cl3 (O6C21H15) (3, 17%); dispiro, N3P3Cl2(O4C24H16) (4, 92.3%);
penta-substituted, N3P3Cl(O10C35H25) (5, 92%)； hexa-substituted, N3P3(O12C42H30). Most of these
derivatives (1–6) are obtained with good yield (up to 97%), This work provides a simple and available
approach to obtain versatile cyclotriphosphazene derivatives, which is expected to further promote
the use of HCCP as phosphorus platform for the construction of multi-functional materials.
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Introduction

As an important branch of phosphorus chemistry, the hexa-
chlorocyclotriphosphazene ring (N3P3Cl6, HCCP) is a versa-
tile symmetric heterocycle with six active chlorines[1–3]

(Figure 1) which can be easily functionalized via selective
substitutions of the six chlorines to produce many deriva-
tives to showcase a wide range and unique chemical and
biological properties, and has received extensive atten-
tion.[4–7] Phosphorus chemists have paid attention to

coordination chemistry of the cyclotriphosphazene deriva-
tives and focused on its symmetrical structural and terminal
functional groups.[8–12] Many cyclotriphosphazene deriva-
tives were reported and used in the fields of catalysts,[13,14]

flame retardants,[15] biological materials,[16,17] and chemo-
sensor.[18] Recently, the cyclotriphosphazene ring has been
further developed as a versatile ‘phosphorus’ platform for
the preparation of multi-functional materials with specific
properties useful in diverse research areas. For example,
Majoral’s group have prepared dendrons bearing bi-
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functional group based on cyclotriphosphazenes;[19] Turkey’s
groups have systematically looked at substitution reactions
and the distribution of products;[20–23] We have also shown
that different cyclen/imidazole moieties attached to a
cyclotriphosphazene core have shown significant
cooperativity.[24,25]

Therefore, these observations suggest the possibility of
constructing multifunctional phosphorus materials according
to selected synthesis of cyclotriphosphazene derivatives.[26,27]

In this paper, different substituted cyclotriphosphazene
derivatives from one to six were prepared with 4-oxybenzal-
dehyde and 2,2-dioxybiphenylphenol (Figure 1). The opti-
mized synthesis reaction conditions of of selected 4-
oxybenzaldehyde and 2,2-dioxybiphenyl cyclotriphosphazene
derivatives, especially reaction conditions were followed by
31P NMR will be described and analyzed.

Results and discussion

In this paper, the selected substitution reaction of cyclotri-
phosphazene has been systematically studied, and six well-
defined organic phosphorus derivatives based on cyclotri-
phosphazene ring have been optimized synthesized with 4-
oxybenzaldehyde moieties and 2,2-dioxybiphenyl groups. As
shown in Scheme 1, most of compounds were obtained with
good yield (up to 97%) under mild conditions (Cs2CO3 as
base, room temperature) by employing optimized
design system.

With six actives chlorines, cyclotriphosphazene deriva-
tives are well known easily to produce multiple substituted
products. Therefore, the selected substitution reaction of
cyclotriphosphazene were systematically studied, and six
well-defined organic phosphorus derivatives based on

Figure 1. Optimized Synthesis of Selected 4-oxybenzaldehyde and 2,2-dioxybiphenyl cyclotriphosphazene derivatives (compounds 1–6).
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cyclotriphosphazene ring have been synthesized with 4-oxy-
benzaldehyde moieties and 2,2-dioxybiphenyl groups. In this
paper, two template compounds were firstly selected to
investigate reaction conditions, and then six HCCP-based
derivatives with different modification compounds (1–6)
were obtained under the optimum condition.

As shown in Table 1, different parameters such as types
of base, were firstly investigated in order to optimize the
reaction conditions of compound 1. It is evident that
Cs2CO3 and K2CO3 produced higher yield of 1 than other
bases (e.g., NaH and Et3N) (entries 1–4). Therefore, the
influence on yield of compound 1 by bases (K2CO3 and
Cs2CO3) were further invested by 31P NMR spectra and was
shown in Figure S1 (Supplementary material). According to
31P NMR spectra, it was found that the yield of 1 was higher
with K2CO3 as the base than that of Cs2CO3 with the time
increased. It was speculative that high activity of Cs2CO3

induce multiple substituted products form, and that reduce
the yield of compound 1 (Supplementary material
Figure S2).

General procedure. To a stirred solution of base (1
equiv.) and substrate HCCP (1mmol) dissolved in dry THF
(10mL), was added 2,2-dioxybiphenyl, then keep 0 �C
(30min) then r.t. (10 h). The crude yield of compound 2
was determined by 31P NMR (Table 2).

In order to obtain a better yield, the proportion of the
reaction was also examined. The research show that com-
pounds 2 and 4 can be gained with high yield by using the
molar ratio of 1:0.9 and 1:4.0 (P3N3Cl6/2,2-dioxybiphenyl).
While that was 1:5.0 for compound 5. However, the yield of
compound 3 was still as low as 17% with K2CO3 as base
with regardless of the regulatory response ratio. That should
be related to various geometrical and positional isomers
results in the difficulty in separation of the isomeric mix-
tures.[28,29] More details were provided in the
Experimental section.

All the pure products were separated and shown in
Figure 2 and the yield were shown in Figure 1. Due to the
symmetric structure, compounds 3 and 6 showed a singlet
at 17.39 ppm and 7.08 ppm in 31P NMR spectrum,

Scheme 1. Synthetic route of cyclotriphosphazene derivatives (compounds 1–6) (the yield of this compound was isolated yield).
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separately. Differently, compounds 1, 2, 4, and 5 showed
two typical coupling signals in 31P NMR spectrum. For
example, compound 1 showed a triplet at 11.74 ppm that
was attributed to the two PCl2 phosphine, and doublets at
22.50 ppm were ascribed to the 4-hydroxybenzaldehyde-sub-
stituted phosphine, while compound 5 displays two different
signal at 20.50 ppm and 5.04 ppm. It is clear that these com-
pounds exhibit significant difference in 31P NMR chemical
shift, and thus the progress of the reaction can be monitored
by 31P NMR.

Experimental

Method and apparatus

All chemical reagents and solvents were obtained commer-
cially and used as received without further purification
unless otherwise stated. Ultrapure water was purified from
Millipore. Silica gel (100–200 mesh) was used for flash col-
umn chromatography. NMR spectra were recorded on a
Bruker AV II 400MHz; chemical shifts are quoted relative
to SiMe4 (TMS, 1H and 13C, external) and H3PO4 (85%)
(31P, external). Coupling constants (J) were given in Hertz
(Hz). The term m, q, t, d, s referred to multiple, quartet,
triplet, doublet, singlet. Mass spectra were carried out on a
Finnigan LCQDECA spectrometer and Agilent 1100 LC/
MSD with ESI mode. The Supplemental Materials contains
sample 1H, 13C and 31P NMR spectra for the products 1–6
(Supplementary material Figures S3–S24)

Typical procedure for synthesis of compounds 1–6

Synthesis of [N3P3Cl5(O2C7H5)] (compound 1)
A mixture of K2CO3 (1.69 g, 5.18mmol) and 4-oxybenzalde-
hyde (316.16mg, 2.59mmol) in anhydrous tetrahydrofuran
(10mL) was stirred at 0 �C for 30min. Then HCCP (1.00 g,
2.88mmol) in anhydrous tetrahydrofuran (20mL) was added
dropwise in ice bath, and the reaction mixture was stirred at
room temperature. The progress of the reaction was moni-
tored by 31P NMR until the phosphorus spectrum signal
(d¼ 20.43 ppm) of the raw material HCCP disappeared.
Twenty-four hours later, the reaction was completed, and
the salt was removed by centrifugation and the supernatant
was collected. The solvent was removed in vacuo and the
crude product was purified by column chromatography (sil-
ica gel, petroleum ether/ethyl acetate (V:V¼ 20:1)). The pro-
cedure gave the compound 1 (0.86 g, 69.1%) as a colorless,
crystalline solid. The NMR spectra was confirmed by litera-
ture.[30] White solid. 1H NMR (400MHz, CDCl3)
d/ppm10.01(s, 1H), 7.95 (d, 2H, J¼ 8.2Hz), 7.44 (d, 2H,
J¼ 8.2Hz); 31P NMR (162MHz, CDCl3) d/ppm 20.81(d, 2 P,
PCl2, AB2 System, J¼ 63.2Hz); 11.74 (t, 1 P, P(O2C12H8,

J¼ 63.2Hz)); 13C NMR(100MHz, CDCl3) d/ppm 190.34,
153.60, 134.51, 131.60, 122.06.

Synthesis of [N3P3Cl4(O2C12H8)](compound 2) and
[N3P3Cl2(O4C24H16)] (compound 4)
These two molecules were synthesized according to our pre-
vious report with some modification. To a cooled suspen-
sion (0 �C) of HCCP (1.00 g, 2.88mmol) and Cs2CO3

Table 1. The optimization of reaction conditions of compound 1 which containing with 4-hydroxybenzaldehyde.a

Entry Base Solvents Temp. (�C) Time (h) Yield of 1a (%)

1 (Et)3N THF r.t. 10 <10
2 NaH THF r.t. 10 22
3 K2CO3 THF r.t. 10 67
4 Cs2CO3 THF r.t. 10 63
aGeneral procedure: To a stirred solution of base (1 equiv.) and substrate HCCP (1mmol) dissolved in dry THF (10mL), was added 4-hydroxybenzaldehyde, then
keep 0 �C (30min) then r.t. (10 h); The crude yield of compound 1 was determined by 31P NMR.

Table 2. The optimization of reaction conditions of compound 2 which containing with 2,2-dioxybiphenyl.

Time/h 2 4 6 8 10
Yielda/% 94 94 96 94 96
Yieldb/% 75 87 88 96 97
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(2.06 g, 6.33mmol) in anhydrous THF (50mL), 2,2-dihy-
droxybiphenyl (0.59 g, 3.16mmol ) was added drop by drop.
The mixture was stirred at room temperature until the raw
material HCCP disappeared, then the mixture was filtered
and the organic phase was evaporated under vacuum. The
product was recrystallized with petroleum ether and
dichloromethane. White crystal. (1.21 g, 91.1%). 1H NMR
(400MHz, CDCl3) d 7.33–7.59 (m, 8H). 31P NMR
(162MHz, CDCl3) d 24.78(d, 2 P, PCl2, AB2 System,
J¼ 71.3Hz), 12.87 (t, 1 P, P (O2C12H8, J¼ 71.3Hz)); 13C
NMR (100MHz, CDCl3) d 147.76, 129.84, 128.59,
126.48, 121.83.

Compound 4 were prepared by following a procedure
similar to that used for 2. The quantities involved are as fol-
lows: HCCP (1.00 g, 2.88mmol), Cs2CO3 (4.69 g,
14.38mmol), 2,2-dihydroxybiphenyl (1.18 g, 6.33mmol).
White crystal. (1.52 g, 92.3%), 1H NMR (400MHz, CDCl3)
d/ppm 7.37–7.58 (m, 16H). 31P NMR (162MHz, CDCl3)) d
29.22 (dd, 1P, PCl2), 19.44 [d, 2 P, P (O2C12H8)]; 13C NMR
(100MHz, CDCl3) d 147.80, 129.85, 128.59, 126.48, 121.83.

White crystal. (1.21 g, 91.1%). 1H NMR (400MHz,
CDCl3) d/ppm 7.33–7.59 (m, 8H). 31P NMR (162MHz,
CDCl3) d/ppm, 24.78(d, 2 P, PCl2, AB2 System, J¼ 79.4Hz),
12.87 (t, 1 P, P (O2C12H8, J¼ 79.4Hz)); 13C NMR (100MHz,
CDCl3) d/ppm 147.76, 129.84, 128.59, 126.48, 121.83.
MALDI-TOF-MS (m/z): [MþH]þ, 578.9803
(calcd. 578.9856).

Synthesis of [N3P3Cl3(O6C21H15)] (compound 3)
A solution of 4-oxybenzaldehyde (1.05 g, 8.63mmol) in THF
(10mL) was added to a suspension of K2CO3 (1.79 g,
12.94mmol) in anhydrous tetrahydrofuran (10mL) at 0 �C,
then HCCP (1.00 g, 2.88mmol, in 20mL of THF) was added
dropwise and the mixture was stirred at room temperature.
The progress of the reaction was monitored by 31P NMR,
until the phosphorus spectrum signal (d¼ 20.43 ppm) of the
raw material HCCP disappeared. After removal of salts by
centrifugation, the clear solution was concentrated under
reduced pressure and subjected to flash chromatography (sil-
ica gel, petroleum ether/ethyl acetate (V:V¼ 15:1) to afford
compound 3 as a colorless, crystalline solid. The NMR spec-
tra was confirmed by literature.[31]

White solid (0.30 g, 17.4%). 1H NMR (400MHz, CDCl3)
d 10.03 (d, 3H, J¼ 8.8Hz), 7.95 (d, 6H, J¼ 8.5Hz), 7.49 (d,
2H, J¼ 8.2Hz), 7.40 (d, 4H, J¼ 8.4Hz). 31P NMR
(162MHz, CDCl3)) d 18.14. 13C NMR (100MHz, CDCl3) d
190.46, 153.82, 134.44, 131.56, 122.01. MALDI-TOF-MS (m/
z): [MþH]þ, 603.9312 (calcd. 603.9098).

Synthesis of [N3P3Cl(O10C35H25)] (compound 5)
To a vigorously stirred solution of 4-oxybenzaldehyde
(1.76 g, 14.38mmol) in anhydrous THF (30mL) was added
K2CO3 (2.98 g, 21.57mmol) and the mixture was stirred at
0 �C under nitrogen atmosphere for 30min, then HCCP

Figure 2. 31P NMR spectrum of compounds 1–6 and HCCP.
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(1.00 g, 2.88mmol) in anhydrous THF (20mL) was slowly
added with stirring, allowed to warm to room temperature,
and stirred for about 24 h. The progress of the reaction was
monitored by 31P NMR. The reaction mixture was centri-
fuged, filtered and evaporated. The solvent was removed in
vacuo then the resultant crude product was purified by col-
umn chromatography (silica gel, petroleum ether /ethyl acet-
ate (V:V¼ 10:1)). The procedure gave the compound 5 as a
white solid. The spectra was in agreement with that reported
in the literature.[32] White solid (2.05 g, 92.1%). 1H NMR
(400MHz, CDCl3) d 9.99 (t, 5H, J¼ 8.0Hz), 7.82 (t, 10H,
J¼ 8.0Hz), 7.25 (s, 10H). 31P NMR (162MHz, CDCl3)
d/ppm 20.74 (t, 1 P, P1, AB2 System, J¼ 85.8Hz), 5.25 (d,
2 P, P0 , J¼ 85.8Hz ). 13C NMR (100MHz, CDCl3) d/ppm
190.22, 154.16, 134.06, 121.27. MALDI-TOF-MS (m/z):
[MþH]þ, 776.0514 (calcd. 776.0332).

Synthesis of [N3P3(O12C42H30)] (compound 6)
A mixture of N3P3Cl6 (1.00 g, 2.88mmol), K2CO3 (3.94 g,
28.48mmol) and 4-oxybenzaldehyde (2.32 g, 18.99mmol)
was stirred in anhydrous THF (100mL) under nitrogen
atmosphere at room temperature for 24 h. The reaction was
monitored by 31P NMR until a new single appeared. The
reaction mixture was centrifuged and the solvent was
removed under reduced pressure, the crude product was
purified by recrystallized with petroleum ether and dichloro-
methane. The spectra is consistent with that in the litera-
ture.[33] White solid (1.63 g, 96.9%). 1H NMR (400MHz,
CDCl3) d/ppm 9.96 (s, 6H), 7.76 (d, 12H, J¼ 8.4Hz), 7.17
(d, 12H, J¼ 8.4Hz). 31P NMR (162MHz, CDCl3): d 7.08.
13C NMR (100MHz, CDCl3) d 190.29, 154.51, 133.82,
131.95, 131.35, 121.22.

Conclusion

In summary, the substitution reaction of cyclotriphospha-
zene was studied and its 4-oxybenzaldehyde and 2,2-dioxy-
biphenyl cyclotriphosphazene derivatives also were selected
prepared under mild conditions. All of these compounds
were separated and obtained in good yield. We believe that
the strategy presented in this work will be useful in the field
of cyclotriphosphazene even phosphorus chemistry, which
providing possibilities of multi-functionalization of cyclotri-
phosphazene materials in the future.
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