Amidetriazole: A Versatile Building Block for Construction of Oxyanion Anion Receptors

Yong-Jun Li,^{*[a]} Liang Xu,^[a, b] Wen-Long Yang,^[a, b] Hui-Biao Liu,^[a] Siu-Wai Lai,^[c] Chi-Ming Che,^[c] and Yu-Liang Li^{*[a]}

Abstract: The design and synthesis of efficient receptors for tetrahedral oxyanions is an emerging field in supramolecular chemistry. Herein, we have developed a urea-like anion-recognizing motif, amidetriazole, which can be easily synthesized and derived and shows good solubility. A series of simple acyclic receptors were designed and synthesized to confirm the potential of amidetriazole for the construc-

Keywords: amidetriazoles • anions • click chemistry • host-guest systems • receptors

purposes.

tion of tetrahedral oxyanion receptors. This molecular platform can be used extensively for the construction of numerous receptor systems appended with functional groups, which opens the way to many applications in the field of supramolecular chemistry.

Introduction

Tetrahedral oxyanions are prominent radioactive contaminants (e.g., pertechnetate), toxic or otherwise troublesome species (e.g., sulfate, chromate, arsenate, and phosphate, to name a few), or matrix elements that can interfere with proposed waste-treatment processes.^[1] The design and synthesis of efficient receptors for tetrahedral oxyanions is an important field in supramolecular chemistry.^[2] Anion receptors with amide, pyrrole, urea, ammonium, imidazolium, and guanidinium groups as binding sites for tetrahedral oxyanions have been widely studied.^[3] The urea moiety has been utilized effectively in a number of tetrahedral oxyanion binding systems.^[2a] The synthesis of urea derivatives involves the toxic reagents isocyanate or phosgene. Unsymmetrical urea derivatives are relatively difficult to obtain.^[4] As a result, a building block with slight structural variation but similar functionality to the urea moiety is desirable for con-

[a] Dr. Y.-J. Li, L. Xu, W.-L. Yang, Dr. H.-B. Liu, Prof. Y.-L. Li CAS Key Laboratory of Organic Solids Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 (P. R. China) Fax: (+86)10-82616576 E-mail: liyj@iccas.ac.cn ylli@iccas.ac.cn
[b] L. Xu, W.-L. Yang

Graduate University of Chinese Academy of Sciences Beijing 100190 (P. R. China)

[c] S.-W. Lai, Prof. C.-M. Che Department of Chemistry and the HKU-CAS Joint Laboratory on New Materials The University of Hong Kong Pokfulam Road (Hong Kong)

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201102760.

4782

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Chem. Eur. J. 2012, 18, 4782-4790

struction of artificial receptors for tetrahedral anions. 1,2,3-Triazoles with 5 Debye (D) dipole character are new motifs that can participate in multiple noncovalent interactions (for

example, anion recognition^[5] within flexible^[6] and shape-per-

sistent triazolophanes^[7] and in foldamers)^[8] and they can

help facilitate self-assembly.^[9] 1.2.3-Triazoles can serve as a

surrogate for amide bonds.^[10] which motivated us to replace

one of the amide NH groups in the urea moiety with 1,2,3-

triazole to generate a versatile anion-receptor building

block that combines the characteristics of urea and triazole;

that is, amidetriazole (Figure 1b). This building block has

enormous advantages, such as ease of preparation, especially

for the construction of asymmetric molecules for functional

Figure 1. Molecular modeling of a) tetramethylurea and b) a midetriazole (HF $6-31G^{**}$).

Results and Discussion

The synthesis of amidetriazole can be achieved through two strategies: 1) Huisgen 1,3-dipolar cycloaddition between methyl propiolate and a substituted azide followed by aminolysis with amines (Scheme 1a) or 2) formation of N-substituted propiolamide through condensation of propiolic acid and amines followed by Cu¹-catalyzed cycloaddition (Scheme 1b). Molecular modeling (HF 6-31 G**) indicated that amidetriazole exhibits a distance of 2.27 Å between the amide NH and triazole CH groups when it adopts an anion-binding conformation. Amidetriazole is structurally similar

Scheme 1. Strategies for the synthesis of amidetriazole.

to tetramethylurea and has a larger dipole (7.89 versus 4.71 D). The structure of the amidetriazole unit is further illustrated by the X-ray structure of model compound **1** (Figure 2). For the free amidetriazole motif, the amide NH

Figure 2. a) Molecular structure of amidetriazole-containing model compound 1; b) Crystal structure of model compound 1; c) Two-point hydrogen bonds formed by the amide NH group and the triazole nitrogen atoms in a dimer of 1 in the crystal structure.

and triazole CH units occupy opposite positions relative to one another (Figure 2b), the N–N=N triazole unit preferen-

tially forms an intermolecular hydrogen bond with the amide NH group (N···N distance = 3.035 Å; Figure 2 c). The amidetriazole unit can resolve the poor solubility of the urea moiety through the formation of a dimer rather than the polymer-like assembly of ureas.

Furthermore, we designed and synthesized a series of simple, acyclic receptors to confirm the potential of amidetriazole for the construction of tetrahedral oxyanion receptors (Figure 3). The conformations of these receptors are controlled by either a V-shaped carbazole or tripodal 2,4,6-triethylbenzene, and the terminal hydroxyl group on the chain will provide additional anionbinding affinity. A more elaborate example is the incorpora-

Figure 3. Tetrahedral oxyanionic receptors designed based on different preorganization strategies.

tion of hydrogen bonding, π - π stacking, and dipole-dipole interactions for the realization of anion binding. These receptors are synthesized as illustrated in Schemes 2–4.

Sulfate is the smallest common tetrahedral anion and plays important roles in biological systems and disease,^[11] in hydrometallurgy,^[12] and as a pollutant.^[13] Custelcean and co-workers developed selective receptors for sulfate-based tripodal tris-urea systems for precipitation of anions from solution.^[14] Custelcean, Hay, and co-workers have used self-assembly strategies to construct urea-containing cage systems with six urea groups arranged around sulfate.^[15] Gale obtained some sulfate-selective acyclic receptors based on indole and carbazole.^[16] Beer and Mullen utilized sulfate as a template to prepare interlocked structures.^[17] Macrocyclic sulfate receptors such as cyclo[8]pyrrole,^[18] cyclic tetraa-mide/amine-based receptors,^[19] and cyclic peptide-based molecular oysters^[20] were also reported. The binding behavior of our sulfate receptors will be studied.

In our preliminary endeavor to build foldamers by using the amidetriazole motif, we designed a new sulfate receptor, L1, with an amidetriazole unit in the middle, another amide

Scheme 2. Preparation of **L1**. Reaction conditions: a) $SnCl_2$, ethanol, 81%; b) NaN_3 , sodium ascorbate, CuI, *N*,*N*'-dimethylethane-1,2-diamine, DMSO/H₂O (5:1), RT, 1 h, 81%; c) $CuSO_4$, sodium ascorbate, ethanol/H₂O (2:1), RT, 8 h, 88%; d) *N*,*N*-dicyclohexylcarbodiimide (DCC), 4-dimethylamino pyridine (DMAP), CH₂Cl₂, 76%; e) CuSO₄, sodium ascorbate, ethanol/H₂O (2:1), RT, 8 h, 67%; f) Pyrene-1-carboxylic acid chloride, NEt₃, 63%.

Chem. Eur. J. 2012, 18, 4782-4790

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

Scheme 3. Preparation of L2. Reaction conditions: a) NaN₃, sodium ascorbate, CuI, *N*,N⁻dimethylethane-1,2-diamine, DMSO/H₂O (5:1); b) Methyl propiolate, CuSO₄, sodium ascorbate, ethanol/H₂O (2:1), RT, 8 h, 85 % over two steps; c) 3-Aminopropan-1-ol, toluene, 80 °C, 10 h, 81 %.

Scheme 4. Reaction conditions: a) Methyl propiolate, $CuSO_4$, sodium ascorbate, ethanol/H₂O (2:1), RT, 8 h, 95%; b) 3-Aminopropan-1-ol, toluene, 80°C, 10 h, 90%.

group, and a triazole unit connected with benzene rings, in which the binding affinity of the amidetriazole and its individual components can be compared. The photoactive pyrene ring is attached to the amide terminal as a fluorescent handle and provides π - π stacking; the triazole terminal is equipped with a carboxylate group to increase the acidity of the triazole CH proton relative to the amidetriazole CH proton. Molecular modeling indicated that the two amide NH and two triazole CH groups combined with the CH of the connecting benzene group can interact with a sulfate anion in a 1:1 or 2:1 ratio, to form six or twelve hydrogen bonds, respectively.

Upon the addition of 0.5 equivalents of bis(tetrabutylammonium) sulfate (TBA₂SO₄), the triazole proton of the middle amidetriazole unit ($\Delta\delta H_g = 1.61$ ppm) and the amide proton ($\Delta\delta H_f = 1.01$ ppm) showed downfield shifts. The upfield shifts of protons H_r and H_s on the pyrene ring and alkyl chain, respectively, and H_h on the benzene ring close to the pyrene ring is evidence for the 2:1 binding mode, which can provide strong shielding effects to these protons. Small upfield shifts of protons H_k, H_j, and H_e are also observed. With the addition of another 0.5 equivalents of sulfate (1.0 equiv total), the signals of the central amide NH (H_f) and triazole CH (H_g) protons migrated further downfield and the upfield-shifted signals H_r, H_s, and H_h moved back to their original position (Figure 4, middle). With the addition of more sulfate (5 equiv), the signals of protons H_g and H_b were sharpened, whereas H_f and H_k disappeared. These results clearly indicate that the addition of sulfate to a solution of host L1 leads to the predominant formation of a 2:1 host-guest complex at the initial stages of the titration up to the sulfate/L1 ratio of 0.5. This complex is gradually replaced by a 1:1 complex as the sulfate/ L1 ratio increases from 0.5 to 1 and, ultimately, the 1:1 complex prevails thereafter.^[21] Large binding constants $(K_1 \text{ and } K_2)$ are anticipated from the appearance of sharp changes in curvature at sulfate/L1 ratios of 1:2 and approximately 1:1, even though the binding constants cannot be obtained through ¹H NMR titration data due to line broadening. The binding affinity of amidetriazole is definitely higher than that of its individual component, which is supported by the small downfield shift of the terminal triazole proton. To obtain deeper

insight for the sulfate-induced 2:1 folding, NOESY NMR spectroscopy and molecular modeling were carried out for the structural assignment of the sulfate complex in solution (Figure 4, bottom). Strong NOE connections were exhibited between H_s and H_k, H_t, and H_k, H_k and H_j, H_k and H_g, H_j and H_f, H_g and H_e, and H_f and H_b, which supported the formation of the folded half-circle conformation. NOE connections were clearly observed between the signals of the middle (H_{g}) and terminal triazole protons (H_{b}) , and also with the terminal pyrene unit $(H_s, H_t;$ see the circled cross peaks in Figure 4, bottom). Because distances between H_g and H_b, H_s, and H_t of the same chain are much too long for any cross peak to be observed these signals must correspond to intermolecular contacts between different chains.^[22] This is precisely the situation when the two chains wrap around each other (Figure 4, top, c). This complex is stabilized by π - π stacking between the pyrene unit and the close phenyl-triazole plane in the second molecule and by dipole-dipole interactions between the terminal phenyl (-2 D) and triazole groups (+5 D) (Figure 4, top, c).^[23] This can explain the small downfield shift of triazole proton H_b and even the upfield shift of the terminal amide proton H_k , which is the sum of π - π stacking (upfield shift) and hydrogen-bonding interactions (downfield shift). Dihydrogen phosphate can form a similar 1:2 complex with L1, supported by the upfield shift of the related aromatic protons, although detailed analysis

Figure 4. Top: a) Illustration of the sulfate-binding process of receptor L1; b) Intramolecular NOE contact in the L1₂·SO₄ complex; c) Molecular modeling of the L1₂·SO₄ complex and the intermolecular NOE contacts. Middle: ¹H NMR ([D₆]acetone/0.5% [D₆]DMSO, 400 MHz) spectra of L1 (5 mM) in the presence of SO₄²⁻ ions (0.25, 0.5, 0.5 at 243 K, 0.75, 1.0, and 5.0 equiv for b) to g), respectively). Bottom: Partial NOESY spectrum (600 MHz) of L1+SO₄²⁻ in [D₆]acetone/0.5% [D₆]DMSO at 243 K (mixing time = 1 s).

was prevented by line broadening (Figure S2 in the Supporting Information).

UV/Vis experiments were carried out in acetone to evaluate the binding properties of L1 towards sulfate (Figure S11 in the Supporting Information). Upon addition of sulfate, the absorption at $\lambda = 274$ nm first decreases to a minimum in the presence of 0.5 equivalents of sulfate as a consequence of the π -stacked structure in the 2:1 host–guest complex.^[23] The absorbance then increases with the addition of more sulfate until the 1:1 complex is dominant. The absorption at $\lambda = 365$ nm behaves reversely, increasing then dropping, which corresponds to the formation and destruction of π - π stacking between the pyrene ring and phenyl-triazole planes. These changes of **L1** reflect structural reorganization due to the binding of sulfate, consistent with the above ¹H NMR results. **L1** exhibits an emission band at $\lambda = 400$ nm, which is quenched by the addition of SO₄²⁻ (Figure S11 in the Supporting Information).

Encouraged by the fact that two amidetriazole molecules can form a 2:1 complex with sulfate, we coupled our amidetriazoles on the 3,6-positions of a carbazole moiety to build receptor **L2** with two amide NH, two triazole CH, and two OH groups present for hydrogen-bond formation. Carbazole and its derivatives have been widely used as functional building blocks in the fabrication of organic photoconductors, nonlinear optical materials, and photorefractive materials due to their specific optical and electrochemical properties.^[24] At the same time, the 6 Å distance between the C3 and C6 carbon atoms and the V-shape generated upon 3,6-modification rendered carbazole with the potential to control the geometry of the receptors.

The complexation behavior of host L2 with the sulfate anion was studied by ¹H NMR titration in [D₆]acetone/5% [D₆]DMSO at 25°C. Upon addition of 1 equivalent of sulfate, large downfield shifts of the amide NH ($\Delta \delta H_e =$ 1.24 ppm), triazole ($\Delta \delta H_d = 1.71$ ppm), and hydroxyl group resonances ($\Delta \delta H_i = 2.49 \text{ ppm}$) were observed (Figure 5). The stable 1:1 complex allowed for a structural investigation in solution by using NOESY NMR spectroscopy. Strong NOE connections were exhibited between H_d and H_a and H_d and H_e (Figure S17 in the Supporting Information), which supported the conformation of the amidetriazole moieties within a carbazole unit, shown in Figure 5. Interestingly, the carbazole proton H_a first shifted downfield ($\Delta \delta =$ 1.09 ppm) almost proportionally to the amount of added sulfate until the sulfate/L2 ratio reached 1:1, shifted back upfield until the ratio reached 6.3:1, and finally leveled off (Figure 5, bottom). The signal of proton H_c started to move downfield after the addition of 1 equivalent of sulfate. These results clearly indicate that the two amidetriazole arms can cooperatively capture one sulfate anion at first, then with the addition of more sulfate (6.3 equiv) the C-N bond connecting one of the triazole and carbazole rings rotates so that each arm can bind one sulfate anion (Figure 5). The hydrogen-bonding interactions between proton H_a and sulfate were decreased, whereas hydrogen-bonding interactions between proton H_c and sulfate were increased; a weak complex with 1:2 host-guest stoichiometry was formed. The binding constant (K_1) of the first sulfate can be fitted from proton H_d ($K_1 = 3895 \text{ M}^{-1}$). Dihydrogen phosphate binds with L2 in a similar way but with lower stability (Figure S4 in the Supporting Information).

The binding affinity will increase with the addition of binding moieties and strength of the preorganization. Tripo-

Chem. Eur. J. 2012, 18, 4782-4790

Figure 5. ¹H NMR ([D₆]acetone/0.5% [D₆]DMSO, 400 MHz) spectra of L2 (5 mM) in the presence of SO₄²⁻ ions (0.5, 1.0, 2.0, and 5.0 equiv for b) to e), respectively) and the titration curves (H_a $_{\odot}$, H_b \bullet , H_c \bigstar , H_d \bullet , H_e \bigstar , H_d \bullet , H_e \bigstar , H_d \star , H_d \bullet , H_e

dal receptor **L3** was designed based on the "pinwheel" scaffold 1,3,5-trisubstituted-2,4,6-triethylbenzene.^[25] Preorganization is achieved by incorporation of three amidetriazole groups into a 1,3,5-triethylbenzene core, to generate a coneshape cavity. The introduction of steric bulk around the benzene-derived core predisposes the compound to adopt the preferred conformation.^[25] We obtained single crystals of a sulfate complex of **L3** for X-ray analysis by diffusing ether into a solution of **L3** and TBA₂·SO₄ in acetone/5% DMSO (Figure 6). **L3** shows high conformational complementarity with the sulfate anion in the 1:1 host–guest complex; three amide NH, three triazole CH, and two terminal OH groups can be involved in hydrogen bonding with the sulfate to form 11 hydrogen bonds. The N…O distances ranged from 2.831–2.906 Å (2.869 Å on average) and N–H…O angles

Figure 6. Crystal structure of the sulfate complex L3-SO₄ (non-acidic hydrogen atoms and countercations omitted for clarity). a) Top view; b),c) Side view from directions A and B shown in a); d) Hydrogen bonds around SO₄²⁻.

from 163.2–172.1° (164.11° on average); the C…O distances ranged from 3.095–3.292 Å (3.129 Å on average) and C–H…O angles from 123.53–168.67° (154.11° on average); the O…O distances ranged from 2.731–2.749 Å (2.734 Å on average) and O–H…O angles from 160.3–161.2° (160.51° on average).^[26]

The interaction of receptor L3 with sulfate anions was further investigated in [D₆]acetone/5% [D₆]DMSO by using a ¹H NMR titration technique. The receptor-anion stoichiometries were determined by a continuous variation method (Job plots) and proved to be 1:1 for sulfate anions. The addition of sulfate anions to 2.5 mm solutions of receptor 1 in [D₆]acetone/5% [D₆]DMSO led to large downfield shifts of the amide NH ($\Delta \delta H_e = 1.94$ ppm), triazole proton ($\Delta \delta H_d =$ 1.25 ppm), and terminal hydroxyl group resonances ($\Delta \delta H_i =$ 1.72 ppm) (Figure 7). These large downfield shifts indicate that the sulfate anion forms strong hydrogen bonds with all binding sites of the tripodal receptor. The stability constant of the sulfate complex of L3 could only be determined by analysis of the signal shifts of benzylic proton H_c because of line broadening of the binding-site proton signals in the ¹H NMR spectrum. The data was fitted with the WinEQNMR2 software^[27] to give $K_1 > 100000$.

Of these representative foldamer-type, cleft-type, and tripodal receptors that contained amidetriazole groups, the third receptor L3 forms 1:1 complexes with sulfate anions that have remarkably high stability, the other two receptors additionally form complexes of higher stoichiometry. We expanded the anion-binding studies of receptor L3 to investigate oxyanion selectivity. Addition of tetrabutylammonium iodide to L3 in [D₆]acetone/0.5% [D₆]DMSO resulted in only very small perturbations in the ¹H NMR spectra. For chloride and bromide ions the triazole motifs supply stronger C–H…halide bonds than the amide N–H…halide bonds, evidenced from the larger chemical shifts of the resonance

Figure 7. ¹H NMR ([D_6]Acetone/0.5 % [D_6]DMSO, 400 MHz) spectra of L3 (2.5 mM) in the presence of SO₄²⁻ ions (1.0, 2.0, 3.0, and 7.0 equiv for b) to e), respectively).

of proton H_d relative to H_e (Figures S8 and S9 in the Supporting Information). The opposite trends were observed for oxyanionic anions, that is, the amides formed stronger N-H…O bonds than the C-H…O bonds to the triazole units (Figures S6 and S10 in the Supporting Information). The resonance of the terminal OH group shifted downfield with the addition of halide, whereas it disappeared in the presence of oxyanions. The titration results indicated that halides (Cl⁻, Br⁻) mainly interacted with the triazole CH unit, whereas oxyanions interacted with the NH, CH, and OH groups cooperatively. The binding constants (K_1 only) for the first anion derived from a model incorporating a final host-guest stoichiometry of 1:3 are summarized in Table 1. The analysis was carried out with the aid of WinEQNMR2

Table 1. Binding constants (K_1) determined by ¹H NMR titration for the interaction of **L3** with various anions.^[a]

Anion	F^{-} •3 H_2O	Cl^-	Br^{-}	I^-	CH ₃ COO ⁻	$H_2PO_4^-$	SO_4^{2-}
K_1	581	186	16	_[b]	106	292	$> 100000^{[c]}$

[a] Anions as nBu_4N^+ salts in [D₆]acetone/0.5% [D₆]DMSO, triazole protons H_d fit with WinEQNMR2.^[27] Errors in K_1 are <10%. Equilibria were modeled according to the binding of up to three anions by each host. [b] Only small perturbations were observed in the ¹H NMR spectrum upon addition of iodide anions. [c] Fitting followed with benzyl proton H_c because of the line broadening of the binding-site proton signals in the NMR spectra.

software.^[27] With increasing halide size, the binding stability decreased. In the oxyanions studied, **L3** showed the greatest selectivity towards sulfate, with an affinity too high to measure in the chosen medium $(K_1 > 100\,000\,\text{m}^{-1})$.

An interesting phenomenon was observed for fluoride binding. With the addition of tetrabutylammonium fluoride (TBA-F) trihydrate to a solution of L3 in [D₆]acetone/0.5% [D₆]DMSO, larger chemical shifts were observed for the resonance of amide proton H_e relative to that of triazole proton H_d. The 1:1 binding stoichiometry was obtained from proton H_d, whereas a final host-guest stoichiometry of 1:3 was achieved from proton H_e. Uncommonly, a new ¹H NMR resonance at $\delta = 8.11$ ppm appeared, which reached the highest level at 1.57 equivalents of hydrated fluoride and decreased with the addition of more hydrated fluoride (Figure 8a and b). This new peak was assigned as H₂O bound to fluoride and the integration of this peak relative to proton H_d showed a 4:1 ratio to L3. The results indicated that tripodal L3 first formed a 1:1 complex with hydrated fluoride, followed by a 1:3 complex with fluoride. ¹⁹F NMR was used to investigate fluoride anion binding by the receptor L3. The addition of L3 to a solution of TBA-F trihydrate in [D₆]acetone/0.5% [D₆]DMSO resulted in a downfield shift of $\delta = 4.46$ ppm relative to the free fluoride resonance (Figure 8c), which results from the weakened hydrogen bonding between fluoride and water, indicative that the fluoride anion does not directly participate in hydrogen bonding with the -CH and -NH groups of the receptor L3.^[28] These results led to the binding model presented in Figure 8d. The water molecules formed a hydrogen-bond network with the middle fluoride ion and outer C=O groups, and the triazole CH and terminal OH groups provided further stabilization to the top water molecule through O-H-O interactions. The hydrated fluoride functioned as a pseudo-oxyanion and showed relatively strong binding with L3.

Conclusion

We have developed a urea-like anion-recognizing motif, amidetriazole, which can be easily synthesized and derivatized and shows good solubility. This molecular platform can be used extensively for the construction of numerous receptor systems appended with functional groups. These systems can open the way to many applications, for example, in the field of addressable sensors or display. The studies demonstrated that rational design with the cooperation and preorganization of the amidetriazole units can lead to quite strong oxyanion receptors. We are currently developing more preorganized receptors that contain amidetriazole units, such as macrocycles, as more practical and selective chemosensors for oxyanions.

www.chemeurj.org

A EUROPEAN JOURNAL

Figure 8. a) ¹H NMR ([D₆]/acetone/0.5% [D₆]DMSO, 400 MHz) spectra of L3 (2.5 mM) in the presence of TBA-F·3H₂O; b) Titration curves; CH •, NH •, (the integration of the peak at δ =8.11 ppm (\odot) is calibrated with proton H_d); c) Partial ¹⁹F NMR spectra (400 MHz) of TBA-F and a 1:1 mixture of L3 and TBA-F in [D₆]acetone/0.5% [D₆]DMSO at 298 K; d) Binding model of L3 with hydrated fluoride.

Experimental Section

General methods: All reagents were obtained from commercial suppliers and used as received unless otherwise noted. Column chromatography was performed on silica gel (160–200 mesh) and TLC was performed on precoated silica gel plates and observed under UV light. NMR spectra were recorded on Bruker Avance DPS-400 and Bruker Avance DPS-600 spectrometers at room temperature (298 K). Chemical shifts were referenced to the residual-solvent peaks. MALDI-TOF mass spectrometry was performed on a Bruker Biflex III mass spectrometer. Electronic absorption spectra were measured on a JASCO V-579 spectrophotometer. Fluorescence excitation and emission spectra were recorded using a Hitachi F-4500. All single crystal X-ray diffraction data were collected on a Rigaku Saturn X-ray diffractometer with graphite-monochromator $Mo_{K\alpha}$ radiation ($\lambda = 0.71073$ Å) at 173 K. Intensities were corrected for absorption effects using the multi-scan technique SADABS (Siemens area detector absorption corrections). The structures were solved by direct methods and refined by a full-matrix least-squares technique based on F2 by using the SHELXL 97 program (Sheldrick, 1997). The extended packing plots and data from crystal packing were obtained with Mercury 1.4.1 software.

Compound S1a: DMF (1 drop) was added to a solution of 3-iodo-5-nitrobenzoic acid (2.93 g, 10 mmol) in SOCl₂ (5 mL) and the mixture was stirred at 50 °C for 2 h. The solvent was removed under vacuum. The residue was dissolved in dry CH2Cl2 (5 mL) and added dropwise to a solution of 2-methylbutan-1-ol (1 g, 12 mmol) and triethylamine (TEA) (3 mL) in dry CH₂Cl₂ (20 mL). The mixture was stirred at RT for 4 h. The solvents were removed under vacuum and the residue was dissolved in CH2Cl2 then washed with brine. The organic phase was dried (Na₂SO₄) and the solvent was removed under vacuum. The product was purified by chromatography (SiO₂, hexane) to give S1a (3 g, 82.6%). ¹H NMR (400 MHz, CDCl₃): δ = 8.79 (s, 1H), 8.73 (s, 1H), 8.66 (s, 1H), 4.28 (m, 1H), 4.18 (m, 1H), 1.90 (m, 1H), 1.54 (m, 1H), 1.29 (m, 1H), 1.03 (d, J= 8 Hz, 3 H), 0.97 ppm (t, J = 8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 163.2, 148.6, 144.0, 136.0, 133.6, 123.8, 93.4, 70.9, 34.3, 26.1, 16.5, 11.3 ppm; MS (EI): m/z: 363; elemental analysis calcd (%) for (C12H14INO4): C 39.69, H 3.89, N 3.86; found: C 39.38, H 3.92; N 3.89. Compound S1b: SnCl₂·2H₂O (9.06 g, 40.0 mmol) was added to a solution of S1a (2.9 g, 8 mmol) in ethanol (5 mL). The reaction mixture was heated at reflux until the reaction was complete (indicated by TLC analysis). The solvent was removed under reduced pressure and the crude residue was partitioned between ethyl acetate and 2M KOH. The aqueous layer was extracted with ethyl acetate (3×25 mL) and the combined organic extracts were washed with brine (2×25 mL) and water (3×50 mL), dried (Na₂SO₄), and concentrated under reduced pressure. The crude residue was subjected to flash silica gel column chromatography (20% ethyl acetate in hexanes) to yield **S1b** (81 %). ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.74 (s, 1 H), 7.31 (s, 1 H), 7.23 (s, 1 H), 4.17 (dd, J=10.7, 6.0 Hz, 1 H), 4.09 (dd, J=10.7, 6.7 Hz, 1 H), 1.84 (dq, J=13.2, 6.7 Hz, 1 H), 1.58-1.44 (m, 1H), 1.34–1.19 (m, 1H), 1.00 (d, J=6.7 Hz, 2H), 0.95 ppm (t, J=7.5 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.5$, 147.7, 133.1, 128.3, 127.6, 115.4, 94.5, 70.0, 34.4, 26.2, 16.6, 11.4 ppm; MS (EI): m/z: 333; elemental analysis calcd (%) for (C12H16INO2): C 43.26, H 4.84, N 4.20; found: C 43.14, H 4.72, N 4.31.

Compound S1c: Compound S1b (1.33 g, 4 mmol), NaN₃ (520 mg, 8 mmol), sodium ascorbate (44.6 mg, 0.2 mmol), CuI (76 mg, 0.4 mmol), NN'-dimethylethane-1.2-diamine (0.6 mmol) were added to degassed 5:1 DMSO/H₂O (10 mL).^[29] The reaction mixture was stirred at RT for 1 h. The crude reaction mixture was taken up in a mixture of brine and EtOAc. The aqueous phase was extracted with EtOAc (×3). The combined organic phases were concentrated in vacuo and the residue was purified by flash chromatography over silica gel (100:1 CH2Cl2/methanol) to give the aryl azide S1c (803 mg, 81%). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.09$ (s, 1 H), 7.05 (s, 1 H), 6.44 (s, 1 H), 4.16 (dd, J = 10.7, 6.0 Hz, 1 H), 4.11-4.03 (m, 1H), 3.85 (d, J=15.4 Hz, 1H), 1.82 (dq, J=13.1, 6.6 Hz, 1H), 1.57–1.42 (m, 1H), 1.32–1.18 (m, 1H), 0.98 (d, J=6.8 Hz, 2H), 0.93 ppm (t, J=7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.1$, 148.0, 141.4, 133.0, 112.7, 109.9, 109.1, 69.8, 34.3, 26.2, 16.5, 11.3 ppm; MS (EI): m/z: 206 $[M-N_3]$, 219 $[M-N_2]$; elemental analysis calcd (%) for (C12H16N4O2): C 58.05, H 6.50, N 22.57; found: C 58.21, H 6.43, N 22.48. Compound S1d: CuSO₄ (24.5 mg, 0.1 mmol) and sodium ascorbate (40 mg, 0.2 mmol) were added to a solution of S1c (744 mg, 3 mmol) and methyl propiolate (252 mg, 3 mmol) in ethanol/H2O (2:1). The mixture was stirred at RT for 8 h. Ethanol was removed under vacuum and CH₂Cl₂ was added. The organic phase was washed with water and dried (Na₂SO₄). The residue was purified by silica gel chromatography (100:1 CH₂Cl₂/methanol) to afford S1d (876 mg, 88%) as a white solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.55$ (s, 1 H), 7.63 (s, 1 H), 7.45 (s, 1 H),

7.42 (s, 1H), 4.23 (dd, J=10.7, 6.0 Hz, 1H), 4.14 (dd, J=10.7, 6.7 Hz, 1H), 4.00 (s, 2H), 1.88 (dd, J=13.3, 6.7 Hz, 1H), 1.59–1.46 (m, 1H), 1.35–1.22 (m, 1H), 1.02 (d, J=6.7 Hz, 2H), 0.96 ppm (t, J=7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ =165.6, 161.1, 148.5, 140.6, 137.4, 133.3, 125.8, 116.5, 110.8, 110.4, 70.3, 52.5, 34.3, 26.2, 16.6, 11.4 ppm; MS (EI): m/z: 332; elemental analysis calcd (%) for (C₁₆H₂₀N₄O₄): C 57.82, H 6.07, N 16.86; found: C 57.55, H 6.15, N 16.73.

Compound S1e: Propiolic acid (100 mg, 1.4 mmol) and N,N-dicyclohexylcarbodiimide (DCC) (290 mg, 1.4 mmol) were combined in CH2Cl2 (10 mL), the solution was stirred for 10 min, then S1d (464 mg, 1.4 mmol) and 4-dimethylaminopyridine (DMAP) (5 mg) were added. The reaction mixture was stirred for 30 min, then the precipitate was filtered off and the solvent was removed under vacuum. The residue was purified by silica gel chromatography (50:1 CH2Cl2/methanol) to afford **S1e** (408 mg, 76%) as a white solid. ¹H NMR (400 MHz, CDCl₃): $\delta =$ 8.62 (s, 1H), 8.53 (s, 1H), 8.38 (s, 1H), 8.20 (s, 1H), 4.26 (dd, J=10.7, 6.0 Hz, 1 H), 4.18 (dd, J=10.6, 6.8 Hz, 1 H), 4.01 (s, 2 H), 3.04 (s, 1 H), 1.89 (dd, J = 13.3, 6.4 Hz, 1H), 1.59–1.46 (m, 1H), 1.28 (dd, J = 14.0, 7.4 Hz, 1H), 1.02 (d, J=6.7 Hz, 2H), 0.96 ppm (t, J=7.4 Hz, 2H); $^{13}\mathrm{C}\,\mathrm{NMR}$ (100 MHz, CDCl₃): $\delta\!=\!164.9,\,161.0,\,157.3,\,150.6,\,140.7,\,139.6,$ 136.9, 133.2, 126.0, 121.6, 117.4, 116.3, 75.6, 70.6, 52.6, 34.3, 26.2, 16.6, 11.3 ppm; MS (EI): m/z: 384; elemental analysis calcd (%) for $(C_{19}H_{20}N_4O_5)$: C 59.37, H 5.24, N 14.58, found: C 59.26, H 5.12, N 14.47. Compound S1 f: CuSO₄ (24.5 mg, 0.1 mmol) and sodium ascorbate (40 mg, 0.2 mmol) were added to a solution of S1e (384 mg, 1 mmol) and S1c (248 mg, 1 mmol) in 2:1 ethanol/H₂O (9 mL). The mixture was stirred at RT for 8 h. Ethanol was removed under vacuum and CH₂Cl₂ was added. The organic phase was washed with water and dried (Na₂SO₄). The residue was purified by silica gel chromatography (100:1 CH2Cl2/methanol) to afford S1f (423 mg, 67%) as a pale-yellow solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 9.34$ (s, 1H), 8.77 (s, 1H), 8.66 (s, 1H), 8.27 (s, 1H), 8.22 (s, 1H), 7.67 (s, 1H), 7.46 (s, 1H), 7.38 (s, 1H), 4.33-4.11 (m, 2H), 4.02 (s, 2H), 1.90 (dt, J=13.9, 6.7 Hz, 1H), 1.60-1.48 (m, 1H), 1.30 (dt, J=15.2, 7.9 Hz, 1H), 1.03 (dd, J=10.7, 6.9 Hz, 3H), 1.00-0.92 ppm (m, 3H); 13 C NMR (100 MHz, CDCl₃): $\delta = 165.5$, 164.9, 161.0, $158.2,\ 148.5,\ 143.2,\ 140.8,\ 139.5,\ 137.4,\ 137.1,\ 133.3,\ 126.0,\ 124.6,\ 121.3,$ 117.1, 116.7, 116.0, 110.6, 70.7, 70.3, 52.6, 34.4, 26.3, 16.6, 11.4 ppm; MS (MALDI-TOF): m/z: 633.4 [M+H], 665.4 [M+Na]; elemental analysis calcd (%) for (C31H36N8O7): C 58.85, H 5.74, N 17.71; found: C 58.69, H 5.65. N 17.53.

Compound L1: DMF (1 drop) was added to a solution of pyrene-1-carboxylic acid (148 mg, 0.6 mmol) in SOCl₂ (3 mL) and the mixture was stirred at 50 °C for 2 h. The solvent was removed under vacuum. The residue was dissolved in dry CH2Cl2 (5 mL) and added dropwise to a solution of $\boldsymbol{S1\,f}$ (316 mg, 0.5 mmol) and TEA (2 mL) in dry CH_2Cl_2 (20 mL). The mixture was stirred at RT for 4 h. The solvents were removed under vacuum, the residue was dissolved in CH2Cl2, then washed with brine. The organic phase was dried over anhydrous Na₂SO₄. The solvent was removed under vacuum then the product was purified by silica gel chromatography (CH₂Cl₂) to give L1 (271 mg, 63%). ¹H NMR (400 MHz, $[D_6]$ acetone): $\delta = 10.95$ (s, 9H), 10.71 (s, 9H), 9.43 (s, 7H), 9.31 (s, 7H), 9.09 (s, 8H), 8.97 (s, 8H), 8.86 (s, 8H), 8.73 (d, J=9.1 Hz, 15H), 8.60-8.21 (m, 71 H), 8.15 (t, J=7.6 Hz, 9 H), 4.26 (dtd, J=17.7, 10.7, 6.8 Hz, 33 H), 3.96 (d, J=17.8 Hz, 27 H), 2.90 (d, J=13.6 Hz, 54 H), 2.58 (s, 4 H), 2.48 (s, 15H), 2.14 (s, 5H), 2.09-2.01 (m, 102H), 1.92 (d, J=6.0 Hz, 23H), 1.70-1.46 (m, 21H), 1.46-1.11 (m, 39H), 1.16-1.11 (m, 2H), 1.07 (d, J=6.7 Hz, 45 H), 0.98 (t, J=7.4 Hz, 48 H), 0.89-0.84 ppm (m, 4 H);¹³C NMR (150 MHz, $[D_6]$ acetone): $\delta = 169.9$, 166.3, 162.2, 159.9, 145.2, 142.9, 141.9, 141.8, 138.7, 138.6, 134.5, 134.3, 132.8, 132.3, 132.1, 130.5, 130.3, 128.7, 128.2, 127.7, 127.6, 127.0, 126.1, 126.0, 125.9, 125.7, 122.6, 122.4, 117.6, 117.4, 71.4, 53.0, 35.9, 27.5, 17.5, 12.4 ppm; MS (MALDI-TOF): m/z: 883.9 [M+Na]; elemental analysis calcd (%) for $(C_{48}H_{44}N_8O_8){:}\ C$ 66.97, H 5.15, N 13.02; found: C 66.85, H 5.24, N 13.13.

Compound S2: 3,6-Diiodo-9-octyl-9*H*-carbazole (1.06 g, 2 mmol), NaN₃ (390 mg, 6 mmol), sodium ascorbate (44.6 mg, 0.2 mmol), CuI (76 mg, 0.4 mmol), and *N*,*N*'-dimethylethane-1,2-diamine (0.6 mmol) were added to degassed 5:1 DMSO/H₂O (10 mL).^[29] The reaction mixture was stirred at RT for 1 h. The crude reaction mixture was taken up in a mixture of

brine and EtOAc. The aqueous phase was extracted with EtOAc ($\times 1-3$). The combined organic phases were concentrated in vacuo and the residue was used without further purification. CuSO₄ (24.5 mg, 0.1 mmol) and sodium ascorbate (40 mg, 0.2 mmol) were added to crude 3,6-diazido-9-octyl-9H-carbazole (650 mg, 1.8 mmol) and methyl propiolate (504 mg, 6 mmol) in 2:1 ethanol/H₂O (15 mL). The mixture was stirred at RT for 8 h. Ethanol was removed, then CH2Cl2 was added. The organic phase was washed with water and dried (Na₂SO₄). The residue was purified by silica gel chromatography (100:1 CH_2Cl_2 /methanol) to afford S2 (899 mg, 85 %) as a white solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.61$ (s, 2H), 8.48 (d, J=2.0 Hz, 2H), 7.90 (dd, J=8.8, 2.1 Hz, 2H), 7.61 (d, J= 8.8 Hz, 2 H), 4.42 (t, J=7.1 Hz, 2 H), 4.03 (s, 6 H), 1.92 (q, J=6.9 Hz, 2H), 1.42–1.32 (m, 4H), 1.32–1.23 (m, 6H), 0.86 ppm (t, J=6.6 Hz, 3H); $^{13}\mathrm{C}\,\mathrm{NMR}$ (100 MHz, CDCl₃): $\delta\!=\!161.5,\,141.5,\,129.6,\,123.1,\,120.4,\,114.1,$ 110.7, 52.7, 44.1, 32.0, 29.6, 29.4, 29.3, 27.6, 22.9, 14.4 ppm; MS (MALDI-TOF): m/z: 530.4; elemental analysis calcd (%) for (C₂₈H₃₁N₇O₄): C 63.50, H 5.90, N 18.51; found: C 63.34, H 5.95, N 18.46.

Compound L2: 3-Aminopropan-1-ol (2 mL) was added to a solution of S2 (530 mg, 1 mmol) in toluene (5 mL) and the mixture was heated at 80°C for 10 h. Ethyl acetate (30 mL) and $\mathrm{H_{2}O}$ (30 mL) were added and the organic phase was dried (Na₂SO₄). The solvent was removed under vacuum. The product was purified by silica gel chromatography (10:1 CH₂Cl₂/methanol) to afford L2 (500 mg, 81.1%) as a white solid. ¹H NMR (400 MHz, [D₆]acetone): $\delta = 9.04$ (s, 2H), 8.92 (d, J = 1.7 Hz, 2H), 8.24 (s, 2H), 8.14 (dd, J=8.8, 1.9 Hz, 2H), 7.91 (d, J=8.9 Hz, 2H), 4.62 (t, J = 7.0 Hz, 2 H), 4.11 (s, 1 H), 3.65 (q, J = 5.9 Hz, 4 H), 3.57 (q, J = 6.4 Hz, 4H), 2.01-1.93 (m, 2H), 1.82 (quin, J=6.3 Hz, 4H), 1.45 (m, 2H), 1.36 (m, 2H), 1.24 (m, 6H), 0.84 ppm (t, J = 6.6 Hz, 3H); ¹³C NMR $(100 \text{ MHz}, [D_6]DMSO): \delta = 160.5, 144.7, 141.4, 130.1, 125.5, 123.1, 120.3,$ 114.3, 111.8, 59.7, 37.1, 33.3, 32.1, 29.7, 29.6, 27.3, 22.9, 14.8 ppm; MS (MALDI-TOF): m/z: 616.5 [M+H], 638.5 [M+Na]; elemental analysis calcd (%) for (C32H41N9O4): C 62.42, H 6.71, N 20.47; found: C 62.29, H 6.76, N 20.40.

Compound S3a: CuSO₄ (24.5 mg, 0.1 mmol) and sodium ascorbate (40 mg, 0.2 mmol) were added to a solution of 1,3,5-tris(azidomethyl)-2,4,6-triethylbenzene^[25a] (654 mg, 2 mmol) and methyl propiolate (554 mg, 6.6 mmol) in 2:1 ethanol/H₂O (15 mL). The mixture was stirred at RT for 8 h. Ethanol was removed, then CH₂Cl₂ was added. The organic phase was washed with water and dried (Na₂SO₄). The residue was purified by silica gel chromatography (100:1 CH₂Cl₂/methanol) to afford **S3a** (1.1 g, 95%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ =7.78 (s, 3H), 5.71 (s, 6H), 3.93 (s, 6H), 2.76 (q, *J*=8.0 Hz, 6H), 0.96 ppm (t, *J*=8.0 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃): δ =161.2, 147.2, 140.5, 129.8, 127.1, 52.7, 48.5, 24.0, 15.7 ppm; MS (MALDI-TOF): *m/z*: 602.4 [*M*+Na]; elemental analysis calcd (%) for (C₂₇H₃₃N₉O₆): C 55.95, H 5.74, N 21.75; found: C 55.86, H 5.65, N 21.88.

Compound L3: 3-Aminopropan-1-ol (2mL) was added to a solution of **S3a** (580 mg, 1 mmol) in toluene (5mL) and the mixture was heated at 80 °C for 10 h. Ethyl acetate (30 mL) and H₂O (30 mL) were added, then the organic phase was dried (Na₂SO₄). The solvent was removed under vacuum and the residue was purified by silica gel chromatography (10:1 CH₂Cl₂/methanol) to afford **L3** (637 mg, 90%) as a white solid. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.52 (t, *J* = 5.8 Hz, 3H), 8.44 (s, 3H), 5.74 (s, 6H), 4.53 (t, *J* = 5.2 Hz, 6H), 3.47 (dd, *J* = 11.5, 5.9 Hz, 6H), 3.32 (dd, *J* = 12.9, 6.5 Hz, 6H), 2.86 (d, *J* = 7.3 Hz, 6H), 1.68 (quin, *J* = 6.5 Hz, 6H), 0.77 ppm (t, *J* = 7.2 Hz, 9H); ¹³C NMR (100 MHz, [D₆]DMSO): δ = 160.6, 147.1, 143.9, 130.7, 127.0, 59.7, 48.9, 37.1, 33.3, 24.1, 16.0 ppm; MS (MALDI-TOF): *m*/*z*: 709.6 [*M*+H], 731.6 [*M*+Na]; elemental analysis calcd (%) for (C₃₃H₄₈N₁₂O₆): C 55.92, H 6.83, N 23.71; found: C 55.79, H 6.75, N 23.49.

Acknowledgements

This work was supported by the National Nature Science Foundation of China (21031006, 20971127, 90922017, 20831160507) and the National Basic Research 973 Program of China.

Chem. Eur. J. 2012, 18, 4782-4790

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

- 4789

CHEMISTRY

A EUROPEAN JOURNAL

- a) J. L. Sessler, E. Katayev, G. D. Pantos, Y. A. Ustynyuk, *Chem. Commun.* 2004, 1276–1277; b) J. L. Sessler, P. A. Gale, W.-S. Cho, *Anion Receptor Chemistry*, Royal Society of Chemistry, Cambridge, 2006.
- [2] a) E. A. Katayev, Y. A. Ustynyuk, J. L. Sessler, *Coord. Chem. Rev.* 2006, 250, 3004–3037; b) C. Caltagirone, P. A. Gale, *Chem. Soc. Rev.* 2009, 38, 520–563; c) J. W. Steed, *Chem. Soc. Rev.* 2009, 38, 506–519.
- [3] a) K. Choi, A. D. Hamilton, J. Am. Chem. Soc. 2001, 123, 2456–2457; b) D. Seidel, J. L. Sessler, V. Lynch, Angew. Chem. 2002, 114, 1480–1483; Angew. Chem. Int. Ed. 2002, 41, 1422–1425; c) C. D. Jia, B. Wu, S. G. Li, X. J. Huang, Q. L. Zhao, Q. S. Li, X.-J. Yang, Angew. Chem. 2011, 123, 506–510; Angew. Chem. Int. Ed. 2011, 50, 486–490; d) M. W. Hosseini, J.-M. Lehn, K. C. Jones, K. E. Plute, K. B. Mertes, M. P. Mertes, J. Am. Chem. Soc. 1989, 111, 6330–6335; e) S. O. Kang, D. Powell, K. Bowman-James, J. Am. Chem. Soc. 2005, 127, 13478–13479; f) R. P. Dixon, S. J. Geib, A. D. Hamilton, J. Am. Chem. Soc. 1992, 114, 365–366; g) S. Kubik, R. Kirchner, D. Nolting, J. Seidel, J. Am. Chem. Soc. 2002, 124, 12752–12760.
- [4] C. Drugărin, A. Boldea, Pharmazie 1976, 31, 151-152.
- [5] a) A. Kumar, P. S. Pandey, Org. Lett. 2008, 10, 165–168; b) H. Y. Zheng, W. D. Zhou, J. Lv, X. D. Yin, Y. J. Li, H. B. Liu, Y. L. Li, Chem. Eur. J. 2009, 15, 13253–13262.
- [6] a) V. Haridas, K. Lal, Y. K. Sharma, S. Upreti, Org. Lett. 2008, 10, 1645–1647; b) Y. J. Li, Y. J. Zhao, A. H. Flood, C. Liu, H. B. Liu, Y. L. Li, Chem. Eur. J. 2011, 17, 7499–7505; c) Y. J. Zhao, Y. L. Li, Y. J. Li, H. Y. Zheng, X. D. Yin, H. B. Liu, Chem. Commun. 2010, 46, 5698–5700; d) Y. J. Zhao, Y. L. Li, Y. J. Li, C. S. Huang, H. B. Liu, S. W. Lai, C. M. Che, D. B. Zhu, Org. Biomol. Chem. 2010, 8, 3923–3927.
- [7] a) Y. J. Li, A. H. Flood, Angew. Chem. 2008, 120, 2689–2692;
 Angew. Chem. Int. Ed. 2008, 47, 2649–2652; b) Y. J. Li, A. H. Flood,
 J. Am. Chem. Soc. 2008, 130, 12111–12122; c) Y. R. Hua, A. H. Flood, Chem. Soc. Rev. 2010, 39, 1262–1271.
- [8] a) H. Juwarker, J. M. Lenhardt, D. M. Pham, S. L. Craig, Angew. Chem. 2008, 120, 3800-3803; Angew. Chem. Int. Ed. 2008, 47, 3740-3743; b) R. M. Meudtner, S. Hecht, Angew. Chem. 2008, 120, 5004-5008; Angew. Chem. Int. Ed. 2008, 47, 4926-4930.
- [9] W. S. Horne, M. K. Yadav, C. D. Stout, M. R. Ghadiri, J. Am. Chem. Soc. 2004, 126, 15366–15367.
- [10] a) J. H. van Maarseveen, W. S. Horne, M. R. Ghadiri, *Org. Lett.* 2005, 7, 4503–4506; b) V. D. Bock, R. Perciaccante, T. P. Jansen, H. Hiemstra, J. H. van Maarseveen, *Org. Lett.* 2006, 8, 919–922.
- [11] J. W. Pflugrath, F. A. Quiocho, Nature 1985, 314, 257-260.
- [12] S. G. Galbraith, Q. Wang, L. Li, A. J. Blake, C. Wilson, S. R. Collinson, L. F. Lindoy, P. G. Plieger, M. Schroder, P. A. Tasker, *Chem. Eur. J.* **2007**, *13*, 6091–6107.
- [13] B. A. Moyer, L. H. Delmau, C. J. Fowler, A. Ruas, D. A. Bostick, J. L. Sessler, E. Katayev, G. D. Pantos, J. M. Llinares, Md. A. Hossain, S. O. Kang, and K. Bowman-James, in *Advances in Inorganic Chemistry: Template Effects and Molecular Organisation, Vol. 59*, (Eds. R. van Eldik and K. Bowman-James), Academic Press, London, **2007**, pp. 175–204.
- [14] R. Custelcean, P. Remy, P. V. Bonnesen, D. Jiang, B. A. Moyer, Angew. Chem. 2008, 120, 1892–1896; Angew. Chem. Int. Ed. 2008, 47, 1866–1870.
- [15] R. Custelcean, J. Barsano, P. V. Bonnesen, V. Kertesz, B. P. Hay, Angew. Chem. 2009, 121, 4085–4089; Angew. Chem. Int. Ed. 2009, 48, 4025–4029.
- [16] P. A. Gale, J. R. Hiscock, C. Z. Jie, M. B. Hursthouse, M. E. Light, *Chem. Sci.* **2010**, *1*, 215–220.

- [17] K. M. Mullen, P. D. Beer, Chem. Soc. Rev. 2009, 38, 1701-1713.
- [18] L. R. Eller, M. Stepien, C. J. Fowler, J. T. Lee, J. L. Sessler, B. A. Moyer, J. Am. Chem. Soc. 2007, 129, 11020–11021.
- [19] Md. A. Hossain, J. M. Llinares, D. Powell, K. Bowman-James, *Inorg. Chem.* 2001, 40, 2936–2937.
- [20] Z. Rodriguez-Docampo, S. I. Pascu, S. Kubik, S. Otto, J. Am. Chem. Soc. 2006, 128, 11206.
- [21] a) K. Kobiro, Y. Inoue, J. Am. Chem. Soc. 2003, 125, 421–427;
 b) M. J. Chmielewski, L. Zhao, A. Brown, D. Curiel, M. R. Sambrook, A. L. Thompson, S. M. Santos, V. Felix, J. J. Davis, P. D. Beer, Chem. Commun. 2008, 3154–3156.
- [22] J. Sánchez-Quesada, C. Seel, P. Prados, J. de Mendoza, J. Am. Chem. Soc. 1996, 118, 277–278.
- [23] Y. J. Li, M. Pink, J. A. Karty, A. H. Flood, J. Am. Chem. Soc. 2008, 130, 17293–17295.
- [24] a) M. Sonntag, K. Kreger, D. Hanft, P. Strohriegl, *Chem. Mater.* 2005, 17, 3031–3039; b) Y. Liu, M. Nishiura, Y. Wang, Z. Hou, J. *Am. Chem. Soc.* 2006, 128, 5592–5593.
- [25] a) A. Metzger, V. M. Lynch, E. V. Anslyn, Angew. Chem. 1997, 109, 911-914; Angew. Chem. Int. Ed. Engl. 1997, 36, 862-865; b) S. L. Tobey, B. D. Jones, E. V. Anslyn, J. Am. Chem. Soc. 2003, 125, 4026-4027; c) S. C. McCleskey, M. J. Griffin, S. E. Schneider, J. T. McDevitt, E. V. Anslyn, J. Am. Chem. Soc. 2003, 125, 1114-1115; d) Z. L. Zhong, E. V. Anslyn, J. Am. Chem. Soc. 2002, 124, 9014-9015; e) C. D. Hall, T.-K. U. Truong, J. H. R. Tucker, J. W. Steed, Chem. Commun. 1997, 2195-2196; f) P. D. Beer, E. J. Hayes, Coord. Chem. Rev. 2003, 240, 167-189; g) W. J. Belcher, M. Fabre, T. Farhan, J. W. Steed, Org. Biomol. Chem. 2006, 4, 781-786; h) L. O. Abouderbala, W. J. Belcher, M. G. Boutelle, P. J. Cragg, J. W. Steed, D. R. Turner, K. J. Wallace, Proc. Natl. Acad. Sci. USA 2002, 99, 5001-5006; i) J. W. Steed, Chem. Commun. 2006, 2637-2649; j) J. Chin, C. Walsdorff, B. Stranix, J. Oh, H. J. Chung, S.-M. Park, K. Kim, Angew. Chem. 1999, 111, 2923-2926; Angew. Chem. Int. Ed. 1999, 38, 2756-2759; k) V. Amendola, M. Boiocchi, L. Fabbrizzi, A. Palchetti, Chem. Eur. J. 2005, 11, 5648-5660; 1) C. Schmuck, M. Schwegmann, J. Am. Chem. Soc. 2005, 127, 3373-3379.
- [26] Compound 1: $(C_{18}H_{22}N_5O_2): M_r = 340.41$; triclinic; space group $P\bar{1}$; a=9.250(3), b=10.470(3), c=10.739(3)Å; $a=113.007(3), \beta=$ $100.291(4), \gamma=100.643(3)^\circ; V=904.0(5)$ Å³; $Z=2; \rho_{calcd}=$ $1.251 \text{ mgm}^{-1-3}; F(000)=362; \text{ GOF}=1.133; a total of 10117 reflec$ tions were measured in the range 3.26 to 25.0, of which 3166 were $unique (<math>R_{int}=0.0388$); final R indices: $R_1(I>2\sigma(I))=0.0706, wR_2=$ 0.1608. Complex L3·SO₄²⁻: ($C_{63}H_{111}N_{14}O_{10}S$): $M_r=1256.72;$ monoclinic; space group P21/c; a=24.256(5), b=15.765(3), c= 22.911(5)Å; $a=90, \beta=115.15(3), \gamma=90^\circ; V=7931(3)$ Å³; $Z=4, \rho_{calcd}=1.053 \text{ mgm}^{-1-3}; F(000)=2732; \text{ GOF}=1.133; a total of 49788$ reflections were measured in the range 0.93 to 25.16, of which 14080 were unique ($R_{int}=0.0868$); final R indices: $R_1(I>2\sigma(I))=0.1210, wR_2=0.3095.$ CCDC-868834 and CCDC-868835 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [27] M. J. Hynes, J. Chem. Soc. Dalton Trans. 1993, 311-312.
- [28] a) M. Arunachalam, P. Ghosh, *Inorg. Chem.* 2010, 49, 943–951;
 b) Å. Östlund, D. Lundberg, L. Nordstierna, K. Holmberg, M. Nydén, *Biomacromolecules* 2009, 10, 2401–2407.
- [29] J. Andersen, U. Madsen, F. Björkling, X. F. Liang, Synlett 2005, 14, 2209–2213.

Received: September 4, 2011 Published online: February 29, 2012

4790 -