## Water Photodecomposition with Two Reversible and Separable Photosystems

## Kirthi Tennakone and Shantha Pushpa

Department of Physics, University of Ruhuna, Matara, Sri Lanka Institute of Fundamental Studies, Colombo, Sri Lanka

An aqueous suspension of TiO<sub>2</sub> and Ag<sub>2</sub>O, at pH <7.4 photogenerates O<sub>2</sub> reducing Ag<sub>2</sub>O to Ag; if the pH of the residual product is increased (12.3—12.6) H<sub>2</sub> is photogenerated, while Ag is oxidized to Ag<sub>2</sub>O.

One of the most promising methods for chemical storage of solar energy seems to be photocatalytic systems based on semiconductor dispersions.<sup>1-6</sup> Several aqueous semiconductor suspensions readily photoreduce or photo-oxidize water in the presence of a sacrificial electron donor or an acceptor. 1--6 There is also evidence that photocleavage of water into H<sub>2</sub> and  $O_2$  can be accomplished with semiconductor particles loaded with catalysts which enhance the evolution of these gases.<sup>1,4-8</sup> The systems of the first type that employ sacrificial agents are irreversible. Those of the second type that decompose water into its components, present a severe complication as the reaction product is explosive. Again O<sub>2</sub> and H<sub>2</sub> generated near the same microparticle are more likely to recombine, drastically reducing the decomposition efficiency. The above problems can be circumvented if reduction and oxidation processes are separated in space and time as two photosystems, PS I and PS II, linked by an intermediate redox couple. Natural photosynthesis operates in this fashion.9 In this note we describe a reversible system for photodissociation of water based on the intermediate redox couple Ag<sub>2</sub>O/Ag. An aqueous suspension of TiO<sub>2</sub> and Ag<sub>2</sub>O powders, when irradiated, is found to evolve O<sub>2</sub> until all the Ag<sub>2</sub>O is reduced to Ag, if the pH is below 7.4, *i.e.*, PS II. When the pH of the residual product is increased (12.3-12.6), H<sub>2</sub> evolves on illumination while the Ag is oxidized back to Ag<sub>2</sub>O, *i.e.*, PS I. PS II operates only at the band gap radiation (BGR) of  $TiO_2$ . However, PS I which is initially sensitive only to same wavelengths, responds to BGR of Ag<sub>2</sub>O as well when the reaction proceeds with formation of Ag<sub>2</sub>O.

 $2Ag_2O \rightarrow 4Ag + O_2$ ,  $\Delta G = 22.4 \text{ kJ mol}^{-1}$  (PS II)

 $4Ag + 2H_2O \rightarrow 2Ag_2O + 2H_2$ ,  $\Delta G = 452.7 \text{ kJ mol}^{-1}$  (PS I)

Ag<sub>2</sub>O was prepared by adding an excess of NaOH to  $AgNO_3$  (AnalaR) and boiling the mixture. The precipitate was throughly washed, taking care to avoid contamination with organic materials, and dried at 110 °C. A calibrated membrane polarographic detector with a thermostatted (26 °C) 35 ml quartz cell (Applied Photophysics) irradiated with a 200 W medium pressure Hg lamp was used to detect O<sub>2</sub> and H<sub>2</sub>. Light intensities were measured with an International Light IL 700 Radiometer. Quantum efficiency measurements were performed with a monochromator (Applied Photophysics) and 500 W halogen lamp. The catalyst in PS II mode was prepared by grinding Ag<sub>2</sub>O with TiO<sub>2</sub> anatase (BDH and Aldrich, tested to have n-type conductivity). The cell was degassed with N<sub>2</sub>, and the O<sub>2</sub> evolution rate from 0.50 mg of the catalyst was determined at different pH's (7-14 adjusted with NaOH). Oxygen production was seen to be optimum



Figure 1. (a)  $O_2$  photoproduction from 5 mg of PS II catalyst (TiO<sub>2</sub>: Ag<sub>2</sub>O = 10:1); (b) H<sub>2</sub> photoproduction in PS I (TiO<sub>2</sub>: Ag corresponds to the PS II composition), pH values are indicated near each curve.



Figure 2. Variation of initial photoproduction rates of  $O_2$  and  $H_2$  with pH.  $TiO_2$ : Ag<sub>2</sub>O and  $TiO_2$ : Ag ratios are indicated near each curve.

when  $TiO_2: Ag_2O = ca$ . 10:1 by weight. At pH's < 7.4, the total amount of photogenerated  $O_2$  was found to be practically the same as the stoicheiometric content in Ag<sub>2</sub>O. This was also confirmed by the observation that residual catalyst remained free from Ag that could be extracted with ammonia.

PS I was studied by irradiating the product that has completed PS II, by adjusting the pH and determining the  $H_2$ 

evolution rate after degassing. When the pH was in the range ca. 12.3—ca. 12.6, all the Ag was oxidized to Ag<sub>2</sub>O, producing H<sub>2</sub>. The catalyst in the PS I mode, prepared by grinding silver dust (made by reacting formaldehyde and ammoniacal AgNO<sub>3</sub>) and TiO<sub>2</sub> was also tested and noted to behave in the same way as the PS II catalysts. The initial H<sub>2</sub> production rate was seen to be optimum when TiO<sub>2</sub>: Ag = ca. 8:1 by weight. It was also



Figure 3. Diffuse reflectance spectrum of Ag<sub>2</sub>O powder.

noted that at optimum pH's both photosystems function in the presence of dissolved  $H_2$  and  $O_2$  and reversibility is possible. Figure 1 gives  $O_2$  and  $H_2$  yields from PS II and PS I as a function of time at different pH's. The initial reaction rates (*i.e.*, in the first few minutes, when gas generation increases linearly with time) are compared in Figure 2. It is seen that  $H_2$  evolution rate is maximum at pH *ca.* 12.5, where  $O_2$  evolution rate is minimum.

The curve with broken lines in Figure 1 (b) indicates  $O_2$  production from PS I irradiated with the full spectrum of a Hg lamp and the  $\lambda > 630$  nm component filtered off after 5 min. As Ag<sub>2</sub>O is formed PS I becomes sensitive to the BGR of Ag<sub>2</sub>O, which is p-type having a band edge at *ca*. 840 nm (1.5 eV). The diffuse reflectance spectrum taken with a Unicamp SP 500 spectrophotometer is shown in Figure 3. Aqueous suspensions of Ag<sub>2</sub>O and Ag, pH 12.0—13.5, evolve H<sub>2</sub> on illumination at *ca*. 800 nm, confirming the above observation. PS II was seen to be insensitive to the BGR of Ag<sub>2</sub>O. Here light absorbed by Ag<sub>2</sub>O is wasted; this explains why optimum O<sub>2</sub> evolution occurs when the fraction of TiO<sub>2</sub> in the catalyst is fairly high. Aqueous dispersions of Ag<sub>2</sub>O generate H<sub>2</sub> in the presence of other electron donating agents, *e.g.* ethanol at *ca*. 800 nm. However, no O<sub>2</sub> evolution is seen in the presence of electron

acceptors, *e.g.*, persulphate or dichromate, showing that band positions are favourable only for  $H_2$  evolution.

Oxygen in PS II should come from  $H_2O$ ; except for the observation that  $Ag_2O$  does not undergo photodecomposition, we have not proved this directly. The energy conversion efficiency for one cycle is *ca*. 0.6% (a 200 W medium pressure Hg lamp at 460 W m<sup>-2</sup> was used as the light source). The quantum efficiencies of  $O_2$  (pH 7) and  $H_2$  (pH 12.5) corrected for transmission were estimated to be 2.3 and 13.6% respectively at 380 nm. The determination of this quantity at different wavelengths near the absorption peak of  $Ag_2O$  is involved because of the progressive sensitivity of PS I to the BGR of  $Ag_2O$ . A mixture of  $Ag_2O$  and Ag (10:1 by weight) generates  $H_2$  with a quantum efficiency of *ca*. 16% at *ca*. 800 nm.

Although conversion efficiencies are low and cycling between PS I and PS II involves operations that consume some energy, the present system is useful as a model for the dual system photocleavage of water.

Received, 14th June 1985; Com. 833

## References

- 1 'Energy Resources through Photochemistry and Catalysis,' ed. M. Grätzel, Academic Press, New York, 1983.
- 2 H. Hade, H. Tanemura, and Y. Yonezawa, Bull. Chem. Soc. Jpn., 1978, **51**, 3154.
- 3 J. R. Darwent, J. Chem. Soc., Faraday Trans. 2, 1981, 77, 1703.
- 4 D. Duonghong and M. Grätzel, J. Chem. Soc., Chem. Commun., 1984, 1579.
- 5 E. Yesodharan, S. Yesodharan, and M. Grätzel, Sol. Energy Mater., 1984, 10, 287.
- 6 J. M. Lehn, J. P. Sauvage, and R. Ziessel, Nouv. J. Chim., 1980, 4, 623.
- 7 K. Kalyanasundram, E. Borgarello, and M. Grätzel, Helv. Chim. Acta, 1981, 64, 362.
- 8 G. Blondeel, A. Harriman, and D. Williams, Sol. Energy Mater., 1983, 9, 217.
- 9 G. Porter, in 'Light, Chemical Change and Life,' eds. J. D. Coyle, R. R. Hill, and D. R. Roberts, Open University Press, Milton Keynes, 1982.