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Abstract—Bicyclo[3.1.0]hexane derivatives, selectively prepared by intramolecular cyclopropanation of sugar-derived unsaturated
diazo compounds, are common precursors for the sugar moiety of cyclopentane, cyclopropane and bicyclo[3.1.0Jhexane
nucleosides, such as aristeromycin, the carbocyclic analogue of neplanocin C and the nucleoside A-5021. © 2001 Elsevier Science

Ltd. All rights reserved.

Carbocyclic nucleosides—usually with a cyclopentane
ring as the sugar moiety—have been widely studied as
potential antiviral and antitumour agents.! Amongst
these, nucleosides with a cyclopropane ring or a bicy-
clo[3.1.0]hexane ring system, have attracted consider-
able attention because of their significant antiviral
activity? (Fig. 1).

Bicyclo[3.1.0]hexane derivatives 3 and 4 (Scheme 1)
could be excellent precursors for the synthesis of
nucleosides like those shown in Fig. 1, because of the
highly versatile functional groups present. Their synthe-
sis, therefore, in enantiomerically pure form is strongly
desirable and the intramolecular cyclopropanation of
sugar-derived chiral diazo compounds is an attractive
approach. Some time ago,® we reported the intramolec-
ular cyclopropanation of diazo compound 2 and the
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corresponding iodonium ylide to give the enantiopure
bicyclo[3.1.0]hexane derivatives 3 and 4. Compound 2
in turn was prepared from D-ribose via the pentenal 1.
Although the Cul catalysed decomposition of 2 is a
good method to prepare compound 3 (4.5:1
diastereomeric ratio, 81% combined yield after optimi-
sation), compound 4 was not accessible in acceptable
yield and selectivity: the Cul catalysed decomposition
of the respective iodonium ylide* favoured the forma-
tion of 4, but in moderate yield and poor diastereose-
lection (1:1.5). Looking for a better way to prepare
compound 4, we found that the Rh,(OAc), catalysed
decomposition of 2, afforded compound 4 as the major
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Scheme 1. Reagents and conditions: (i) (a) N,CHCO,Et,
SnCl, (anhydrous), CH,Cl,, 0°C, 76%; (b) TsN;, Et;N,
EtOH, 20°C, 92% optimised yield; (ii) Cul, toluene, reflux, 3
h, 81% optimised yield (3:4 ratio 4.5:1) or Rh,(OAc),, tolu-
ene, reflux, 1.5 h, 74% (3:4 ratio 1:3).
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product, in 74% combined yield and 1:3 diastereoselec-
tivity. Interestingly, the enantiomers of 3 and 4 could
also be obtained, since the enantiomer of aldehyde 1 is
easily accessible.*

The observed different diastereoselectivity in these reac-
tions should originate in the nature of their transition
states. It is generally accepted that the metal catalysed
decomposition of diazo compounds proceeds via
metallo—carbenoid intermediates,® which preserve their
structural integrity during the addition to the double
bond. Thus, in the Rh,(OAc), catalysed cyclopropana-
tion of 2, the transition state TS-1 (Fig. 2) leading to
the formation of 3, is more strongly destabilised as a
result of the interactions of the bulky Rh(II) species
with the acetonide group, compared to those of the
ethoxycarbonyl group in TS-2. In the case of Cul, the
interactions of the ethoxycarbonyl group in TS-2 with
the acetonide group predominate over those of the
smaller atom of Cu with the acetonide in TS-1.

Having established satisfactory preparative methods for
compounds 3 and 4, a number of further transforma-
tions demonstrated their synthetic interest. LiAlH,
reduction of both compounds (Scheme 2) afforded the
respective protected tetraols 5 and 6, as the only prod-
ucts in good yield, compounds which constitute the
sugar part of carbocyclic nucleosides with a bicy-
clo[3.1.0]hexane ring system.? The deprotected ent-5, in
particular, which could be prepared by the same way
from ent-1, is the sugar moiety of the carbocyclic
analog of neplanocin C and related nucleosides.*
Treatment of compounds 3 and 4 with thiophenol in
t-BuOH/¢-BuOK caused cyclopropane ring opening’

Figure 2.

and the resulting ketoesters were decarboxylated at
160°C with NaCl/DMSO/H,0? to give the enantiopure
hydroxylated cyclopentanoids 9 and 10. Since it is well
known’ that the thiophenyl group could be easily trans-
formed to a hydroxyl group via a Pummerer oxidation,
compound 10 is directly related to the aristeromycin
and analogous nucleosides.

The synthesis of the antiviral cyclopropane nucleoside
A-5021° is another example of the synthetic potential of
the intramolecular cyclopropanation reactions in sugar
derivatives. Tsuji et al. recently reported® that A-5021
exhibits extraordinary activity against HSV-1 and VZV,
being superior and more selective than acyclovir. It
becomes evident when comparing the structure of A-
5021 as those of 5 and 6 that the two chiral centres of
the cyclopropane ring of A-5021 have the same abso-
lute configuration as those of 5, from which the sugar
moiety of A-5021 could be prepared by standard depro-
tection and glycolic cleavage reactions.

To this end, compound 5 was deprotected and the
primary hydroxyl group tritylated (Scheme 3). Further
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Scheme 3. Reagents and conditions: (i) HCI, THF, H,0, 20°C,
30 min; (ii) Ph;CCl, DMAP, Et;N, DMF, 20°C, 24 h, 65%;
(iii) NalO,, THF, H,O, 45 min then NaBH,, MeOH, 30 min,
(twice), 55% overall; (iv) PhCOCI, pyridine, 0°C, 1 h, then
HCO,H, Et,0, 20 min, 60%.

Scheme 2. Reagents and conditions: (i) LiAlH,, Et,O0, —10°C, 30 min; (i) PhSH, ¢-KOBu, 20°C, 3-7 h; (iii) DMSO, H,0, NaCl,

160°C, 5 h.
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glycolic cleavage required prolonged stirring with an
excess of NalO, and yielded compound 12 upon
NaBH, reduction, as a mixture with polyols 14 and 15
(Fig. 3), evidently because the initially formed hydroxy-
bis-aldehydes exist predominantly as lactols, resisting
the action of NalO,. To overcome this problem, 11 was
subjected to two consecutive short-time glycolic cleav-
age/NaBH, reduction treatments, to give the desired
compound 12, in good overall yield. Conventional ben-
zoylation of the two free hydroxyl groups and detrityla-
tion gave the known compound 13, which can be
readily converted to the nucleoside A-5021, according
to the literature procedure.®®

In short, we have established preparative methods for
the directed intramolecular cyclopropanation of diazo
compound 2 to give bicyclo[3.1.0]hexane derivatives 3
or 4. Furthermore, we have demonstrated their syn-
thetic potential, by converting them into the sugar part
of cyclopentane, cyclopropane and bicyclo[3.1.0]hexane
nucleosides. Of particular interest is the synthesis of the
suger part of the antiviral cyclopropane nucleoside
A-5021, in enantiomerically pure form.
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