

Contents lists available at SciVerse ScienceDirect

# Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy



journal homepage: www.elsevier.com/locate/saa

# Infrared, <sup>1</sup>H and <sup>13</sup>C NMR spectra, structural charcterization and DFT calculations of novel adenine-cyclodiphosp(V)azane derivatives

Tarek A. Mohamed<sup>a,\*</sup>, Wajdi M. Zoghaib<sup>b</sup>, Ibrahim A. Shaaban<sup>a,1</sup>, Rabei S. Farag<sup>a</sup>, Abd Elnasser M.A. Alajhaz<sup>a</sup>

<sup>a</sup> Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt <sup>b</sup> Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khod, Muscat, Oman

#### ARTICLE INFO

Article history: Received 29 July 2011 Received in revised form 21 August 2011 Accepted 22 August 2011

Keywords: Adenine-cyclodiphospha(V)zanes Vibrational assignments <sup>1</sup>H NMR <sup>13</sup>C NMR and theoretical calculations

#### ABSTRACT

Adenine tetrachlorocyclodiphospha(V)zane derivatives ( $III_{a-c}$ ) were prepared by the reaction of hexachlorocyclodiphospha(V)zane derivatives ( $II_{a-c}$ ) and adenine (II) as precursors. The synthesized compound's and their structures ( $III_{a-c}$ ) were firmly characterized (based on the presence of an inversion center) using FT-IR (4000–200 cm<sup>-1</sup>), UV–vis. (190–800 nm), <sup>1</sup>H, <sup>13</sup>C NMR and Mass spectral measurements in addition to C, H, N, P elemental analysis. The compounds ( $III_{a-c}$ ) were found to be a 1:2 molar ratio of ( $I_{a-c}$ ) and adenine (II) adducts, respectively. Confident and complete vibrational assignments are proposed for nearly all fundamental vibrations, along with detailed interpretation for all observed signals in both <sup>1</sup>H and <sup>13</sup>C NMR spectra of the investigated phospha(V)zanes ( $III_{a-c}$ ). In addition, unconstrained geometry optimization of  $III_{a-c}$  were carried out by means of DFT-B3LYP/3-21G(d) calculations to provide new insight into the structural parameters and molecular geometries of compounds  $III_{a-c}$ . The results are reported herein and compared with similar molecules whenever appropriate.

© 2011 Elsevier B.V. All rights reserved.

# 1. Introduction

Cyclodiphosphazane derivatives are an important family of inorganic heterocyclic compounds containing a saturated fourmembered  $P_2N_2$  ring which gained considerable interest in synthesis and structural investigations [1–3]. This is due to the organic and inorganic properties of theses compounds particularly the ability of the inorganic rigid P–N framework to combine with organic substituents. Moreover, the ability of these compounds to form transition metal complexes with remarkable chemical and biological properties is also of great interest [4–7]. The high reactivity of hexachlorocyclodiphospha(V)zane toward nucle-ophilic substitution provides for chlorine atom(s) substitution by nucleophiles. Therefore, several cyclodiphospha(V)zanes containing active methylene, alcohols, thiols [3,8], aromatic and aliphatic amines [9–11] have already been synthesized and characterized. However, no one article provides a comprehensive interpretation and vibrational assignment for all observed frequencies. Moreover, little computational studies have been extended to cyclodiphosp-hazanes [12].

We aimed at synthesizing novel adenine-cyclodiphospha-(V)zane derivatives via amination of hexachlorocyclodiphospha(V)zane derivatives with adenine hoping the derivatives possess some important biological features. Furthermore, the synthesized compound's structures were characterized using elemental analysis and spectroscopic measurement including IR, UV, Mass Spec, <sup>1</sup>H and <sup>13</sup>C NMR. In the context of our most recent work on P<sub>3</sub>N<sub>3</sub>Cl<sub>6</sub> [13] and adenine [14] we carried out computational calculations for **III**<sub>a-c</sub> using Density Functional Theory (DFT) [15] in order to provide an efficient approach to their structures configurationally and structural parameters as well.

#### 2. Experimental

# 2.1. Materials

Adenine, actonitrile, dimethylformamide (DMF), and dimethylsulfoxide (DMSO) were purchased from Aldrich Chemical Company. All reagents with 99% purity grade were used without further purification.

<sup>\*</sup> Corresponding author at: University of Nizwa, College of Arts and Sciences, Post Code 616, P.O. Box 33, Nizwa, Oman. Tel.: +202 38503918; fax: +202 22629356. *E-mail address:* tarek\_ama@hotmail.com (T.A. Mohamed).

<sup>&</sup>lt;sup>1</sup> Taken in part from the Master Thesis of Ibrahim A. Shaaban which was submitted to Chemistry Department, Faculty of Science, Al Azhar University, Nasr City, Cairo 11884, Egypt.

<sup>1386-1425/\$ -</sup> see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2011.08.035



Fig. 1. Synthesis of adenine-cyclodiphosph(V)azane derivatives (III<sub>a-c</sub>).

# 2.2. Synthesis of adenine-tetrachlorocyclodiphospha(V)zanes $(III_{a-c})$

The hexachlorocyclodiphosphazane compounds  $(I_{a-c})$  were prepared using the provided scheme (Fig. 1) and purified using known procedures [16]. Solid adenine (1.35 g, 0.01 mol) was added in small portions to a well stirred solution of 0.005 mol hexachlorocyclodiphosphazane derivatives  $(I_{a-c})$  in 100 mL acetonitrile for 0.5 h. The hot reaction mixture was refluxed for 2 h in a fume hood with continuous stirring while evolving HCl gas. The reaction mixture was filtered and the resulting solid was washed several times with acetonitrile and diethyl ether before drying under vacuum.

# 2.3. Instrumentation

#### 2.3.1. Elemental analysis

Carbon, hydrogen and nitrogen elemental analyses were carried out at the Micro Analytical Center, Cairo University, Giza, Egypt. While, the phosphorus percent was determined gravimetrically as phosphorous ammonium molybdate using Voy's method [17]. Analytical data for the adenine-tetrachlorocyclodiphosphazane derivatives ( $\mathbf{III}_{a-c}$ ) are listed in Table 1.

# 2.3.2. IR and UV-vis spectra

The mid-infrared spectra (4000–200 cm<sup>-1</sup>) of solid adenine and the synthesized compounds ( $III_{a-c}$ ) were recorded on a Perkin Elmer Spectrum 100 FT-IR Spectrometer using CsI disk technique (Fig. 2). To improve the S/N ratio, forty scans were collected utilizing 0.5 cm<sup>-1</sup> resolution. The observed IR bands of adenine and the compounds ( $III_{a-c}$ ) are listed in Table 2. The ultraviolet–visible spectra (190–800 nm) were measured using a Perkin Elmer Lambda 35 spectrophotometer with the samples dissolved in DMF (Fig. 3).

#### 2.3.3. Mass spectra

Mass spectra (Supplement Fig. S-1) for compounds ( $III_{a-c}$ ) were acquired on a Quattro Ultima Pt (Waters Corp., Milford, MA, USA), Tandem Quadrupole mass spectrometer using chemical ionization technique. Samples were initially dissolved in DMSO and serial dilutions were carried out in 50/50 (v/v) acetonitrile/water. The samples were infused using a Harvard syringe pump (Harvard, CA, USA) at a flow rate of 10  $\mu$ L per minute into the mass spectrometer.

### 2.3.4. NMR spectra

<sup>1</sup>H (Fig. 4) and <sup>13</sup>C (Fig. 5) NMR spectral measurements were performed with the samples ( $III_{a-c}$ ) dissolved in DMSO- $d_6$  at 25 °C using a Bruker Avance 400 MHz NMR spectrometer equipped with

a Magnex Scientific superconducting magnet, and Top Spin 1.3 software. Tetramethylsilane (TMS) was used as an internal reference. To identify and ascertain the NH peaks in <sup>1</sup>H NMR spectra of the compounds under investigation,  $D_2O$  was added to the NMR sample with vigorous shaking to either reduce or eliminate the NH signal (proton deuterium exchange). To reduce the signal to noise ratio, 10,000 scans were acquired for <sup>13</sup>C NMR measurements and 16 scans for <sup>1</sup>H NMR analysis with a 5 s relaxation delay time using a 10 k data point file. The <sup>1</sup>H and <sup>13</sup>C chemical shifts of compounds (III<sub>a-c</sub>) are listed in Tables 3 and 4, respectively.



**Fig. 2.** FT-IR solid spectrum of adenine and adenine-cyclodiphosph(V)azane derivatives in CsI; (A) adenine; (B)  $III_a$ ; (C)  $III_b$ ; (D)  $III_c$ .

| Analytical and | nhysical dat  | of adapting     | cyclodiphosph  | (V)        | derivatives () |           |
|----------------|---------------|-----------------|----------------|------------|----------------|-----------|
| Analytical and | physical uata | a of adefinite- | cyclouipilospi | I(V)dZdIIC | uerivatives (I | $a_{a-c}$ |

| Comp. No.        | Reactants (mol, g)                                                                                                                                                  | Molecular m.p.                                                                                |         | Color              | Elemental anal | lysis; found/calculated |             |           |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------|--------------------|----------------|-------------------------|-------------|-----------|
|                  | Hexachlorocyclodiphosph(V)azane derivatives and adenine                                                                                                             | formula                                                                                       | (°C)    | (%Yield)           | %С             | %Н                      | %N          | %P        |
| III <sub>a</sub> | [(C <sub>6</sub> H <sub>6</sub> )NPC1 <sub>3</sub> ] <sub>2</sub> (I <sub>a</sub> ): adenine ( <b>II</b> )<br>(0.01, 4.57): (0.02, 2.70)                            | C <sub>22</sub> H <sub>18</sub> Cl <sub>4</sub> N <sub>12</sub> P <sub>2</sub><br>(654 g/mol) | 283-285 | White<br>80.20%    | 39.74/40.39    | 3.01/2.77               | 26.00/25.69 | 9.22/9.47 |
| III <sub>b</sub> | [( <i>p</i> -CH <sub>3</sub> C <sub>6</sub> H <sub>5</sub> )NPC1 <sub>3</sub> ] <sub>2</sub> (I <sub>b</sub> ): adenine ( <b>II</b> )<br>(0.01, 4.85): (0.02, 2.70) | C <sub>24</sub> H <sub>22</sub> Cl <sub>4</sub> N <sub>12</sub> P <sub>2</sub><br>(682 g/mol) | 260-263 | Greenish<br>81.80% | 41.81/42.25    | 3.12/3.25               | 25.00/24.64 | 8.84/9.08 |
| III <sub>c</sub> | [( <i>p</i> -ClC <sub>6</sub> H <sub>5</sub> )NPC1 <sub>3</sub> ] <sub>2</sub> (I <sub>c</sub> ): adenine ( <b>II</b> )<br>(0.01, 5.26): (0.02, 2.70)               | C <sub>22</sub> H <sub>16</sub> Cl <sub>6</sub> N <sub>12</sub> P <sub>2</sub><br>(723 g/mol) | 272–275 | White<br>76.90%    | 36.50/36.54    | 2.50/2.23               | 24.01/23.24 | 8.34/8.57 |

# 3. Computational procedure

In order to obtain structural details about the prepared adenine-tetrachlorocyclodiphospha(V)zane derivatives ( $III_{a-c}$ ), unconstrained geometry optimizations were performed while excluding the inversion center for compounds  $III_{a-c}$  using DFT [15] calculations. The calculations were carried out with B3LYP method in which Becke's non-local exchange [18] and the Lee–Yang–Parr correlation functiona [19] were applied with a 3-21G(d) basis set [20]. We could not implement larger basis sets owing to the lack of advanced computational facilities and the presence of eighteen

heavy atoms other than carbon and hydrogen which require Unix systems or work stations. Energy minima with respect to the nuclear coordinates were obtained by the simultaneous relaxation of all geometrical parameters for molecules ( $III_{a-c}$ ) using Pulay's gradient method [21] with Gaussian-98 computational package [22] running on a PC, 2.0 GHz Pentium processor, 2 MB Ram. The bond lengths, bond angles, dihedral angles and selected structural parameters (SPs) are presented in Table 5. <sup>1</sup>H (Table 3) and <sup>13</sup>C (Table 4) chemical shifts for adenine-cyclodiphospha(V)zanes ( $III_{a-c}$ ) were also predicted using Chem Draw Ultra v8 [23].

# Table 2

Vibrational assignments of adenine-cyclodiphosph(V)azane derivatives (III<sub>a-c</sub>) compared with adenine.<sup>a</sup>

| Vibrational assignment                                      | Adenine [14] | $III_a(Y=H)$                   | $III_b(Y=p-CH_3)$                                                                                                | III <sub>c</sub> (Y=p-Cl)                                   |
|-------------------------------------------------------------|--------------|--------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| PCl <sub>2</sub> wag<br>PCl <sub>2</sub> Scissor<br>N-H wag | 250 w        | 209 vs<br>217 s<br>254 m       | 209 vs<br>228 s<br>251 sh                                                                                        | 225 vs<br>254 w                                             |
| N-H wag                                                     | 230 W        | 265 sh                         | $\begin{cases} 271 \text{ vw} \\ 284 \text{ sh} \end{cases}$                                                     | 267 vw                                                      |
| Pyrimidine ring puckering                                   | 337 s        | { 325 sh<br>335 m,s            | {326 sh<br>335 s                                                                                                 | { 321 sh<br>335 s                                           |
| Benzene ring puckering                                      |              | 387 w                          | 371 w                                                                                                            | $\int 382 \text{ w}$                                        |
| P-Cl stretch                                                |              | 425 w, br                      | { 410 w<br>420 sh                                                                                                | 425 br, sh                                                  |
| PNP in plane deformation<br>Imidazole NH wagging            | 513 sh       | 473 m, s<br>{ 497 m<br>522 sh  | $\begin{cases} 465 \text{ w} \\ 486 \text{ sh} \\ 492 \text{ s} \\ 502 \text{ sh} \\ 513 \text{ sh} \end{cases}$ | 450 br, sh<br>496 m, br                                     |
| Pyrimidine ring puckering                                   | 543 s        | 535 vs                         | { 535 vs<br>539 sh                                                                                               | { 535 s<br>{ 541 sh                                         |
| NPN in plane deformation                                    |              | 563 w                          | {563 w<br>570 sh                                                                                                 | 563 w                                                       |
| Imidazole ring puckering                                    | 621 s, sh    | { 609 sh<br>620 s              | {610 s<br>619 m                                                                                                  | 619 m                                                       |
| Imidazole ring in plane deformation                         | 667 s, br    | {637 s<br>655 sh               | ∫ 637 s<br>∫ 543 sh                                                                                              | $\begin{cases} 637 \text{ m} \\ 650 \text{ sh} \end{cases}$ |
| C–N wagging                                                 | 683 m        | 683 s                          | 680 m<br>700 sh                                                                                                  | 681 m                                                       |
| Pyrimidine ring breath                                      | 723 vs       | { 711 s<br>719 sh              | { 711 s<br>720 sh                                                                                                | { 711 m<br>720 sh                                           |
| C-Cl inplane deformation                                    |              |                                |                                                                                                                  | 744 m, br                                                   |
| Benzene C-H wagging                                         |              | { 742 s<br>755 sh<br>774 m, sh | {753 m, br<br>776 m                                                                                              | { 754 m, br<br>783 vw, sh                                   |
| Pyrimidine ring in plane bending                            | 797 m        | ∫ 789 m,sh,spl.<br>  800 sh    | 789 w, sh                                                                                                        | 791 vw, sh                                                  |

| Table 2 (Continued )                                                                                                   |                                       |                                                                          |                                                                                        |                                                |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------|
| Vibrational assignment                                                                                                 | Adenine [14]                          | III <sub>a</sub> (Y=H)                                                   | $III_b(Y=p-CH_3)$                                                                      | $III_{c}(Y=p-Cl)$                              |
| Methyl rocking<br>Imidazole C–H wagging<br>Pyrimidine ring bending<br>Imidazole ring bending<br>Pyrimidine C–H wagging | 846 m, s<br>872 s<br>913 vs<br>939 vs | (860 br, sh) <sup>b</sup><br>(860 br,sh)<br>898 m<br>946 s               | 811 s<br>(858 m, br)<br>(858 m, br)<br>893 s<br>{946 s<br>965 sh                       | (870 sh, br)<br>(870 sh, br)<br>898 m<br>946 s |
| Benzene C=C-C stretches                                                                                                |                                       | 982 m, br 1015 sh, br 1029 sh                                            | $\begin{cases} 999 \text{ br} \\ 1017 \text{ w, sh} \\ 1021 \text{ w, sh} \end{cases}$ | {984 w, sh<br>1016 m                           |
| C-Cl stretch                                                                                                           |                                       |                                                                          |                                                                                        | {1067 sh, w<br>1096 m                          |
| NH <sub>2</sub> rocking                                                                                                | 1025 s                                |                                                                          |                                                                                        |                                                |
| Methyl rock<br>Imidazole CN ring stretch                                                                               | 1126 s                                | $\begin{cases} 1112 \text{ max, br} \\ 1123 \text{ max, br} \end{cases}$ | 1075 m<br>{ 1112 w<br>1121 sh                                                          | {1113 max, sh<br>1119 max, sh                  |
| P-N stretch                                                                                                            |                                       | { 1140 sh<br>1170 sh                                                     | { 1137 m<br>{ 1173 m                                                                   | { 1138 sh<br>1156 sh                           |
| P–N stretch                                                                                                            |                                       | { 1185 m<br>1193 sh                                                      | {1186 m<br>{1202 sh                                                                    | { 1185 s<br>1200 sh                            |
| Imidazole C–H in plane bending<br>Methyl in plane deformation                                                          | 1253 vs                               | 1242 s                                                                   | 1242 s<br>1259 s                                                                       | 1242 s, br                                     |
| Benzene C–H in plane bending<br>Pyrimidine C–N stretch                                                                 | 1309 vs                               | 1288 sh<br>1306 w                                                        | 1285 vw, sh<br>{1306 w<br>1319 w                                                       | 1281 sh<br>1305 m                              |
| Imidazole ring stretch (v CN)<br>C–N stretch                                                                           | 1335 vs<br>1368 s                     | 1331 m                                                                   | 1331 m                                                                                 | 1331 m                                         |
| Benzene C=C-C stretches                                                                                                |                                       | { 1382 sh<br>1399 w, sh                                                  | { 1384 m<br>1398 m                                                                     | 1398 m, sh                                     |
| Pyrimidine C–H in plane bending                                                                                        | 1420 vs                               | { 1413 m<br>1421 sh                                                      | { 1413 s<br>{ 1419 sh                                                                  | {1413 vs<br>1418 sh                            |
| Methyl in plane deformation                                                                                            |                                       |                                                                          | 1441 m                                                                                 |                                                |
| Pyrimidine CC ring stretch<br>Imidazole CN ring stretch                                                                | 1451 s<br>1506 w                      | 1465 w, br<br>1493 m                                                     | 1466 w, br<br>∫1496 s<br>∫1508 sh                                                      | 1467 w, br<br>1493 vs                          |
| Benzene C=C-C stretches                                                                                                |                                       | { 1520 vw, sh<br>1550 vw, sh<br>1574 m                                   | { 1531 vw 1556 w, sh 1576 s                                                            | {1539 sh, br<br>1576 s                         |
| Pyrimidine CN and CC ring stretch                                                                                      | 1603 vs                               | { 1602 sh<br>1611 m<br>1651 w, sh                                        | { 1592 w 1611 vs 1654 vw, sh                                                           | 1611 vs, br                                    |
| NH <sub>2</sub> Scissor                                                                                                | 1675 vs                               | C . =                                                                    | 6                                                                                      | C                                              |
| N-H in plane bending                                                                                                   |                                       | 1701 vs, br<br>1789 vw                                                   | 1702 vs, br<br>1790 w                                                                  | ] 1698 v.br<br>] 1789 w                        |
| Benzene C–H stretch                                                                                                    | 2000 -                                | (2955  s, br)                                                            | (2954  s, br)                                                                          | (2953  s, br)                                  |
| Pyrimidine C–H stretch                                                                                                 | 2980 s                                | (2955 S, br)<br>3033 s, br                                               | (2954 s, br)<br>3033 s, br                                                             | (2953  s, br)<br>3033 s br                     |
| Imidazole C–H stretch                                                                                                  | 3119 vs                               | 3085 sh                                                                  | 3138 sh                                                                                | (3102 vbr)                                     |
| NH <sub>2</sub> symmetric stretch                                                                                      | 3296 vs                               |                                                                          |                                                                                        |                                                |
| N-H stretch                                                                                                            |                                       | (3253 s, sh)                                                             | (3255 s)                                                                               | 3315 sh, br                                    |
| Imidazole N–H stretch<br>NH <sub>2</sub> antisymmetric stretch                                                         | 3347 sh<br>3426 vw                    | (3253 s, sh)                                                             | (3255 s)                                                                               | 3375 sh                                        |

<sup>a</sup> Vibrational assignment of adenine taken from Ref. [14].

<sup>b</sup> Bands between brackets are used for two fundamentals modes.

# 4. Result and discussion

# 4.1. Electronic absorption spectral analysis

Analytical data and selected physical properties of the prepared adenine-cyclodiphospha(V)zane derivatives ( $III_{a-c}$ ) are presented in Table 1. Comparison of calculated and experimental elemental analysis percentages indicates that the composition of compounds ( $III_{a-c}$ ) coincides well with the structures proposed.

Electronic absorption bands (Fig. 3) observed in the 193–262 nm range were assigned to  $\pi \rightarrow \pi^*$  transitions within the benzene and purine rings [24]. However, the recorded absorption bands at 268, 268 and 268 nm were attributed to the  $n \rightarrow \pi^*$  (adenine moiety) transition of III<sub>a</sub>, III<sub>b</sub> and III<sub>c</sub>, respectively, in agreement

# Table 3

Characteristic <sup>1</sup>H NMR chemical shift ( $\delta$ , ppm) of adenine-cyclodiphosph(V)azane compounds (III<sub>a-c</sub>).

| T (1 1 4 <sup>a</sup>                    | III <sub>a</sub> (Y | (= H)                   | III <sub>b</sub> (Y | ′= p-CH <sub>3</sub> ) | III <sub>c</sub> (Y | = p-Cl)                |
|------------------------------------------|---------------------|-------------------------|---------------------|------------------------|---------------------|------------------------|
| Types of hydrogen atoms                  | Calc. <sup>b</sup>  | Obs.                    | Calc. <sup>b</sup>  | Obs.                   | Calc. <sup>b</sup>  | Obs.                   |
| H <sub>(a)</sub> (exocyclic N–H)         | 4.0                 | (9.01 br) <sup>c</sup>  | 4.0                 | 8.92 br <sup>c</sup>   | 4.0                 | (8.87 br) <sup>c</sup> |
| H <sub>(b)</sub> (N–H imidazole)         | 13.65               | $(9.01 \text{ br})^{c}$ | 13.65               | 9.19 br <sup>c</sup>   | 13.65               | (8.87 br) <sup>c</sup> |
| H <sub>(c)</sub> (C–H pyrimidine)        | 8.16                | 8.42 (s)                | 8.16                | 8.42 (s)               | 8.16                | 8.37 (s)               |
| H <sub>(d)</sub> (C–H imidazole)         | 7.86                | 8.41 (s)                | 7.86                | 8.41 (s)               | 7.86                | 8.36 (s)               |
| H <sub>(e)</sub> (C–H <i>o</i> -benzene) | 6.63                | 7.27 <sup>d</sup>       | 6.51                | 7.158 <sup>d</sup>     | 6.57                | 6.72 (doublet)<br>6.74 |
| H <sub>(f)</sub> (C–H <i>m</i> -benzene) | 7.20                | 7.38 <sup>e</sup>       | 6.98                | 7.19 <sup>d</sup>      | 7.24                | 7.06 (doublet)<br>7.09 |
| $H_{(g)}$ (C–H <i>p</i> -benzene)        | 6.81                | 7.30 <sup>e</sup>       |                     |                        |                     |                        |
| H <sub>(g)</sub> (C–H Methyl)            |                     |                         | 2.34                | 2.22 (s)               |                     |                        |
| Correlation Coeff. (R <sup>2</sup> )     | 0.                  | 56                      |                     | 0.59                   | 0.                  | 58                     |

<sup>a</sup> For hydrogen atoms numbering, see Fig. 1.

<sup>b</sup> <sup>1</sup>H NMR were calculated by Chem. Office [23].

<sup>c</sup> These signals were disappeared after adding D<sub>2</sub>O.

<sup>d</sup> These signals are well resolved to doublet upon the addition of  $D_2O$ , see Fig. 4.

 $^{\rm e}$  These signals are well resolved to triplet upon the addition of  $D_2O$ , see Fig. 4.

#### Table 4

Characteristic <sup>13</sup>C NMR chemical shift ( $\delta$ , ppm) of adenine-cyclodiphosph(V)azane derivatives (III<sub>a-c</sub>).

| Types of carbon atoms <sup>a</sup>           | III <sub>a</sub> (Y=H) |        | $III_b$ (Y=p-CH <sub>3</sub> ) |        | III <sub>c</sub> (Y=p-Cl) |                       |
|----------------------------------------------|------------------------|--------|--------------------------------|--------|---------------------------|-----------------------|
|                                              | Calc. <sup>b</sup>     | Obs.   | Calc. <sup>b</sup>             | Obs.   | Calc. <sup>b</sup>        | Obs.                  |
| C <sub>10</sub> (Methyl group)               |                        |        | 21.3                           | 21.35  |                           |                       |
| C <sub>7</sub> (o-benzene)                   | 116.3                  | 115.17 | 116.2                          | 115.31 | 117.7                     | 115.49                |
| C <sub>4</sub> (purine)                      | 119.4                  | 123.63 | 119.4                          | 123.88 | 119.5                     | 118.99                |
| C <sub>9</sub> ( <i>p</i> -benzene)          | 122.4                  | 128.49 | 131.2                          | 131.01 | 124.3                     | 123.8                 |
| C <sub>8</sub> ( <i>m</i> -benzene)          | 129.5                  | 130.59 | 129.8                          | 129.69 | 129.7                     | 129.68                |
| C <sub>5</sub> (imidazole)                   | 138.7                  | 133.27 | 138.7                          | 138.67 | 144.7                     | 143.90                |
| C <sub>1</sub> (purine)                      | 144.8                  | 144.27 | 144.8                          | 146.08 | 144.8                     | (146.82) <sup>c</sup> |
| C <sub>6</sub> (benzene)                     | 146.7                  | 146.21 | 143.7                          | 144.32 | 144.8                     | (146.82)              |
| C <sub>3</sub> (purine)                      | 151.2                  | 149.98 | 151.2                          | 149.96 | 153.9                     | 152.46                |
| C <sub>2</sub> (pyrimidine)                  | 152.4                  | 152.18 | 152.4                          | 152.10 | 152.4                     | 150.22                |
| Correlation Coeff. ( <i>R</i> <sup>2</sup> ) | 0.9488                 |        | 0.9983                         |        | 0.9916                    |                       |

<sup>a</sup> For carbon atoms numbering, see Fig. 1.

<sup>b</sup> <sup>13</sup>C NMR were calculated by Chem Draw Ultra [23].

<sup>c</sup> Signal between brackets was assigned to two different carbons.



Fig. 3. Ultraviolet spectrum of a denine-cyclodiphosph(V)azane derivatives; (A) III\_a; (B) III\_b; (C) III\_c.

with those reported for adenine [25]. The reported bands between 270 and 290 nm [3,26,27] are characteristic of delocalized electrons within the phospha(V)azo four-membered ring (dimeric structure). Therefore the observed bands at 275, 273 and 273 nm were for compounds  $III_a$ ,  $III_b$  and  $III_c$ , respectively.

#### 4.2. Mass spectral analysis

The recorded mass spectrum of adenine-cyclodiphospha-(V)zane ( $III_a$ ; calculated formula weight is 654 amu) is provided in Supplement Fig. S-1A. Fragment ion peaks of 2–100% abundances are attributed to the corresponding fragmentation patterns resulting from bond cleavage at different positions in adeninecyclodiphospha(V)zane derivatives ( $III_{a-c}$ ). Supplement Figs. S-2, S-3 and S-4 summarize the calculated/found molecular weight of compounds  $III_{a-c}$  and the proposed fragmentation pathways corresponding to their masses and relative intensities. As can be deduced from Supplement Figs. S-2, S-3 and S-4, the recorded peak intensities are directly proportional to fragment stability.

The decomposition and the common fragmentation features of III<sub>a</sub> are presented in Supplement Fig. S-2. The parent peak appeared at m/z = 656 (3%) is attributed to <sup>37</sup>Cl isotope (M+2). The most intense ion (base peak) at m/z = 460 (100%) is attributed to fragment [C<sub>20</sub>H<sub>18</sub>N<sub>10</sub>P<sub>2</sub>]<sup>+</sup>. In addition, the observed peaks at m/z = 460.8 (27%), 442 (55.1%), 399.5 (14%) and 376.5 (44.2%) best describe [C<sub>16</sub>H<sub>17</sub>ClN<sub>11</sub>P<sub>2</sub>]<sup>+</sup>, [C<sub>14</sub>H<sub>15</sub>Cl<sub>2</sub>N<sub>9</sub>P<sub>2</sub>]<sup>+</sup>, [C<sub>8</sub>H<sub>9</sub>Cl<sub>3</sub>N<sub>9</sub>P<sub>2</sub>]<sup>+</sup> and

### Table 5

B3LYP structural parameters for adenine-cyclodiphosph(V)azane derivatives (III<sub>a-c</sub>) utilizing 3-21G(d) basis set.

| head sequenceisindisindisindP-Netterin-Pro137115701570P-Netterin-Pro127115701570P-Consell-Cons205620562056P-Consell-Cons1331-13811382-14031331-1381C-H benzene ring)1331-13821382-14031331-1381C-H benzene ring)1331-13821341-13651301C-H persene ring)128612851286C-H persene ring)128613881351Ny-field-Prof138313881361Ny-field-Prof138313881381Ny-field-Prof138313821382Ny-field-Prof138413841382Ny-field-Prof134213421342Ny-field-Prof134213421342Ny-field-Prof140714071407Ny-field-Prof138213821382Ny-field-Prof138213821382Ny-field-Prof138213821382Ny-field-Prof138213821382Ny-field-Prof138213821382Ny-field-Prof138213821382Ny-field-Prof138213821382Ny-field-Prof138213821382Ny-field-Prof138213821382Ny-field-Prof138213821382Ny-field-Prof138213821382Ny-field-Prof138213821382Ny-fie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Structural parameter <sup>a</sup>                                             | III <sub>a</sub> (Y=H) | III <sub>b</sub> (Y=p-CH <sub>3</sub> ) | III <sub>c</sub> (Y=p-Cl) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------|-----------------------------------------|---------------------------|
| μ-N-min-1-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-min-2-<br>μ-N-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bond lengths in Å                                                             |                        |                                         |                           |
| P <sub>1</sub> -N <sub>0</sub> =P <sub>1</sub> -C <sub>0</sub> 1.6701.6701.670P <sub>1</sub> -C <sub>0</sub> =P <sub>1</sub> -C <sub>1</sub> 2.6562.6562.656P <sub>1</sub> -C <sub>0</sub> =P <sub>1</sub> -C <sub>1</sub> 1.3421.4401.341C=C1.3471.3411.3411.341C=C1.3411.3411.3411.341C=C0.561.3511.3411.341C=C0.571.3411.3411.341C=C0.571.3601.3611.361P <sub>1</sub> -N <sub>2</sub> -C <sub>1</sub> +N <sub>2</sub> -C <sub>1</sub> 1.3611.3621.361N <sub>1</sub> -C <sub>1</sub> =N <sub>2</sub> -C <sub>2</sub> -C <sub>1</sub> 1.3321.3321.331N <sub>1</sub> -C <sub>1</sub> =N <sub>2</sub> -C <sub>2</sub> -C <sub>2</sub> 1.3381.3361.334N <sub>1</sub> -C <sub>1</sub> =N <sub>2</sub> -C <sub>2</sub> -C <sub>2</sub> 1.3321.3321.332N <sub>1</sub> -C <sub>1</sub> =N <sub>2</sub> -C <sub>2</sub> -C <sub>2</sub> 1.4071.4071.407C <sub>1</sub> -C <sub>1</sub> =C <sub>2</sub> -C <sub>1</sub> -C <sub>2</sub> 1.4021.4011.401C <sub>1</sub> -C <sub>1</sub> =C <sub>2</sub> -C <sub>1</sub> -C <sub>2</sub> 1.4021.4021.401C <sub>1</sub> -C <sub>1</sub> =C <sub>2</sub> -C <sub>1</sub> -C <sub>2</sub> 1.4021.4021.401C <sub>1</sub> -C <sub>2</sub> =C <sub>2</sub> -C <sub>2</sub> -C <sub>34</sub> 1.4021.3321.337N <sub>2</sub> -C <sub>2</sub> =N <sub>2</sub> -C <sub>34</sub> 1.4021.4021.401C <sub>1</sub> -C <sub>2</sub> =C <sub>2</sub> -C <sub>1</sub> -C <sub>1</sub> 1.4021.4021.401C <sub>1</sub> -C <sub>2</sub> =C <sub>2</sub> -C <sub>1</sub> -C <sub>1</sub> 1.4021.4021.401C <sub>2</sub> -N <sub>2</sub> =C <sub>2</sub> -C <sub>34</sub> 1.4021.4021.402C <sub>1</sub> -C <sub>2</sub> =C <sub>2</sub> -C <sub>1</sub> -C <sub>1</sub> 1.4021.4021.401C <sub>2</sub> -N <sub>2</sub> =C <sub>2</sub> -C <sub>1</sub> -H <sub>1</sub> 1.4021.4021.401C <sub>2</sub> -N <sub>2</sub> =C <sub>2</sub> -C <sub>1</sub> -H <sub>1</sub> 1.4021.4021.401C <sub>2</sub> -N <sub>2</sub> =C <sub>2</sub> -C <sub>1</sub> -H <sub>1</sub> 1.4021.4021.402 <td><math>P_1 - N_2 \equiv N_3 - P_4</math></td> <td>1.811</td> <td>1.810</td> <td>1.813</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $P_1 - N_2 \equiv N_3 - P_4$                                                  | 1.811                  | 1.810                                   | 1.813                     |
| PC.G.B.PC.G.P.<br>C.C.G.PC.G.PC.G.PC.G.P.2.0562.0562.056NC.S.PC.G.PC.G.1.2392.2402.236NC.S.PC.G.PC.G.1.2391.3291.329C.C.G.P.C.G.PC.G.1.3291.3291.329C.C.S.P.C.G.P.C.G.1.3291.3291.320NC.S.P.N.C.G.1.3201.3281.321NC.S.P.N.C.G.1.3361.3381.337NC.S.P.N.C.G.1.3561.3381.337NC.S.P.N.C.G.1.3421.3421.342NC.S.P.N.C.G.1.3421.3421.342NC.S.P.N.C.G.1.3421.3421.342NC.S.P.N.C.G.1.3421.3421.342C.S.C.S.P.S.C.G.C.1.3421.3421.342C.S.C.S.C.S.C.S.C.S.C.S.C.S.C.S.C.S.C.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $P_1 - N_3 \equiv N_2 - P_4$                                                  | 1.671                  | 1.670                                   | 1.670                     |
| P <sub>1</sub> -C <sub>0</sub> =P <sub>1</sub> -C <sub>0</sub> 2.2392.2402.286P <sub>1</sub> -C <sub>0</sub> =P <sub>1</sub> -C <sub>0</sub> 1.4421.4401.439C=C (baracer ring)1.081-1.0821.081-1.0831.082C=C (-C_1)1.081-1.0821.081-1.0821.081N=C (-P_1)1.7051.7061.700N=C (-P_1)1.7051.7051.706N=C (-P_1)1.7051.7051.706N=C (-P_1)1.7051.7051.706N=C (-P_1)1.7051.7051.706N=C (-P_1)1.7051.7061.707N=C (-P_1)1.7561.7561.756N=C (-P_1)1.7561.7561.756N=C (-P_1)1.7561.7561.756N=C (-P_1)1.7561.7561.756N=C (-P_1)1.7561.7561.756N=C (-P_1)1.7561.7421.756N=C (-P_1)1.7561.7621.767N=C (-P_1)1.8001.8001.800C=C (-P_1)1.8001.8001.800C=C (-P_1)1.8001.8001.800N=C (-P_1)1.8001.8001.800N=C (-P_1)1.8001.8001.800N=C (-P_1)1.8001.8001.800N=C (-P_1)1.8001.8001.800N=C (-P_1)1.8001.8001.800N=C (-P_1)1.8001.8001.800N=C (-P_1)1.8001.8001.800N=C (-P_1)1.8001.8001.800N=C (-P_1)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $P_1 - Cl_{40} \equiv P_4 - Cl_{38}$                                          | 2.056                  | 2.056                                   | 2.056                     |
| N <sub>1</sub> -C <sub>2</sub> m <sup>2</sup> , C <sub>1</sub> 144214401439C-C (benzer ring)1.391-1.3931.391-1.4031.391-1.368C-R (benzer ring)1.391-1.3981.3911.391C-C <sub>1</sub> m <sup>2</sup> C <sub>1</sub> -C <sub>1</sub> 1.7051.7061.700N <sub>1</sub> -C <sub>1</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.3891.3081.301N <sub>1</sub> -C <sub>1</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.3801.3581.331N <sub>1</sub> -C <sub>1</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.3581.3581.351N <sub>1</sub> -C <sub>1</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.3581.3531.351N <sub>1</sub> -C <sub>2</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.3421.4491.342N <sub>1</sub> -C <sub>2</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.3421.4491.342Q <sub>1</sub> -C <sub>2</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.3421.4491.342Q <sub>1</sub> -C <sub>2</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.4401.4401.440Q <sub>1</sub> -C <sub>2</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.4401.4401.440Q <sub>1</sub> -C <sub>2</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.4401.4401.440Q <sub>1</sub> -C <sub>2</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.4401.4401.440Q <sub>1</sub> -C <sub>2</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.4401.4401.440Q <sub>1</sub> -C <sub>2</sub> m <sup>2</sup> M <sub>2</sub> -C <sub>2</sub> 1.3471.3971.397Q <sub>2</sub> -M <sub>2</sub> -C <sub>2</sub> m <sup>2</sup> M <sub>2</sub> 1.3471.3971.396N <sub>1</sub> -C <sub>2</sub> m <sup>2</sup> M <sub>1</sub> -C <sub>2</sub> -M <sub>1</sub> 1.2561.2561.256Q <sub>1</sub> -M <sub>2</sub> -M <sub>1</sub> -M <sub>1</sub> (midzoid eff)1.0151.0131.013Q <sub>1</sub> -M <sub>2</sub> -M <sub>2</sub> -M <sub>1</sub> -M <sub>1</sub> 1.0561.0051.008N <sub>1</sub> -M <sub>2</sub> -M <sub>2</sub> -M <sub>2</sub> -M <sub>1</sub> 1.0251.2561.256Q <sub>1</sub> -M <sub>2</sub> -M <sub>1</sub> -M <sub>1</sub> -M <sub>1</sub> 1.1351.1351.135Q <sub>1</sub> -M <sub>1</sub> -M <sub>1</sub> -M <sub>1</sub> 1.1551.1571.256Q <sub>1</sub> -M <sub>2</sub> -M <sub>1</sub> -M <sub>1</sub> -M <sub>1</sub> 1.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $P_1 - Cl_{20} \equiv P_4 - Cl_{27}$                                          | 2.239                  | 2.240                                   | 2.236                     |
| Call Distance imag)     1333-1388     1332-1403     1331-1388       Call Distance imag)     1081-1082     1081-1085     1082       Call Distance imag)     1205     1205     1205       Nar, GamMSy, Ga     1389     1388     1391       Nar, GamMSy, Ga     1388     1381     1391       Nar, GamMSy, Ga     1388     1381     1381       Nar, GamMSy, Ga     1342     1342     1342       Nar, GamMSy, Ga     1402     1402     1402       Nar, GamMy, Ga     1342     1342     1342       Nar, GamMy, Ga     1342     1342     1345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $N_2 - C_5 \equiv N_2 - C_{11}$                                               | 1 442                  | 1 440                                   | 1 439                     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C = C (benzene ring)                                                          | 1 393_1 398            | 1 392_1 403                             | 1 391_1 368               |
| C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ C - μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C H (bonzono ring)                                                            | 1.091 1.092            | 1.091 1.095                             | 1.092                     |
| λip - 1.706     1.706     1.706       λip - 1.808, - 1.1026     1.206     1.206       λip - 1.808, - C4     1.206     1.206       λip - 1.808, - C4     1.358     1.338     1.337       Nip - C1, - Nip - C4, - Nip     1.356     1.366     1.368       Nip - C1, - Nip - C2, - Nip     1.342     1.342     1.342       C1, - Nip - C2, - C2, - C2, - C2, - C4, - 1.402     1.407     1.407       C1, - C1, - C2, - C2, - C2, - 1.407     1.407     1.407       C1, - C1, - C2, - C2, - C2, - 1.407     1.402     1.208       C1, - Mis - C2, - Nip     1.337     1.397     1.397       C1, - Mis - C2, - Nip     1.326     1.226     1.226       C1, - Mis - C2, - Nip     1.337     1.397     1.396       C1, - Mis - C2, - Nip     1.337     1.397     1.396       C1, - Mis - C2, - Nip     1.337     1.397     1.396       Nip - Hill, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C = C = C                                                                     | 1.081-1.082            | 1.001-1.005                             | 1.082                     |
| r r r degram     1.489     1.088     1.088       r r r degram     1.899     1.689     1.688       N r - Hwy - Hexopetit NH)     1.389     1.338     1.337       N r - Hwy - Hexopetit NH)     1.388     1.338     1.338       See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $C_{10} - C_{57} = C_{16} - C_{61}$                                           | 1 705                  | 1,440                                   | 1 700                     |
| Ny-1-angle - Ny-1-angle - Angle - Angl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $P_1 - N_{23} = P_4 - N_{17}$                                                 | 1.705                  | 1.700                                   | 1.201                     |
| N <sub>1</sub> -HPN <sub>2</sub> -H1(EXOC)CIU NI)     1.025     1.025     1.025       N <sub>1</sub> -C <sub>2</sub> -HV <sub>2</sub> -HN <sub>2</sub> 1.336     1.338     1.337       N <sub>1</sub> -C <sub>2</sub> -HV <sub>2</sub> -HN <sub>2</sub> 1.336     1.338     1.337       N <sub>1</sub> -C <sub>2</sub> -HV <sub>2</sub> -HN <sub>2</sub> 1.336     1.336     1.337       N <sub>1</sub> -C <sub>2</sub> -HV <sub>2</sub> -C <sub>2</sub> 1.407     1.407     1.407       C <sub>2</sub> -C <sub>2</sub> -C <sub>2</sub> -C <sub>2</sub> 1.407     1.407     1.407       C <sub>2</sub> -C <sub>2</sub> -HV <sub>2</sub> -C <sub>2</sub> 1.407     1.407     1.407       C <sub>2</sub> -TV <sub>2</sub> -C <sub>2</sub> -C <sub>2</sub> 1.407     1.402     1.401       C <sub>2</sub> -HV <sub>2</sub> -C <sub>2</sub> -C <sub>4</sub> 1.402     1.401     1.402     1.401       C <sub>2</sub> -HV <sub>2</sub> -C <sub>2</sub> -H(I)     1.336     1.335     1.380     1.380       N <sub>2</sub> -C <sub>2</sub> -HV <sub>2</sub> -C <sub>3</sub> 1.336     1.336     1.326     1.336     1.326       N <sub>2</sub> -H=N <sub>2</sub> -H(I)     1.013     1.013     1.013     1.013     1.013       C <sub>2</sub> -H=C <sub>2</sub> -H(I)     IIIII     1.037     1.037     1.037     1.037       C <sub>2</sub> -H=C <sub>2</sub> -H(I)     IIIIIIII     1.013     1.013     1.013     1.013       C <sub>2</sub> -H=C <sub>2</sub> -H(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $N_{17} - C_{18} \equiv N_{23} - C_{24}$                                      | 1.389                  | 1.388                                   | 1.391                     |
| Cash 3g = Cash 3g = Cash 3g     1.338     1.338     1.338       Cash 3g = Cash 3g     1.349     1.349     1.349       Car 0ha Cash Cash 3g     1.342     1.342     1.342       Cash Cash Cash 3g     1.407     1.407     1.407       Cash Cash Cash 3g     1.402     1.402     1.401       Cash Cash Cash 3g     1.338     1.336     1.330       Cash Cash 2g = Cash 3g     1.342     1.342     1.342       Cash 1g = Cash 3g     1.336     1.330     1.330       Cash 1g = Cash 3g     1.337     1.336     1.330       Na - Cash 3g     1.337     1.337     1.336       Na - Cash 3g     1.337     1.337     1.336       Na - Cash 3g     1.013     1.013     1.013       Na - Hang Ag     1.0066     1.006     1.008       Na - Hang Ag     1.0013     1.013     1.013       Cash 1g = Cash 1g = Cash 1g     1.006     1.00.8     1.008       Na - Hang Ag Ag     1.026     1.026     1.026     1.026       Na - Cash 1g = Na - Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N_{17}-H \equiv N_{23}-H$ (exocyclic NH)                                     | 1.026                  | 1.025                                   | 1.026                     |
| Na <sub>1</sub> -C <sub>1</sub> mba <sub>2</sub> -C <sub>7</sub> 1.356     1.356     1.358       Na <sub>1</sub> -C <sub>1</sub> mba <sub>2</sub> -C <sub>7</sub> 1.349     1.349     1.349     1.344       Na <sub>1</sub> -C <sub>2</sub> mba <sub>1</sub> -C <sub>2</sub> 1.342     1.342     1.342       C <sub>1</sub> -C <sub>1</sub> mb <sub>2</sub> -C <sub>2</sub> -C <sub>1</sub> 1.407     1.407     1.407       C <sub>1</sub> -C <sub>1</sub> mb <sub>2</sub> -C <sub>2</sub> -(type)     1.342     1.342     1.342       C <sub>1</sub> -C <sub>1</sub> mb <sub>2</sub> -C <sub>2</sub> -(type)     1.307     1.337     1.380       C <sub>2</sub> -M <sub>2</sub> -C <sub>2</sub> -(S <sub>2</sub> -C <sub>2</sub> )     1.337     1.337     1.336       C <sub>2</sub> -M <sub>2</sub> -C <sub>2</sub> -M <sub>1</sub> 1.326     1.337     1.356       N <sub>2</sub> -C <sub>2</sub> -M <sub>2</sub> -C <sub>2</sub> -M <sub>1</sub> 1.013     1.013     1.013       N <sub>2</sub> -C <sub>2</sub> -M <sub>2</sub> -C <sub>2</sub> -M <sub>1</sub> 1.076     1.076     1.076       C <sub>2</sub> -M=C <sub>2</sub> -M (Inicity)CH)     1.076     1.087     1.076       C <sub>2</sub> -M=C <sub>2</sub> -M <sub>1</sub> 1.013     1.013     1.013     1.013       M <sub>2</sub> -M=M <sub>2</sub> -M <sub>2</sub> -M <sub>1</sub> -M <sub>1</sub> 1.013     1.013     1.013     1.013       C <sub>2</sub> -M=C <sub>2</sub> -M <sub>1</sub> 1.013     1.013     1.013     1.013     1.013       M <sub>1</sub> -M <sub>1</sub> -M <sub>1</sub> -M <sub>1</sub> 1.013     1.013     1.013     1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_{18} - N_{33} \equiv C_{24} - N_{29}$                                      | 1.338                  | 1.338                                   | 1.337                     |
| C <sub>1</sub> -M <sub>2</sub> -C <sub>2</sub> <sup>-M<sub>0</sub>     1.349     1.342     1.342     1.342       C<sub>0</sub>-C<sub>0</sub>-C<sub>2</sub>-C<sub>0</sub>     1.407     1.407     1.407     1.407       C<sub>0</sub>-C<sub>0</sub>-C<sub>2</sub>-C<sub>0</sub>-C<sub>0</sub>     1.402     1.402     1.402     1.401       C<sub>0</sub>-H<sub>0</sub>-C<sub>0</sub>-C<sub>0</sub>-C<sub>0</sub>     1.384     1.385     1.380     1.380       C<sub>0</sub>-M<sub>0</sub>-C<sub>0</sub>-M<sub>0</sub>-C<sub>0</sub>-M<sub>0</sub>     1.397     1.397     1.397     1.397       C<sub>0</sub>-M<sub>0</sub>-C<sub>0</sub>-M<sub>0</sub>-C<sub>0</sub>-M<sub>0</sub>     1.397     1.386     1.386     1.386       N<sub>0</sub>-C<sub>0</sub>-M<sub>0</sub>-C<sub>0</sub>-M<sub>0</sub>-C<sub>0</sub>     1.397     1.396     1.397     1.396       N<sub>0</sub>-C<sub>0</sub>-M<sub>0</sub>-C<sub>0</sub>-M<sub>0</sub>-C<sub>0</sub>     1.397     1.396     1.396     1.396       N<sub>0</sub>-C<sub>0</sub>-M<sub>0</sub>-M<sub>0</sub>-C<sub>0</sub>     1.397     1.396     1.396     1.396       N<sub>0</sub>-M<sub>0</sub>-M<sub>0</sub>-M<sub>0</sub>-M<sub>0</sub>-M<sub>1</sub>     1.013     1.016     1.016     1.016       C<sub>0</sub>-M<sub>0</sub>-M<sub>0</sub>-M<sub>0</sub>-M<sub>0</sub>-M<sub>1</sub>     1.006     1.006     1.008     1.008       M<sub>0</sub>-M<sub>0</sub>-M<sub>0</sub>-M<sub>0</sub>-M<sub>1</sub>     1.026     1.020     1.020     1.020       M<sub>0</sub>-M<sub>0</sub>-M<sub>0</sub>-M<sub>0</sub>-M<sub>1</sub>-M<sub>1</sub>     1.026     1.020     1.020     1.020       N<sub>1</sub>-M</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $N_{33}-C_{21}\equiv N_{29}-C_{27}$                                           | 1.356                  | 1.356                                   | 1.358                     |
| N <sub>3</sub> -C <sub>3</sub> =N <sub>3</sub> -C <sub>3</sub> 1.342     1.342     1.342       N <sub>3</sub> -C <sub>3</sub> =N <sub>2</sub> -C <sub>3</sub> 1.407     1.407     1.407       C <sub>1</sub> -H <sup>-</sup> C <sub>2</sub> -H(D <sub>1</sub> )(V <sub>1</sub> midlac CH)     1.00     1.000     1.000       C <sub>0</sub> -T <sub>1</sub> -H <sup>-</sup> C <sub>2</sub> -H(D <sub>1</sub> )(V <sub>1</sub> midlac CH)     1.384     1.387     1.380       C <sub>2</sub> -N <sub>2</sub> -C <sub>3</sub> -N <sub>2</sub> -C <sub>3</sub> 1.397     1.397     1.397     1.396       C <sub>2</sub> -N <sub>2</sub> -C <sub>3</sub> -C <sub>3</sub> 1.397     1.397     1.396     1.336       N <sub>2</sub> -G <sub>2</sub> -H <sub>2</sub> -C <sub>3</sub> -H(Imdizote NH)     1.013     1.013     1.013     1.013       N <sub>2</sub> -H <sub>2</sub> -H <sub>2</sub> -H(Imdizote NH)     1.013     1.016     1.076     1.076       C <sub>2</sub> -H <sub>2</sub> -H <sub>2</sub> -H(Imdizote NH)     1.013     1.013     1.013     1.013       M <sub>2</sub> -H <sub>2</sub> -H <sub>2</sub> -H <sub>2</sub> -H <sub>3</sub> -H <sub>3</sub> 1.006     1.006     1.008     1.008       N <sub>2</sub> -H <sub>1</sub> -H <sub>2</sub> -H <sub>2</sub> -H <sub>3</sub> -H <sub>3</sub> 1.013     1.013     1.013     1.013     1.013       M <sub>2</sub> -H <sub>2</sub> -H <sub>2</sub> -H <sub>3</sub> -H <sub>3</sub> -H <sub>3</sub> 1.006     1.006     1.008     1.008     1.008     1.008     1.008     1.008     1.008     1.008     1.008     1.008     1.008     1.008     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $C_{21}-N_{34}\equiv C_{27}-N_{30}$                                           | 1.349                  | 1.349                                   | 1.348                     |
| Cac Cag Cag Cag Cag1407140714071407Ca Cag Cag Cag Cag140214011401Ca Cag Cag Cag Cag1380138013801380Nas Cag Nag Cag Nag Cag1397139713971397Cag Nag Cag Nag Cag Nag Cag1397139713961397Nag Cag Nag Cag Nag Cag Nag Cag1397139713961397Nag Cag Nag Cag Nag Cag13971397139610131013Cag Cag Nag Cag Nag Cag1076107610761076Cag Cag Cag Cag1076107610761076Cag Cag Cag Cag1076107610761076Nag Cag Cag Cag Cag2640°2639°2639°2639°Bond angles in100.6100.8100.8100.8Nag Pa, Nag Pa,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $N_{34}-C_{20}\equiv N_{30}-C_{26}$                                           | 1.342                  | 1.342                                   | 1.342                     |
| C.gC.gG.gC.g.1.4021.4021.4021.4021.402C.gLH.C.gH.V.g./H.V.J.1.3841.3851.380C.gN.gC.gNS.1.3371.3971.397C.gN.gC.g.NC.g.1.3371.3971.366S.gC.gN.JC.g.1.3971.3971.366N.gC.gN.JC.g.1.3971.3971.366N.gC.gN.JC.g.1.0131.0131.013C.gH.C.gH.(midzole NH)1.0131.0131.013C.gH.C.gH.(midzole NH)1.0161.0761.076C.GC.GC.G.1.0971.0761.008Mard angle n'1.0971.0131.013N.gH.N.J.P.N.G.2.640*2.639*2.630*Sand angle n'1.096100.61.008N.gH.N.J.P.N.G.1.0241.0351.035Mard angle n'1.0241.0351.035N.gL.N.J.P.N.S.P.N.1.0251.0301.035N.gL.N.J.P.N.S.P.N.1.0241.0351.036N.gL.N.J.P.N.S.N.S.C.T.N.S.1.0251.0251.025N.gL.N.J.P.N.S.N.S.C.T.N.S.1.0251.0251.025N.gC.J.S.S.C.T.N.S.C.T.N.S.1.0251.0251.025N.gC.J.S.S.C.T.N.S.C.T.N.S.C.T.N.S.1.0251.0251.025N.gC.J.N.S.C.T.N.S.C.T.N.S.C.T.N.S.1.0251.0251.025N.gC.J.N.S.C.T.N.S.C.T.N.S.C.T.N.S.C.T.N.S.1.0251.0251.025N.gC.G.T.N.S.C.G.N.S.C.T.N.S.C.T.N.S.C.T.N.S.C.T.N.S.1.0251.025 <td><math>C_{20}-C_{19}\equiv C_{25}-C_{26}</math></td> <td>1.407</td> <td>1.407</td> <td>1.407</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{20}-C_{19}\equiv C_{25}-C_{26}$                                           | 1.407                  | 1.407                                   | 1.407                     |
| $C_n - Hercy - H(pyrimidine CH)1.0801.0801.080C_n - N_{narcy - Ry0}1.3971.3851.380N_3 - C_2 - N_{3} - C_3 - N_31.3971.3971.397N_3 - C_2 - N_{3} - C_3 - N_31.3971.3961.326N_{32} - C_{30} - N_{31} - C_31.0131.0131.013C_2 - H=C_3 - H(midazle CH)1.0761.0761.076C_2 - H=C_3 - H(midyl CH)1.0761.0761.076C_2 - H=C_3 - H(midyl CH)1.0761.0361.00.8N_3 - N_1 - N_2 - N_2 - N_21.00.61.00.61.00.8N_1 - H_N_2 = N_1 - N_1 - H_N_2 = N_1 - M_1 - M_2 - M_11.01.61.00.8N_1 - H_N_2 = N_2 - C_3 - H_11.00.61.00.81.00.8N_1 - N_1 - N_2 - N_2 - P_1 - N_2 - R_31.02.81.00.8N_1 - N_1 - N_2 - N_2 - P_1 - N_2 - R_31.02.81.00.8N_2 - C_3 - H_2 - R_1 - N_2 - R_31.02.81.00.8N_2 - C_3 - N_2 - R_3 - R_1 - N_2 - R_31.02.81.00.8N_2 - C_3 - N_3 - R_3 - R_1 - N_2 - R_31.02.11.02.8N_1 - N_2 - N_2 - R_3 - R_1 - N_2 - R_31.02.11.02.1N_2 - C_3 - N_3 - C_3 - N_31.13.51.03.6N_2 - C_3 - N_3 - C_3 - N_31.13.51.03.6N_2 - C_3 - N_3 - C_3 - N_31.13.51.04.1N_2 - C_3 - N_3 - C_3 - N_31.02.71.02.8N_3 - C_3 - N_3 - C_3 - N_31.03.11.03.1N_3 - C_3 - N_3 - C_3 - N_31.03.11.04.1N_3 - C_3 - N_3 - C_3 - N_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_{19} - C_{18} \equiv C_{25} - C_{24}$                                      | 1.402                  | 1.402                                   | 1.401                     |
| $ \begin{array}{c} \zeta_{g} n_{g} = \zeta_{g} = \zeta_{g} - \zeta_{g} = $ | $C_{21}$ -H= $C_{27}$ -H (pyrimidine CH)                                      | 1.080                  | 1.080                                   | 1.080                     |
| Ng-C_2<br>C_2-Ng=C_2-Ng-C_2<br>C_2-Ng=C_2-Ng-C_21.3971.3971.397Ng-C_2-Ng=C_2-Ng-C_2<br>C_2-Ng=C_2-Ph(midazole CH)1.3971.3261.326Ng-C_2-H=C_2-H(midazole CH)1.0761.0761.076C_2-H=C_2-H(midazole CH)1.0761.0761.076C_2-H=C_2-H(midazole CH)1.0761.0761.076C_2-G_2=C_2-C_31.0971.0761.076Ng-T_2-P_2-P_1(meth)CH)1.0761.0761.076Dead angles in1.0971.0761.008Ng-T_2-P_2-P_2-P_31.006100.6100.8Ng-T_2-P_2-P_2-P_31.021.0301.028Ng-T_2-P_2-P_2-P_31.021.0301.028Ng-T_3-C_3-P_2-P_3-P_31.021.0301.028Ng-T_3-C_3-P_2-P_31.021.0301.028Ng-T_3-C_3-P_3-P_3-P_31.021.0301.028Ng-C_3-P_3-P_3-P_3-P_31.031.0301.04Ng-C_3-P_3-P_3-P_3-P_31.031.0301.04Ng-C_3-P_3-P_3-P_3-P_31.031.031.04Ng-C_3-P_3-P_3-P_3-P_31.031.031.04Ng-C_3-P_3-P_3-P_3-P_31.031.041.06Ng-C_3-P_3-P_3-P_3-P_3-P_31.031.041.06Ng-C_3-P_3-P_3-P_3-P_3-P_31.041.021.06Ng-C_3-P_3-P_3-P_3-P_31.041.041.06Ng-C_3-P_3-P_3-P_3-P_31.041.021.02Ng-C_3-P_3-P_3-P_3-P_31.041.021.02Ng-C_3-P_3-P_3-P_3-P_31.041.02 <td><math>C_{20} - N_{35} \equiv C_{26} - N_{32}</math></td> <td>1.384</td> <td>1.385</td> <td>1.380</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C_{20} - N_{35} \equiv C_{26} - N_{32}$                                      | 1.384                  | 1.385                                   | 1.380                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N_{25} - C_{22} \equiv N_{22} - C_{28}$                                      | 1 397                  | 1 397                                   | 1 397                     |
| $\begin{array}{ccccccc} \mbox{C} 1 = 1 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 = 0 & 1 & 1 = 0 & 1 & 1 = 0 & 1 & 1 = 0 & 1 & 1 = 0 & 1 & 1 = 0 & 1 & 1 = 0 & 1 & 1 = 0 & 1 & 1 & 1 = 0 & 1 & 1 & 1 = 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{22} = N_{22} = C_{20} = N_{21}$                                           | 1 326                  | 1 326                                   | 1 326                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $V_{22} = V_{36} = V_{28} = V_{31}$                                           | 1 307                  | 1 307                                   | 1 306                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{1}{36} - \frac{1}{619} - \frac{1}{1031} - \frac{1}{625}$               | 1.012                  | 1.012                                   | 1.012                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N_{32} - \Pi = N_{35} - \Pi (\Pi \Pi \Pi \Pi Z O I e I N \Pi)$               | 1.015                  | 1.015                                   | 1.015                     |
| $C_27 \rightarrow H_{23} = H_{1} + (Hettry)(H)$ 1097 $C_3 - C_1 = C_1 = C_1 + (Hettry)(H)$ 1.761 $N_1 \dots H_{23} = N_3 - C_1 + N_3 + N_1 + N_2$ 2.640°2.639° $D nd angles in'1.00.61.00.8N_2 - P_1 - N_3 = N_2 - P_4 - N_390.290.390.3P_1 - N_3 = N_2 - P_4 - N_1 - H1.351.35.01.35.1N_2 - P_1 - N_3 = N_2 - C_{13} + N_1 - H_11.35.11.35.11.35.1N_2 - C_2 = N_2 - S_{12} - N_1 - H_11.93.11.93.11.93.1N_2 - C_2 - N_2 = N_1 - N_1 - H_11.91.11.90.11.90.1N_2 - C_2 - N_2 = N_1 - N_1 - H_11.91.11.90.11.90.1N_2 - C_2 - N_2 = N_2 - C_2 - N_2 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $C_{22}$ -H= $C_{28}$ -H (Imidazole CH)                                       | 1.076                  | 1.076                                   | 1.076                     |
| $C_0 - Ck_0 = (C_1 - C_1)$ $1.64$ $1.630^{\circ}$ $Bord angles in'V2.630^{\circ}2.630^{\circ}Bord angles in'VVVVP_1 - N_2 = P_1 - N_2 - P_4100.6100.6100.8N_2 - P_1 - N_3 = P_4 - N_3 - P_4100.6100.6100.8N_2 - P_1 - N_3 = P_4 - N_1 - C_{10} = C_{12} - P_4 - C_{13}90.290.390.3P_1 - N_2 - C_4 = P_4 - N_1 - C_{16}129.8130.0129.8P_1 - N_2 - C_4 = P_4 - N_1 - C_{16}129.8130.0129.8P_1 - N_2 - C_4 = P_4 - N_1 - C_{16}121.2121.3121.3C_2 - C_4 - N_2 = C_1 - N_3119.3119.3119.4N_2 - C_4 - N_2 = C_1 - N_3 - C_{11}119.1119.1119.1N_3 - C_5 - N_3 - C_{11} - N_4126.8126.8126.7N_2 - C_2 - N_2 = C_1 - N_3 - C_{11}125.6125.6125.6C_5 - C_1 - N_3 - C_{21}116.4116.4116.4N_3 - C_{21} - N_3 - C_{22}110.4116.4116.4N_3 - C_{21} - N_3 - C_{22}110.7107.0107.0N_3 - C_{22} - N_2 - N_2 - N_2 - N_2 - N_2110.7112.5125.6N_3 - C_{22} - N_2 - N_2 - N_2110.7110.7110.7N_3 - C_{22} - N_2 - N_2 - N_2110.7107.0107.0N_3 - C_{22} - N_2 - N_2 - N_2110.7112.5125.5C_3 - N_2 - N_2 - N_2 - N_2119.1 - 120.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_{57}$ -H $\equiv$ C <sub>61</sub> -H (methyl CH)                           |                        | 1.097                                   |                           |
| Na1HN23=HS36HN17     2.640°     2.639°     2.630°       Bond angles in*    HN27     2.630°     2.630°       P_1-N_2-P_4=P_1-N_2-P_4     100.6     100.6     100.8       D_2-P_1-N_3=P_1-N_2-P_4     79.4     79.4     79.2       Cl <sub>30</sub> -P_1-CL <sub>60</sub> =Cl <sub>37</sub> -P_4-Cl <sub>38</sub> 90.2     90.3     90.3       P_1-N2_2-C_4=P_4-N17-Cl <sub>48</sub> 129.8     130.0     129.8       N_31-C-41,Pa=N17-Cl <sub>18</sub> -N33     113.5     113.5     113.5       N_32-C-42,Pa_9=N17-Cl <sub>18</sub> -N33     121.2     121.3     119.4       C <sub>32</sub> -C <sub>42</sub> -N <sub>29</sub> =N17-Cl <sub>31</sub> -N33     119.3     119.4     126.6       C <sub>32</sub> -C <sub>42</sub> -N <sub>29</sub> =N3x-C <sub>21</sub> -N34     126.8     126.6     126.6       C <sub>32</sub> -C <sub>42</sub> -C <sub>49</sub> =N3x-C <sub>21</sub> -N34     126.6     126.6     126.6       C <sub>32</sub> -C <sub>42</sub> -C <sub>49</sub> =N3x-C <sub>21</sub> -N44     126.6     126.6     126.6       C <sub>32</sub> -C <sub>42</sub> -C <sub>49</sub> =N3x-C <sub>21</sub> -N44     126.6     126.6     126.6       C <sub>32</sub> -C <sub>42</sub> -C <sub>49</sub> =N3x-C <sub>21</sub> -N4     126.6     126.6     126.6       C <sub>32</sub> -C <sub>42</sub> -C <sub>49</sub> =N3x-C <sub>21</sub> -N4     126.6     126.6     126.6     126.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $C_{10} - Cl_{58} \equiv C_6 - Cl_{57}$                                       | h                      | h                                       | 1.761                     |
| Bond angles in"     p-Np-Rp-Rp-Np-Np-Np-Np-Np-Np-Np     100.6     100.8       Np-Pp-Rp-PNp-Pp-Np-Np-Np-Np     79.4     79.4     79.2       Clyo-Pr-CLag=Clyr-P4-Cl3s     90.2     90.3     90.3       P-Nb2-Cg2=P4-N17-Cls     129.8     130.0     129.8       P-Nb2-Cg2=P4-N17-Cls     121.3     121.3     121.3       Cg2-Cg4-Np=Mp-Tr-H     113.5     113.5     121.3       Cg2-Cg4-Np=Mp-Tr-Gls-Ng3     121.2     121.3     121.3       Cg2-Cg4-Np=Mp-Tr-Gls-Ng3     122.6     126.8     126.7       Cg2-Cg4-Np=Mp-Cg-Cg-Ng=Ng3-Cg1-Ng4     126.8     126.7     122.6       Cg2-Cg2-Cg2=Cg1-Ng4-Cg0     12.7     12.8     10.4       Sg4-Cg2-Cg3=Cg1-Ng4-Cg0     12.6     125.6     125.6       Cg2-Ng1-Cg2=Mg4-Cg0-Cg3     12.5     125.6     125.6       Cg2-Ng1-Cg3=Mg4-Cg0-Cg3     10.4     10.4     16.4       Cg3-Ng1-Cg3=Mg4-Cg0-Cg3     10.7     10.7     10.4       Cg3-Ng1-Cg3=Mg4-Cg0-Cg3     10.7     10.7     10.7       Sg4-Cg2-TB-Mg3-Cg2     104.5     10.6     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $N_{31}\cdots HN_{23} \equiv N_{36}\cdots HN_{17}$                            | 2.640 <sup>b</sup>     | 2.639 <sup>b</sup>                      | 2.630 <sup>b</sup>        |
| $\begin{split} P_1 - P_2 - P_4 = P_1 - P_3 - P_4 & 100.6 & 100.6 & 100.6 \\ IO.6 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 \\ IO.6 & 100.8 & 100.8 & 100.8 & 100.8 \\ IO.6 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 \\ IO.6 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 \\ IO.6 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 \\ IO.6 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 100.8 & 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bond angles in°                                                               |                        |                                         |                           |
| $N_2-P_1, N_3 = M_2 - P_4, N_3$ 79.479.479.479.2 $N_3-P_1 - C_1_0 = C_1_3 - N_3$ 90.290.390.3 $P_1 - N_{22} - C_{24} = P_4 - N_{17} - C_{18}$ 129.8130.0129.8 $N_3 - C_4 - N_2 = M_1 - C_{18} - N_3$ 121.2121.3121.3 $C_3 - C_4 - N_2 = C_{18} - N_3$ 119.3119.3119.4 $C_3 - C_4 - N_2 = C_{18} - N_3$ 119.3119.1119.0 $N_2 - C_4 - N_2 = C_{18} - N_3 - C_2$ 119.1119.1119.0 $N_2 - C_2 - N_3 = C_{18} - N_3 - C_2$ 126.8126.8126.7 $C_2 - N_3 - C_2 - C_{18} - N_3 - C_2$ 125.6125.6125.6 $N_3 - C_2 - C_2 - N_3 - C_{20}$ 104.5104.5104.9 $N_3 - C_2 - C_3 - N_3 - C_{20}$ 107.0107.0107.0 $N_3 - C_2 - N_3 - C_{20}$ 107.0107.0107.0 $N_3 - C_2 - N_3 - C_{20}$ 107.0107.0107.0 $N_3 - C_2 - N_3 - C_2 - N_3 - C_2116.2116.5116.2N_3 - C_2 - N_3 - C_2 - N_3 - C_2119.9 - 120.2118.5 - 120.8119.1 - 121.0C_3 - N_3 - C_3 - N_3 - C_3 - M_3 - C_2 - M_3 - 119.5125.5125.5125.5C_2 - C_4 - H_3 - C_4 - H_3 - C_5 - 129.3119.4 - 120.1119.3 - 120.7119.5 - 120.8N_1 - C_2 - M_3 - C_4 - M_3 - C_5 - 129.3129.1129.1129.1129.1C_2 - C_4 - H_4 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $P_1 - N_2 - P_4 \equiv P_1 - N_3 - P_4$                                      | 100.6                  | 100.6                                   | 100.8                     |
| Cl3p=P,-Cl_0=Clp-P_4-Cl3p     902     90.3     90.3       P_1-N23-H=Q_4-N17-Cl3P     129.8     130.0     129.8       N37-C24=P20-N17-Cl3P     113.5     113.5     113.5       N37-C24+P30=N17-Cl3P-N33     121.2     121.3     121.3       C32-C34-N30=N17-Cl3P-N33     19.3     119.3     119.4       C32-C34-N30=Cl3P-Cl3P-N33-C21     110.1     119.1     119.0       N30-C32-N30=R33-C21-N34     126.8     126.8     126.7       N30-C32-C35=N34-C30-C30     112.7     112.7     112.8       N30-C32-C32=N34-C30-C9-C19     125.6     125.6     125.6       S26-C32-C32=C30-C9-C19-C19     125.6     125.6     125.6       S26-C32-C32=N34-C30-C19-C19     104.5     104.9     104.9       N31-C32=N32=N36-C22-N35     112.5     125.5     125.6       S26-S3-C3-Q3-C3-C3     107.0     107.0     107.0       N31-C32=N32=N36-C22-N35     116.2     125.5     116.2       S26-S2-C3-Q3-C3-LH     125.5     125.5     125.5       S25-C32-C3-HS-C42-H     125.5     125.5     125.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $N_2 - P_1 - N_3 \equiv N_2 - P_4 - N_3$                                      | 79.4                   | 79.4                                    | 79.2                      |
| P <sub>1</sub> -N <sub>23</sub> -C <sub>4</sub> =P <sub>4</sub> -N <sub>17</sub> -C <sub>18</sub> 128.8     130.0     128.8       P <sub>1</sub> -N <sub>23</sub> -H=P <sub>4</sub> -N <sub>17</sub> -H     113.5     113.5     113.5       N <sub>23</sub> -C <sub>4</sub> -N <sub>29</sub> =N <sub>17</sub> -C <sub>18</sub> -N <sub>33</sub> 121.2     121.3     121.3       C <sub>24</sub> -N <sub>29</sub> =C <sub>19</sub> -C <sub>18</sub> -N <sub>31</sub> -C <sub>21</sub> 119.3     119.4     126.8       C <sub>24</sub> -N <sub>29</sub> -C <sub>27</sub> =C <sub>18</sub> -N <sub>33</sub> -C <sub>21</sub> 119.1     119.0     119.0       C <sub>24</sub> -N <sub>29</sub> -C <sub>27</sub> =C <sub>18</sub> -N <sub>33</sub> -C <sub>21</sub> 126.8     126.7     128.7       C <sub>27</sub> -N <sub>39</sub> -C <sub>52</sub> =C <sub>19</sub> -N <sub>34</sub> -C <sub>20</sub> 125.6     125.6     125.6       C <sub>26</sub> -C <sub>25</sub> -C <sub>24</sub> =C <sub>20</sub> -C <sub>19</sub> -C <sub>18</sub> 116.4     116.4     164.7       C <sub>37</sub> -N <sub>39</sub> -C <sub>52</sub> =C <sub>29</sub> -N <sub>35</sub> -C <sub>20</sub> 107.0     107.0     107.0       S <sub>29</sub> -C <sub>27</sub> -C <sub>29</sub> =N <sub>35</sub> -C <sub>20</sub> -N <sub>25</sub> 12.5     12.5     12.5       C <sub>38</sub> -N <sub>32</sub> -C <sub>26</sub> =C <sub>22</sub> -N <sub>35</sub> -C <sub>20</sub> 107.0     107.0     107.0       N <sub>29</sub> -C <sub>27</sub> -H=N <sub>35</sub> -C <sub>21</sub> -H     125.4     125.4     125.3       C <sub>26</sub> -N <sub>29</sub> -P <sub>19</sub> -N <sub>39</sub> -C <sub>22</sub> -H     125.5     125.5     125.5       C <sub>27</sub> -C <sub>19</sub> -C <sub>19</sub> -H     125.1     118.5     120.1     19.1       C <sub>26</sub> -C <sub>10</sub> -C <sub>10</sub> -C <sub>11</sub> -H     125.3     125.3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Cl_{39}-P_1-Cl_{40}\equiv Cl_{37}-P_4-Cl_{38}$                               | 90.2                   | 90.3                                    | 90.3                      |
| $P_1-N_2-H=P_2-N_1-H$ 113.5113.5113.5 $N_{22}-C_4-N_{22}=N_1-C_{18}-N_{33}$ 121.2121.3121.3 $C_{24}-N_{22}=C_{19}-C_{18}-N_{33}-C_{21}$ 119.3119.4 $C_{24}-N_{22}-C_{27}-N_{30}-C_{21}-N_{34}-C_{20}$ 119.1119.1 $C_{27}-N_{30}-C_{26}=C_{21}-N_{34}-C_{20}$ 122.6125.6 $C_{27}-N_{30}-C_{26}=C_{22}-N_{24}-C_{20}-C_{19}$ 125.6125.6 $C_{27}-N_{30}-C_{26}=C_{22}-N_{24}-C_{20}-C_{19}$ 125.6125.6 $C_{27}-C_{26}=C_{22}-N_{25}-C_{22}-N_{25}$ 104.5104.5 $N_{31}-C_{28}=C_{20}-N_{50}-C_{22}$ 104.5104.5 $N_{31}-C_{28}=C_{20}-N_{50}-C_{22}-N_{35}$ 125.6125.6 $C_{27}-N_{30}-C_{26}=C_{21}-N_{34}-C_{20}$ 107.0107.0 $N_{31}-C_{28}=N_{32}-C_{22}-N_{35}-C_{30}$ 107.0107.0 $N_{31}-C_{28}=N_{32}-C_{31}-H$ 116.2116.5116.2 $C_{27}-N_{20}-N_{25}-C_{21}-H$ 125.4125.3125.5 $C_{27}-N_{20}-N_{27}-H$ 125.5125.5125.5 $C_{27}-C_{10}-H_{20}-N_{27}-H$ 119.9-120.2118.5-120.8119.1-121.0 $N_{11}-C_{20}-H=N_{20}-C_{5}-H$ 129.1129.1129.1 $V_{27}-H=N_{27}-H_{2}-H_{2}-C_{5}129.3129.1129.1V_{27}-H=N_{27}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{2}-H_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $P_1 - N_{23} - C_{24} = P_4 - N_{17} - C_{18}$                               | 129.8                  | 130.0                                   | 129.8                     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $P_1 - N_{23} - H = P_4 - N_{17} - H$                                         | 113.5                  | 113.5                                   | 113.5                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N_{23}-C_{24}-N_{29} \equiv N_{17}-C_{18}-N_{33}$                            | 121.2                  | 121.3                                   | 121.3                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_{25} - C_{24} - N_{29} \equiv C_{19} - C_{18} - N_{33}$                    | 119.3                  | 119.3                                   | 119.4                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_{24} - N_{20} - C_{27} = C_{19} - N_{22} - C_{21}$                         | 1191                   | 1191                                    | 119.0                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N_{24} = N_{22} = N_{22} = N_{23} = N_{24} = N_{24}$                         | 126.8                  | 126.8                                   | 126.7                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Gamma_{29} = \Gamma_{30} = \Gamma_{33} = \Gamma_{33} = \Gamma_{34}$         | 112 7                  | 110.0                                   | 112.0.7                   |
| $\begin{split} & 130 - 226^{-}C_25 - 374^{-}C_20 - C_{19} & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 12.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50 & 10.50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C_{2}/N_{30} C_{26} = C_{21}/N_{34} C_{20}$                                  | 125.6                  | 125.6                                   | 125.6                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N_{30} - C_{26} - C_{25} = N_{34} - C_{20} - C_{19}$                         | 116 4                  | 116 4                                   | 125.0                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $L_{26} - L_{25} - L_{24} = L_{20} - L_{19} - L_{18}$                         | 1045                   | 1045                                    | 1040                      |
| $\begin{array}{cccc} & 112.5 & 112.5 & 112.5 & 112.5 & 112.5 & 112.5 & \\ & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $C_{25} - N_{31} - C_{28} = C_{19} - N_{36} - C_{22}$                         | 104.5                  | 104.5                                   | 104.9                     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N_{31} - C_{28} - N_{32} \equiv N_{36} - C_{22} - N_{35}$                    | 112.5                  | 112.5                                   | 112.5                     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_{28} - N_{32} - C_{26} \equiv C_{22} - N_{35} - C_{20}$                    | 107.0                  | 107.0                                   | 107.0                     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N_{29}-C_{27}-H \equiv N_{33}-C_{21}-H$                                      | 116.2                  | 116.5                                   | 116.2                     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_{26}-N_{32}-H \equiv C_{20}-N_{35}-H$                                      | 125.4                  | 125.4                                   | 125.3                     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N_{31}-C_{28}-H = N_{36}-C_{22}-H$                                           | 125.5                  | 125.5                                   | 125.5                     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C=C-C (benzene ring)                                                          | 119.9–120.2            | 118.5–120.8                             | 119.1-121.0               |
| $\begin{array}{cccc} C_{10}-C_{57}-H = C_{16}-C_{61}-H & 111.0 & \\ H-C_{27}-H = H-C_{61}-H & 108.4 & \\ P_1-N_3-C_{11} = P_4-N_2-C_5 & 129.3 & 129.3 & 129.1 & \\ P_4-N_3-C_{11} = P_1-N_2-C_5 & 129.1 & 129.1 & \\ Dihedral angles in^{\circ} & & & \\ N_2-P_1-N_3-P_4 & 0.00 & 0.00 & 0.00 & 0.0 & \\ N_{17}-P_4-N_2-P_1 = N_{23}-P_1-N_2-P_4 & 92.1 & 91.9 & 92.2 & \\ P_1-N_{23}-C_24-N_{29} = P_4-N_{17}-C_{18}-N_{33} & 4.5 & 3.5 & 5.6 & \\ C_7-C_5-N_2-P_1 & 91.2 & 90.7 & 91.7 & \\ C_{12}-C_{11}-N_3-P_4 & 88.4 & 88.5 & 88.3 & \\ P_1-N_{23}-H-C_{24} = P_4-N_{17}-H-C_{18} & 159.9 & 160.5 & 159.2 & \\ Benzene ring & 0.13-1.29 & 0.1-1.2 & 0.23-1.04 & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C=C-H (benzene ring)                                                          | 119.4–120.1            | 119.3–120.7                             | 119.5-120.8               |
| $\begin{array}{cccc} H - C_{27} - H = H - C_{61} - H & 108.4 & 129.3 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 129.1 & 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C_{10} - C_{57} - H \equiv C_{16} - C_{61} - H$                              |                        | 111.0                                   |                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $H-C_{27}-H=H-C_{61}-H$                                                       |                        | 108.4                                   |                           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $P_1 - N_3 - C_{11} \equiv P_4 - N_2 - C_5$                                   | 129.3                  | 129.3                                   | 129.1                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $P_4 - N_2 - C_{11} \equiv P_1 - N_2 - C_5$                                   | 129.1                  | 129.1                                   | 129.2                     |
| Distribution00.000.000.0 $N_2-P_1 \to N_2 - P_1 = N_{22} - P_1 - N_2 - P_4$ 92.191.992.2 $P_1 - N_{23} - C_{24} - N_{29} = P_4 - N_{17} - C_{18} - N_{33}$ 4.53.55.6 $C_7 - C_5 - N_2 - P_1$ 91.290.791.7 $C_{12} - C_{11} - N_3 - P_4$ 88.488.588.3 $P_1 - N_{23} - H - C_{24} = P_4 - N_{17} - H - C_{18}$ 159.9160.5159.2Benzene ring0.15 - 0.40.17 - 0.520.07 - 0.68Purine ring0.13 - 1.290.1 - 1.20.23 - 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dihedral angles in <sup>o</sup>                                               |                        |                                         |                           |
| $N_{17}-P_4-N_2-P_1=N_{23}-P_1-N_2-P_4$ 90.000.0 $N_{17}-P_4-N_2-P_1=N_{23}-P_1-N_2-P_4$ 92.191.992.2 $P_1-N_{23}-C_{24}-N_{29}=P_4-N_{17}-C_{18}-N_{33}$ 4.53.55.6 $C_7-C_5-N_2-P_1$ 91.290.791.7 $C_12-C_{11}-N_3-P_4$ 88.488.588.3 $P_1-N_{23}-H-C_{24}=P_4-N_{17}-H-C_{18}$ 159.9160.5159.2Benzene ring0.15-0.40.17-0.520.07-0.68Purine ring0.13-1.290.1-1.20.23-1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $N_{0} = P_{1} = N_{0} = P_{1}$                                               | 00.0                   | 00.0                                    | 00.0                      |
| $n_{17}-r_4-n_{22}-r_1-n_{22}-r_1-n_{22}-r_4}$ 52.191.592.2 $P_1-N_{23}-C_{24}-N_{29}\equiv P_4-N_{17}-C_{18}-N_{33}$ 4.53.55.6 $C_7-C_5-N_2-P_1$ 91.290.791.7 $C_{12}-C_{11}-N_3-P_4$ 88.488.588.3 $P_1-N_{23}-H-C_{24}\equiv P_4-N_{17}-H-C_{18}$ 159.9160.5159.2Benzene ring0.15-0.40.17-0.520.07-0.68Purine ring0.13-1.290.1-1.20.23-1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $N_{-} D$ , $N_{-} D$ , $M_{-} D$ , $M_{-} D$ , $N_{-} D$                     | 00.0                   | 01.0                                    | 02.0                      |
| $r_1 - r_{123} - c_{24} - r_{129} = r_4 - r_{17} - c_{18} - r_{133}$ 4.55.5 $C_7 - C_5 - N_2 - P_1$ 91.290.791.7 $C_{12} - C_{11} - N_3 - P_4$ 88.488.588.3 $P_1 - N_{23} - H - C_{24} = P_4 - N_{17} - H - C_{18}$ 159.9160.5159.2Benzene ring0.15 - 0.40.17 - 0.520.07 - 0.68Purine ring0.13 - 1.290.1 - 1.20.23 - 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1 v_1 / -1 4 - 1 v_2 - r_1 - 1 v_2 - r_1 - 1 v_2 - r_4$<br>D N C N - D N C N | J2.1<br>4 5            | 91,9<br>25                              | 56                        |
| $C_7-E_5-iN_2-P_1$ $91.2$ $90.7$ $91.7$ $C_{12}-C_{11}-N_3-P_4$ $88.4$ $88.5$ $88.3$ $P_1-N_{23}-H-C_{24}=P_4-N_{17}-H-C_{18}$ $159.9$ $160.5$ $159.2$ Benzene ring $0.15-0.4$ $0.17-0.52$ $0.07-0.68$ Purine ring $0.13-1.29$ $0.1-1.2$ $0.23-1.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $r_1 - i v_{23} - c_{24} - i v_{29} = r_4 - i v_{17} - c_{18} - i v_{33}$     | 4.J<br>01.2            | 5.5<br>00 7                             | J.U<br>01.7               |
| $C_{12}-C_{11}-N_3-P_4$ 88.488.588.3 $P_1-N_{23}-H-C_{24}\equiv P_4-N_{17}-H-C_{18}$ 159.9160.5159.2Benzene ring0.15-0.40.17-0.520.07-0.68Purine ring0.13-1.290.1-1.20.23-1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $C_7 - C_5 - N_2 - P_1$                                                       | 91.2                   | 90.7                                    | 91./                      |
| $P_1 - N_{23} - H - C_{24} \equiv P_4 - N_{17} - H - C_{18}$ 159.9160.5159.2Benzene ring0.15 - 0.40.17 - 0.520.07 - 0.68Purine ring0.13 - 1.290.1 - 1.20.23 - 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{12} - C_{11} - N_3 - P_4$                                                 | 88.4                   | 88.5                                    | 88.3                      |
| Benzene ring     0.15-0.4     0.17-0.52     0.07-0.68       Purine ring     0.13-1.29     0.1-1.2     0.23-1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $P_1 - N_{23} - H - C_{24} \equiv P_4 - N_{17} - H - C_{18}$                  | 159.9                  | 160.5                                   | 159.2                     |
| Purine ring 0.13-1.29 0.1-1.2 0.23-1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Benzene ring                                                                  | 0.15-0.4               | 0.17-0.52                               | 0.07-0.68                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Purine ring                                                                   | 0.13-1.29              | 0.1–1.2                                 | 0.23-1.04                 |

<sup>a</sup> For atom numbering, see Fig. 6.

<sup>b</sup> Represent intramolecular hydrogen bonding, see Fig. 6.

 $[C_{14}H_{13}ClN_7P_2]^+$  fragment ions, respectively, beside lesser intense fragment peaks with intensities ranging from 3 to 10%.

The calculated formula mass of compound III<sub>b</sub> is 682 amu a peak appearing at m/z = 684 (9.1%) is due to the <sup>37</sup>Cl isotope (M+2) whereas the observed peak at m/z = 376.6 (100%) is attributed to fragment ion [C<sub>14</sub>H<sub>13</sub>ClN<sub>7</sub>P<sub>2</sub>]<sup>+</sup> (Supplement Fig. S-3). The fragment at m/z = 609.9 (22.4%) is due to ion [C<sub>24</sub>H<sub>21</sub>Cl<sub>2</sub>N<sub>12</sub>P<sub>2</sub>]<sup>+</sup> resulting from

Cl<sub>2</sub> and H loss from the parent molecule. The ion peak recorded at m/z = 527 (22.4%) belongs to fragment  $[C_{19}H_{18}Cl_3N_8P_2]^+$  owing to bond cleavage between the purine moiety and the exocyclic N–H in addition to loss of HCl. On the other hand, the moderately intense ion peaks observed at m/z = 502 (50.3%), and 366.8 (33.9%) are safely assigned to  $[C_{18}H_{19}Cl_3N_7P_2]^+$ , and  $[C_{11}H_{10}Cl_3N_4P_2]^+$  fragments, respectively.



**Fig. 4.** <sup>1</sup>H NMR spectra ( $\delta$ , ppm) in DMSO- $d_6$  solvent; (A) III<sub>a</sub>; (B) III<sub>b</sub>; (C) III<sub>c</sub>.



**Fig. 5.** <sup>13</sup>C NMR spectra ( $\delta$ , ppm) in DMSO- $d_6$  solvent; (A) III<sub>a</sub>; (B) III<sub>b</sub>; (C) III<sub>c</sub>.

The mass spectrum of adenine-cyclodiphospha(V)zane (III<sub>c</sub>; 723 amu) validates the proposed structural formula, Supplement Fig. S-1C. A molecular ion peak at m/z=722 (8%) corresponds to the molecular ion (M–1). The observed fragment at m/z=353 (100%, base peak) fits  $[C_{16}H_{15}N_6P_2]^+$  ion fragment, whereas the moderately intense peak (73%) at m/z=446.7 is assigned to  $[C_{11}H_{13}Cl_4N_7P_2]^+$  ion fragment. The mass spectrum of III<sub>c</sub> reveals a series of peaks at m/z=670, 622, 564.8, 541, etc. corresponding to various fragment ions as explained in Supplement Fig. S-4.

# 4.3. <sup>1</sup>H and <sup>13</sup>C NMR spectral interpretations

The characteristic <sup>1</sup>H and <sup>13</sup>C NMR spectral data for compounds  $III_{a-c}$  and their assignments are listed in Tables 3 and 4, respectively. Linear correlations between theoretical and experimental <sup>13</sup>C chemical shift results for compounds  $III_{a-c}$  are reported with a correlation coefficient  $R^2$  equal to 0.9488, 0.9983 and 0.9916, respectively. However, unsatisfactory correlation coefficients were found between observed/calculated <sup>1</sup>H chemical shifts.

# 4.3.1. <sup>1</sup>H NMR

The <sup>1</sup>H NMR spectra of adenine-cyclodiphospha(V)zane derivatives;  $III_{a-c}$  (Fig. 4) were recorded in DMSO- $d_6$  with tetramethylsilane (TMS) as an internal standard. The intense singlet at 4.0 ppm is attributed inherent water to (D-O-H) in DMSO- $d_6$ . The observed chemical shifts of the three investigated compounds  $(III_{a-c})$  were found to be somewhat similar owing to the high symmetry of compounds  $III_{a-c}$ . In the <sup>1</sup>H NMR spectra of  $III_a$  and  $III_c$ , the two different N-H singlets (exocyclic N-H and imidazole N-H) were nearly overlapped and therefore assigned to the observed broad signals at 9.01 and 8.87 ppm, respectively (Fig. 4). For III<sub>b</sub>, the two distinct peaks at 8.92 and 9.19 ppm are assigned to exocyclic N-H and imidazole N-H, respectively. Addition of D<sub>2</sub>O to the previous 3 NMR solutions with vigorous shaking results in diminishing the above mentioned signals due to hydrogen deuterium magnetic exchange. On the other hand, the observed broadness may be attributed to the nuclear quadruple broadening of nitrogen [28]. The singlets at 8.42, 8.42 and 8.37 ppm are assigned to the pyrimidine ring C–H, for III<sub>a</sub>, III<sub>b</sub> and III<sub>c</sub>, respectively. The imidazole ring C–H was assigned to the observed singlets at 8.41, 8.41 and 8.36 ppm in the <sup>1</sup>H NMR spectra of  $III_a$ ,  $III_b$  and  $III_c$ , respectively. The <sup>1</sup>H NMR spectrum of III<sub>a</sub> exhibits a doublet and two triplets in the spectral range 7.25–7.40 ppm which correspond to o-, m- and p-benzene(C-H e, f and g, respectively). But in case of III<sub>b</sub> and III<sub>c</sub>, only two doublets were observed in the 6.72-7.20 ppm range which is attributed to o- and *m*-benzene C–H protons. On the other hand, the observed singlet at 2.22 ppm in the III<sub>b</sub> spectrum is characteristic of methyl group protons [28].

# 4.3.2. <sup>13</sup>C NMR

The <sup>13</sup>C NMR spectra of adenine-cyclodiphospha(V)zane derivatives ( $III_{a-c}$ ) dissolved in DMSO- $d_6$  are provided in Fig. 5. The observed <sup>13</sup>C peak at 40 ppm is due DMSO- $d_6$  [28]. The <sup>13</sup>C peak of tetramethylsilane (TMS) was used as the internal standard. In view of the fact that adenine-cyclodiphospha(V)zanes ( $III_{a-c}$ ) have an inversion center, the number of observed <sup>13</sup>C peaks is supposed to be less than the number of carbon atoms present in the molecule.

The <sup>13</sup>C NMR spectrum of **III**<sub>a</sub> (Fig. 5A) displays nine signals. The signals observed at 115.17, 128.49, 130.59 ppm are characteristic of benzene *ortho*-( $C_7$ ), *para*-( $C_9$ ) and *meta*-( $C_8$ ) positions, respectively [28]. The benzene carbon atoms attached to the nitrogen atoms of phospha(V)azo ring ( $C_6$ ) were assigned to the recorded signal at 146.21 ppm. On the other hand, the remaining five <sup>13</sup>C signals were due to ten carbon atoms of the two purine rings as seen in Table 4. Ten signals at different chemical shifts appeared



Fig. 6. B3LYP/3-21G(d) optimized structure of adenine-cyclodiphosph(V)azane derivatives; (A) Y=H for III<sub>a</sub>; (B) Y=p-CH<sub>3</sub> for III<sub>b</sub>; (C) Y=p-Cl for III<sub>c</sub>.

in the <sup>13</sup>C NMR spectrum of **III**<sub>b</sub> as seen in Fig. 5B. The intense peak observed at 21.35 ppm corresponds to the methyl group ( $C_{10}$ ) carbon atom [28]. The peaks observed at 123.88 and 149.96 ppm are attributed to  $C_4$  and  $C_3$  purine ring atoms, respectively. The imidazole carbon atom ( $C_5$ ) is assigned to the recorded signal at 138.67 ppm [14]. On the other hand, <sup>13</sup>C NMR spectrum of **III**<sub>c</sub> exhibits eight peaks only rather than nine which may be due to the fact that two carbons are predicted at the same chemical shift (Table 4 and Fig. 5C). Therefore, the observed peak at 146.82 ppm is attributed to  $C_1$  (purine ring) and also to  $C_6$  (benzene ring) supported by the calculated <sup>13</sup>C chemical shifts as seen later.

# 4.4. Structural parameters

B3LYP/3-21g(d) structural parameters for compounds  $III_{a-c}$  are listed in Table 5, whereas atom numbering is given in Fig. 6. All compounds ( $III_{a-c}$ ) retain inversion center ( $C_i$  symmetry) in agreement with earlier crystallographic studies where most *trans*-cyclodiphosphazane molecules were found constrained to  $C_i$  symmetry in the solid phase [29–31]. In addition, the sum of calculated internal angles in (P–N)<sub>2</sub> four memberd ring is 360° which agree precisely with the observed X-ray data for *trans*-[ClP(O)NBu<sup>t</sup>]<sub>2</sub> [31]. Therefore, the phospha(V)azo four-membered ring is planar. In addition the calculated P–N bond lengths of (P–N)<sub>2</sub> were in agreement within ±0.06–0.01 Å to X-ray values of *trans*-[Cl<sub>5</sub>H<sub>14</sub>N<sub>2</sub>PS]<sub>2</sub> [32].

The benzene ring makes a 91.16 and 88.45° dihedral angle with the phospha(V)azo ring which indicates that the benzene ring is perpendicular to the phospha(V)azo ring. On the other hand, the phosphorus atom displays distorted trigonal bipyrimidal geometry owing to the four-membered ring strain. While the nitrogen atoms  $(N_{17} \text{ and } N_{23})$  of exocyclic N–H are slightly triagonal pyramidal with a dihedral angle of  $(P_1-N_{23}-H-C_{24}\equiv P_4-N_{17}-H-C_{18}) \sim 160^\circ$ .

On the other hand, the equilibrium intramolecular distances r (N<sub>31</sub>···HN<sub>23</sub> $\equiv$ N<sub>35</sub>···HN<sub>17</sub>) in the optimized structures of III<sub>a-c</sub> are 0.11 Å shorter than the sum of Van der Waal contact radii for nitrogen and hydrogen atoms (2.75 Å) [33]. This indicates the formation of intramolecular hydrogen bonding between N<sub>31</sub> and HN<sub>23</sub> also between N<sub>35</sub> and HN<sub>17</sub> in all three molecules III<sub>a-c</sub>.

#### 4.5. Vibrational assignment

The mid-FT-IR (4000–200 cm<sup>-1</sup>) for solid samples of adeninecyclodiphospha(V)zane derivatives (III<sub>a-c</sub>) are shown in Fig. 2. The recorded wavenumbers and their assignment are collected in Table 2. The assignment of adenine-cyclodiphospha(V)zanes (III<sub>a-c</sub>) fundamentals are mainly dependant on our recent vibrational interpretation of adenine [14]. Moreover, our focus is on the  $\nu$  C=C (benzene ring),  $\nu$  P–N,  $\nu$  P–Cl,  $\delta$  PNP,  $\delta$ NPN and  $\delta$  PCl<sub>2</sub> vibrational motion. The symmetry coordinates describing the vibration modes are also given in Ref. [14]. A large number of fundamentals were expected in the investigated adenine-cyclodiphospha(V)zane derivatives owing to 3N-6. On the other hand owing to the symmetry of the synthesized compounds (III<sub>a-c</sub>), these fundamentals are lesser than expected.

In the IR spectrum of the adenine-cyclodiphospha(V)zane derivatives( $III_{a-c}$ ) as seen in Fig. 2, the splitting of the observed bands of imidazole, pyrimidine and benzene rings are due to the existence of two molecules of adenine and benzene in the prepared compounds. In addition, the observed bands in the 2980–1795 cm<sup>-1</sup> range were attributed to either combination bands or overtones.

#### 4.5.1. NH Fundamentals

Around 3000 cm<sup>-1</sup> the observed IR bands in adeninecyclodiphospha(V)zane derivatives; III<sub>a-c</sub> (Fig. 2) show extensive broadness compared to those observed in adenine (Fig. 2A) which reflects larger hydrogen bonding interaction in cyclophospha(V)zanes (III<sub>a-c</sub>). Their NH stretches undergo shift to lower frequency ~3253 cm<sup>-1</sup>. Unfortunately this region is off scale for III<sub>c</sub>, thus a maximum center around 3102 cm<sup>-1</sup> was chosen. These bands represent all NH stretches as seen in Fig. 2.

The adenine NH<sub>2</sub> wag was assigned earlier [14] to the recorded weak IR band at 250 cm<sup>-1</sup>, therefore the corresponding NH wag of the adenine-cyclodiphospha(V)zane derivatives ( $\mathbf{III}_{a-c}$ ) better match the observed IR bands in the 271–251 cm<sup>-1</sup> range as seen in Table 2. In addition, the imidazole ring NH wag was assigned to the observed shoulders at 522 and 486 cm<sup>-1</sup> for  $\mathbf{III}_a$  and  $\mathbf{III}_b$ , respectively. Adenine NH<sub>2</sub> scissor mode was assigned to the

band at  $1675 \text{ cm}^{-1}(\text{vs})$  [14]. However four N–H in plane bending fundamentals were expected in the prepared compounds III<sub>a-c</sub> at the observed bands in  $1698-1789 \text{ cm}^{-1}$  range. The broadness of these bands may represent more hydrogen bonding interaction in cyclophospha(V)zanes (III<sub>a-c</sub>) compared to adenine.

#### 4.5.2. CH<sub>3</sub> fundamentals

For each methyl group ( $C_{3v}$  local symmetry) there are  $v_{as}$  (stretch),  $v_s$ ,  $\delta_{as}$  (bending),  $\delta_s$ ,  $\rho$  (rock) and  $\tau$  fundamentals [34]. The methyl stretches ( $v_{C-H}$ ) in compound III<sub>b</sub> are hidden under a very broad band observed around 3000 cm<sup>-1</sup>. In addition, the observed IR bands in spectrum of III<sub>b</sub> (Fig. 2C) at 1441(m) and 1259(s) cm<sup>-1</sup> were assigned to the methyl groups bending modes in consistency with Ref. [34]. Similar spectral features are also observed the IR spectrum of adenine as well as compounds III<sub>a</sub> and III<sub>c</sub>. However, the two methyl rocking modes of III<sub>b</sub> are expected in the region of 1000–1100 and 850–800 cm<sup>-1</sup>[34], thus we concluded that the two methyl rocks ( $\rho$  CH<sub>3</sub>) for compound III<sub>b</sub> are attributed to the observed IR bands at 1075(m) and 811(s) cm<sup>-1</sup> (Fig. 2C), see Table 2.

#### 4.5.3. P–Cl, P–N and C–Cl fundamentals

Comparing the infrared spectra of adenine and adeninecyclodiphospha(V)zane derivatives ( $III_{a,b}$ ), the observed band in the range of 217–225 cm<sup>-1</sup> is definitely belongs to the PCl<sub>2</sub> scissoring mode, whereas a very strong bands observed at 209 cm<sup>-1</sup> are assigned to the PCl<sub>2</sub> wagging modes. However the PCl<sub>2</sub> wagging of  $III_c$  seems to be shifted below 200 cm<sup>-1</sup>, therefore not observed herein. On the other hand, the predicted PCl<sub>2</sub> twisting and rocking modes match those reported earlier at 100 and 50 cm<sup>-1</sup>, respectively [35], these bands are beyond our experimental capability to detect.

The P–Cl stretching mode is observed in the  $410-425 \text{ cm}^{-1}$  range in agreement with Ref. [35]. The P–N stretching modes were assigned to the observed bands in the  $1137-1202 \text{ cm}^{-1}$  range, an assignment supported by the absence of these bands in the adenine IR spectrum (Fig. 2A) and compared to the 900–1200 cm<sup>-1</sup> for P–O stretch [35]. On the other hand, the observed IR bands in the ranges were assigned to the P–N–P and N–P–N bending modes, in agreement with assignments given for phosphorus compounds [35].

The vibrations belonging to the benzene–halogen bond (C–Cl) are worth discussing here. The mixing of vibrations is possible due to the presence of heavy atoms on the molecule periphery. For carbon halogen vibrations, two sensitive vibrations were found in the 1129–480 cm<sup>-1</sup> region, the higher frequency band is assigned for stretching and the lower frequency band for the in plane deformation [36]. Therefore, the C–Cl stretching vibration was assigned to the observed IR medium band at 1096 cm<sup>-1</sup> (Fig. 2D; III<sub>c</sub>), whereas the recorded band at 744 cm<sup>-1</sup> is assigned to the C–Cl in-plane bending mode.

# 4.5.4. Adenine and purine rings fundamentals

Heteroaromatic and aromatic structures show C–H stretching frequencies in the 3000–3100 cm<sup>-1</sup> region [28]. Therefore the IR bands observed in the 2953–3138 cm<sup>-1</sup> range were assigned to the C–H stretching fundamentals of benzene, pyrimidine and imidazole rings in adenine-cyclodiphospha(V)zane derivatives ( $\mathbf{III}_{a-c}$ ) as seen in Table 2. Moreover, the C–H in-plane deformation of pyrimidine rings in  $\mathbf{III}_{a-c}$  better fit the recorded IR band in the 1413–1421 cm<sup>-1</sup> range which is consistent to that of adenine recorded at 1420 (vs) cm<sup>-1</sup>. Similarly,  $\delta_{ip}$  C–H of imidazole rings were assigned to the observed strong band at 1242 cm<sup>-1</sup> for  $\mathbf{III}_{a-c}$  in analogy to the very strong band at 1253 cm<sup>-1</sup> for adenine [14]. However, the observed IR bands in the 1281–1288 cm<sup>-1</sup> range were assigned to the ben-

zene rings  $\delta_{ip}$  C–H of  $III_{a-c}$  in contrast to the absence of bands in that region for adenine IR spectra as seen in Fig. 2A.

The observed very strong IR band at  $939 \text{ cm}^{-1}$  for adenine has been assigned to the pyrimidine ring C–H wagging [14]. Consequently, the observed strong bands at 946 cm<sup>-1</sup> for III<sub>a-c</sub> correlated to pyrimidine ring C–H wagging. However, the imidazole ring C–H wag in the 846–870 cm<sup>-1</sup> range overlapped with pyrimidine ring bending modes. The benzene ring C–H wagging modes in III<sub>a-c</sub> were assigned to the observed bands in the 742–783 cm<sup>-1</sup> range of 450-500 cm<sup>-1</sup> in agreement with earlier literature [14,37].

The C–N stretching modes for imidazole and pyrimidine rings in adenine were observed at 1126(s) and 1309(vs) cm<sup>-1</sup>, respectively. Therefore the recorded bands in the 1112–1123 cm<sup>-1</sup> and 1305–1306 cm<sup>-1</sup> ranges were assigned to  $v_{C-N}$  of imidazole and pyrimidine in III<sub>a-c</sub>, respectively. In addition, benzene ring conjugated C=C-C stretches were observed in the 982-1100 cm<sup>-1</sup> spectral range for the phospha(V)zanes ( $III_{a-c}$ ) along with the recorded bands in the 1382–1399 cm<sup>-1</sup> range which is supported by the absence of these bands in the adenine IR spectrum as seen in Fig. 2A. The pyrimidine ring puckering mode of adenine was recorded at 337 cm<sup>-1</sup> compared to medium to strong band at  $335 \text{ cm}^{-1}$  for adenine-cyclodiphospha(V)zane derivatives (III<sub>a-c</sub>). In addition, the imidazole ring puckering is observed at 621 cm<sup>-1</sup> in adenine. Therefore, the recorded bands in the 609–620 cm<sup>-1</sup> range would fit the imidazole ring puckering modes in III<sub>a-c</sub>. However, the observed bands in the  $371-392 \text{ cm}^{-1}$  range were consistent with the benzene ring puckering modes.

### Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.saa.2011.08.035.

#### References

- [1] G.G. Briand, T. Chivers, M. Krahn, Coord. Chem. Rev. 233-234 (2002) 237-254.
- [2] P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 44 (2005) 7925-7932.
- [3] C.M. Sharaby, Spectrochem. Acta 62A (2005) 326–334.
- [4] P. Chandrasekaran, J.T. Mague, R. Venkateswaran, M.S. Balakrishna, Eur. J. Inorg. Chem. 2007 (2007) 4988–4997.
- [5] N. Wheatley, P. Kalck, Chem. Rev. 99 (1999) 3379-3420.
- [6] M. Sakamoto, K. Manseki, H. Okawa, Coord. Chem. Rev. 219–221 (2001) 379–414.
- [7] H.B. Gray, B.G. Malmstroem, Biochemistry 28 (1989) 7499-7505.
- [8] T.H. Afifp, M.A. El Nawawy, Z.H. El Wahab, H.A. Mahdy, Phosphorus, Sulfur, Silicon, Relat. Elem. 132 (1998) 101–108.
- [9] E.H.M. Ibrahim, N.E. Amine, Egypt J. Chem. 22 (1979) 357.
- [10] R.A. Shaw, Pure Appl. Chem. 52 (1980) 1063-1097.
- [11] V. Chandrasekhar, S.S. Krishnamurthy, H. Manohar, A.R.V. Murthy, R.A. Shaw, M. Woods, J. Chem. Soc.: Dalton Trans. (1984) 621–625.
- [12] P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Tetrahedron Lett. 48 (2007) 5227–5229.
- [13] I.A. Shaaban, W.M. Zoghaib, J. Husband, T.A. Mohamed, Comp. Theor. Chem., submitted for publication.
- [14] T.A. Mohamed, I.A. Shabaan, W.M. Zoghaib, J. Husband, R.S. Farag, A.M.A. Alajhaz, J. Mol. Struct. 938 (2009) 263–276.
- [15] J.K. Labanowski, J.W. Andzelm, Density Functional Methods in Chemistry, Springer Verlag, New York, 1991.
- [16] I.M. Abd-Ellah, A.N. El-Khazandar, Pak. J. Sci. Ind. Res. 31 (1988) 395-397.
- [17] R. Voy, Chem. Ztg. Chem. Apparatus 21 (1897) 441.
- [18] A.D. Becke, Phys. Rev. 38A (1988) 3098-3100.
- [19] C. Lee, W. Yang, R.G. Parr, Phys. Rev. 37B (1988) 785–789.
- [20] W.J. Hehre, L. Radom, P.V.R. Schleyer, J.A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York, 1986.
- [21] P. Pulay, Mol. Phys. 17 (1969) 197-204.
- [22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon,

E.S. Replogle, J.A. Pople, Gaussian 98 (Revision A.7), Gaussian, Inc., Pittsburgh PA, 1998.

- [23] Chem. Office Ultra, v10, Molecular Modeling and Analysis, Cambridge (2006).
- [24] C.N.R. Rao, Ultra-violet and Visible Spectroscopy Chemical Application, Butterworths, London, 1961.
- [25] S.F. Mason, J. Chem. Soc. (1954) 2071-2081.
- [26] I.M. Abd-Ellah, A.N. El-Khazandar, J. Phosphorous Sulfur 292 (1987) 239.
- [27] C.M. Sharaby, Synth. React. Inorg. Met. -Org. Chem. 35 (2005) 133-142.
- [28] R.M. Silverstein, F.X. Webster, D. Kiemle, Spectrometric Identification of Organic Compounds, John Wiley & Sons, 2004.
- [29] G.J. Bullen, J.S. Rutherford, P.A. Tucker, Acta Cryst. 29B (1973) 1439–1445.
- [30] M.B. Peterson, A.J. Wagner, J. Chem. Soc.: Dalton Trans. (1973) 106–111.
- [31] L. Manojlović-Muir, K.W. Muir, J. Chem. Soc.: Dalton Trans. (1974) 2395–2398.
- [32] T.S. Cameron, C.K. Prout, K.D. Howlett, Acta Cryst. 31B (1975) 2333-2335.
- [33] A. Bondi, J. Phys. Chem. 68 (1964) 441–451.
- [34] T.A. Mohamed, R.S. Farag, Spectrochim. Acta 62A (2005) 800-807.
- [35] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A, 6th ed., John Wiley & Sons, New York, 2009.
- [36] E.F. Mooney, Spectrochim. Acta 20 (1964) 1021–1032.
- [37] M. Karabacak, D. Karagöza, M. Kurt, Spectrochim. Acta 72A (2009) 1076-1083.