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Abstract: A straight forward one-pot reaction sequence consisting
of a cobalt-catalysed Diels–Alder reaction for the generation of a di-
hydroaromatic phosphonium salt and a subsequent Wittig olefina-
tion generates polysubstituted dihydrostilbene derivatives which
can optionally be oxidised by DDQ to the corresponding stilbenes.
Several aldehydes, 1,3-dienes and also homopropargylic phospho-
nium salts can be applied.
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The Diels–Alder reaction of non-activated 1,3-dienes and
dienophiles is a well-established process if transition-met-
al catalysts are employed.1 The transition-metal catalysts
can either be added in their active forms or have to be ac-
tivated in situ. In both cases, the catalysts should react un-
der mild conditions and tolerate various functional
groups, and exclude harsh activating conditions or re-
agents.

The generation of functionalised dihydroaromatic com-
pounds by means of a cobalt-catalysed Diels–Alder reac-
tion of non-activated 1,3-dienes and dienophiles has long
been a focus of our research. Under these circumstances,
we were able to report a rather simple cobalt-catalyst sys-
tem, which is capable to convert various functionalised
building blocks containing boron-, silicon-, nitrogen-, ox-
ygen- or sulfur-functionalised 1,3-dienes or alkynes.2

In an attempt to include phosphorus containing starting
materials into the arsenal of building blocks suitable for a
cobalt-catalysed Diels–Alder reaction we report herein
the first use of propargylic phosphonium salts in such re-
actions (Scheme 1).

Scheme 1

The use of phosphorus-containing compounds like a pro-
pargylic phosphonium salt seems to be of much higher
synthetic value in terms of possible follow-up chemistry
as the use of alkynyl phosphines.3 The envisaged cobalt-
catalysed Diels–Alder reaction of a propargylic phospho-

nium salt such as 1 generates a dihydroaromatic allylic
phosphonium salt intermediate 2 prone for further modifi-
cations such as an in situ Wittig olefination (Scheme 2).

The isolation of the phosphonium salt 2 was attempted;
however, because of the other inorganic ingredients in the
reaction mixture, 2 could not be obtained in pure form. In
addition, a control of the conversion by means of 31P
NMR directly from the reaction mixture was not applica-
ble because of paramagnetic cobalt catalyst components.
The addition of a base and an aldehyde (3) then converted
the phosphonium salt 2 in a Wittig olefination and subse-
quent oxidation with 2,3-dichloro-5,6-dicyano-1,4-quino-
ne (DDQ) into an organic product 4 which could then be
detected and isolated in the conventional manner. There-
fore, we determined the optimal time for the cobalt-catal-
ysed reaction before starting the Wittig olefination
reaction. Accordingly, the best results for this protocol
were obtained when the cobalt-catalysed Diels–Alder re-
action was stirred for 30 minutes at room temperature af-
ter the characteristic colour change towards a deep brown
colour.

Scheme 2

The reaction conditions for the cobalt-catalysed Diels–Al-
der reactions are very mild since the cobalt precatalyst
(10–20 mol%) is stirred with 1.5–2.0 equivalents of dry
zinc iodide and 40–60 mol% zinc dust at ambient temper-
ature in dichloromethane. The amount of zinc iodide had
to be increased compared to previous cobalt-catalysed
Diels–Alder reactions because the bromide of the phos-
phonium salt retards the reactivity of the cobalt catalyst
and has to be quenched by stoichiometric amounts of a
Lewis acid.4

To determine the E/Z ratios of the in situ Wittig reactions,
the Diels–Alder cyclisations were firstly conducted with
the symmetrical 2,3-dimethyl-1,3-butadiene. Later, the
unsymmetrical dienes isoprene and 2-methoxy-1,3-buta-
diene (entries 7, 8) were also used. In these latter cases be-
sides the E/Z isomers, regioisomeric products from the
cycloaddition process were also encountered. The separa-
tion and isolation of these regioisomers in pure form were
not possible for most cases.5 Therefore, the overall yields

BrPh3P

BrPh3P

1

CoBr2(dppe)

Zn, ZnI2
+

2

BrPh3P

2. DDQ

R

2

1. KOt-Bu
RCHO (3)

4

D
ow

nl
oa

de
d 

by
: K

ar
ol

in
sk

a 
In

st
itu

te
t. 

C
op

yr
ig

ht
ed

 m
at

er
ia

l.



3248 G. Hilt, C. Hengst LETTER

Synlett 2006, No. 19, 3247–3250 © Thieme Stuttgart · New York

for the regio- and stereoisomers are given. The ratios were
determined by integration of 1H NMR signals and by GC
analysis.

The Wittig-type reaction with aromatic aldehydes led to
dihydroaromatic stilbenes, whereas the reaction with an
aliphatic aldehyde led to a dihydroaromatic styrene prod-
uct. The aldehyde was added in one portion and, after one
hour stirring at ambient temperature, the dihydroaromatic
products could be detected by GC-MS analysis.

The dihydroaromatic compounds can be isolated follow-
ing the regular work-up protocol for dihydroaromatic
products but were preferably further oxidised by DDQ in
benzene solution to generate the corresponding aromatic
products 4. The results of the cobalt-catalysed Diels–Al-
der–Wittig olefination–DDQ oxidation sequence are sum-
marised in Table 1.6 In general, the conversions of the
proposed intermediate 2 with electron-deficient as well as
electron-rich aromatic aldehydes 3 led to the desired prod-
ucts 4 in acceptable to excellent overall yields of up to
94% after three chemical transformations. The E/Z ratios
observed in reactions with aromatic aldehydes slightly
favour the E-configuration of the newly generated double
bond. Therefore, the reactivity of dihydroaromatic phos-
phorus ylides seems to be in between the class of semi-
stabilised and stabilised ylides, judged from the observed
E/Z stereoselectivities.7

Of particular interest were mono- and higher-methoxylat-
ed benzaldehyde derivatives (entries 5–7) which led to in-
teresting products.8 The methoxy functionality can
alternatively be introduced by the 1,3-diene building
block (entry 8) which has a methoxy substituent in the 2-
position. When the unsymmetrical 2-methoxy-1,3-butadi-
ene is used also regioisomeric cycloadducts are observed.
For the present examples the regioisomer with the 1,4-re-
lation of the two substituents is preferred. As was illustrat-
ed earlier, the methoxy functionality can also be located in
the 1-position of the 1,3-diene. In these cases an elimina-
tion of methanol occurs under the reaction conditions and
the corresponding benzene derivative is formed removing
the functionality from the product.2f If cinnamic aldehyde
is used in the reaction sequence, a diaryl 1,3-butadiene
product (4i) can be accessed.

On the other side, the application of aliphatic aldehydes
gave only relatively poor results for pivalyl aldehyde (en-
try 10). Whereas, notable seems the preferred Z-config-
ured product 4j for the sterically bulky pivalyl aldehyde.

Table 1 Results of the Cobalt-Catalysed Diels–Alder–Wittig Olefi-
nation–DDQ Oxidation Reaction Sequence

Entry Product (4) E/Z 
(1,3- vs. 1,4-)a

Yield (%)b

1

4a

1.1:1.0 94

2

4b

2.2:1.0 64

3

4c

1.5:1.0 85

4

4d

1.9:1.0 66

5

4e

1.7:1.0 84

6

4f

1.4:1.0 63

7

4g

1.8:1.0
(1.0:2.8)

68

8

4h

1.2:1.0
(1.0:4.8)

57

F3C

O2N

Br

MeO

MeO

MeO

MeO

OMeCl

9

4i

1.0:1.0 64

10

4j

1.0:2.5 44

a Ratio of Diels–Alder regioisomers determined from 1H NMR inte-
gration.
b Combined yield of stereo- and regioisomers.

Table 1 Results of the Cobalt-Catalysed Diels–Alder–Wittig Olefi-
nation–DDQ Oxidation Reaction Sequence (continued)

Entry Product (4) E/Z 
(1,3- vs. 1,4-)a

Yield (%)b
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On the other hand a 1,3-diaryl substituted propene deriv-
ative 8 was generated from the homopropargylic phos-
phonium tosylate 5 via intermediate 6 (Scheme 3).

Scheme 3

The Diels–Alder–Wittig olefination sequence gave a rea-
sonable amount of crude material 7 before DDQ oxidation
(up to 65% yield). The oxidation process of 7 to form the
aromatic product 8 revealed to be quite problematic re-
sulting in polymerisation or many unidentified decompo-
sition products. Therefore, an alternative and even milder
oxidation methodology was applied to dehydrogenate the
intermediate 7 and not initiate a decomposition process.
For this purpose, TCNE (tetracyanoethylene) in dioxane
was employed for the oxidation process. The desired aro-
matic product 8 was consequently isolated in 64% yield
(E:Z = 1.0:1.2) starting from the crude dihydroaromatic
material 7. Because 7 does not obtain a 1,3-diene subunit
such as the intermediates derived from propargylic phos-
phonium salts, a thermal Diels–Alder reaction does not
occur.9

The first successful use of propargylic phosphonium salts
in cobalt-catalysed Diels–Alder reactions broadens the
usefulness of such cycloaddition reactions so that a strong
increase in complexity starting from simple, mostly com-
mercially available, educts can be realised. Therefore, the
presented protocol provides a variable three-component
access towards unsymmetrical polysubstituted dihydro-
stilbene derivatives, which can be easily oxidised by DDQ
to the corresponding stilbenes.
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