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Abstract: We report a convergent and diastereoselective synthesis
of (±)-sylvone that utilizes a diastereoselective [1,3] ring contrac-
tion.

Key words: ring contraction, [1,3] rearrangement, 1,3-dioxepin,
tetrahydrofuran, sylvone

Furofuran lignans are a large and diverse class of mole-
cules that possess a tetrahydrofuran core and ornamental
aromatic substitution. Typically isolated from plant mate-
rial, many of which are used in indigenous and traditional
herbal medicines, furofurans display broad biological ac-
tivity.1 New lignans continue to be isolated and have thus
compelled the community to develop new synthetic meth-
odology that provides access to the variety of different
substitution patterns possessed by these molecules.1,2 Of
currently existing strategies, there are few that provide di-
rect and efficient construction of 2,3,4-trisubstituted tet-
rahydrofurans.3 Perhaps the most elegant of these
approaches was reported by Marsden and co-workers in
which substituted tetrahydrofurans may be constructed by
condensation of an aldehyde and a [1,2]oxasilepine.4 As
part of a program to study [1,3] rearrangements,5 we have
developed a complementary approach to the 2,3,4-trisub-
stituted tetrahydrofuran framework via a diastereoselective
[1,3] ring contraction of 1,3-dioxepins.6 Herein we de-
scribe the successful implementation of this strategy in the
synthesis of furofuran lignan (±)-sylvone (1) (Figure 1).

Sylvone (1) is a furofuran lignan isolated by Banerji and
co-workers from the petrol extracts of seeds derived from
piper sylvaticum.7 Although the bioactivity profile of 1 is
not known, other members of its class display a range of
activity including antitumor, antimitotic, and antiviral
characteristics.8 Interestingly, of this subclass of furofuran
lignans, only sesaminone has been synthesized. Gordon
and co-workers used a diastereoselective syn aldol to set
the relative stereochemistry of the tetrahydrofuran core
while Yoda and co-workers employed a diastereoselec-
tive Grignard aldehyde alkylation.9 We envisioned the
formation of the 2,3,4-trisubstituted tetrahydrofuran core
of sylvone by a ring contraction of a 1,3-dioxepin. This
strategy revolves around the use of cis-1,4-butene diol as
a lynchpin (Figure 1). The diol is functionalized with an
aldehyde to provide a symmetrical 1,3-dioxepin. The ole-
fin is subsequently desymmetrized by a Heck reaction,
which simultaneously adds a necessary aryl substituent
and activates the system towards [1,3] rearrangement
(Scheme 1).

The synthetic sequence commences with condensation of
cis-1,4-butenediol and veratraldehyde. An intermolecular
Heck reaction between 510 and 1,1-disubstituted alkene
611 proceeds in excellent diastereoselectivity and moder-
ate yield (Scheme 2). It was found that increasing the cat-
alyst loading or extending the reaction time does not
improve the yield.12

Figure 1 Furofuran lignans
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Ring contraction of key dioxepin 713 under our previously
reported conditions leads to complex mixtures of uniden-
tifiable products (Table 1, entry 1). It was hypothesized
that exposure to aqueous acid during workup facilitated
product decomposition. This pitfall was overcome by low
temperature quench of the Lewis acid with Et3N followed
by an aqueous NaHCO3 workup. Unfortunately, the TM-
SOTf–MeCN conditions produce the desired tetrahydro-
furan with modest diastereomeric ratio. Only two of the
four possible diastereomers are formed, where the major
diastereomer is the 2,3-cis/3,4-trans product and the mi-
nor diastereomer contains the 2,3-trans/3,4-cis relative
configuration (entry 2). Diastereoselectivity may be re-
stored by changing the solvent to EtCN, which allows ac-
cess to lower reaction temperatures (entry 3).14

The remainder of the synthesis proceeded without inci-
dent (Scheme 3). Reduction of the aldehyde with NaBH4

is followed by dihydroxylation of the 1,1-disubstituted
olefin. Finally, oxidative cleavage with NaIO4 produces
(±)-sylvone15 in 85% from 7. Due to the acid-sensitive na-
ture of tetrahydrofuran 8 and the complex diastereomeric
mixture derived from facially unselective dihydroxyla-
tion, this four-reaction sequence was performed without
intermediate purification. Upon workup, (±)-sylvone was
isolated as a white solid whose physical data matched the
reported literature values.7 The synthesis was completed
in 33% overall yield for six linear steps from commercial-
ly available materials.

In conclusion, we have developed a rapid total synthesis
of (±)-sylvone. The salient features of this sequence are
the sequential installation of each aryl group followed by
a diastereoselective [1,3] ring contraction. This allows us
to systematically vary the substitution around the furofu-
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Table 1 Optimization of Ring Contraction

Entry Solvent Temp (°C) dr

1 MeCN –40 NDa

2 MeCN –40 78:22b

3 EtCN –78 90:10b

a The reaction was quenched with aq NH4Cl; ND = not determined.
b The reaction was quenched with Et3N.
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ran core as a route to any member of this family of natural
products.
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Scheme 3 Completion of (±)-sylvone
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