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LiAlH4-Induced Thia-Aza-Payne Rearrangement of Functionalized
2-(Thiocyanatomethyl)aziridines into 2-(Aminomethyl)thiiranes as
an Entry to 5-(Chloromethyl)thiazolidin-2-ones
Jeroen Dolfen,[a] Kristof Van Hecke,[b] and Matthias D'hooghe*[a]

Abstract: Nonactivated 2-(thiocyanatomethyl)aziridines with
diverse substitution patterns were deployed as substrates to
effect a LiAlH4-promoted thia-aza-Payne rearrangement to pro-
vide access to functionalized 2-(aminomethyl)thiiranes in good
to excellent yields (78–94 %). The developed strategy involved

Introduction

Since Payne's comprehensive research on the reorganization of
2,3-epoxy alcohols into their isomeric counterparts in 1962,[1]

the “Payne rearrangement” has evolved into a powerful reac-
tion in organic chemistry. Moreover, owing to its broad applica-
bility, this elegant interconversion has become a widely used
method in natural product synthesis.[2] Although the involved
intramolecular ring-opening reactions occur in a stereospecific
SN2 fashion with inversion of configuration at the more-substi-
tuted carbon atom, the reversible character of the isomerization
process still represents a significant drawback.

The “aza-Payne rearrangement”, however, implying the con-
version of a 2-(hydroxymethyl)aziridine into its isomeric oxirane
or vice versa,[3] and the “thia-Payne rearrangement”, referring
to the equilibrium between a 2-(hydroxymethyl)thiirane and an
epoxide,[4] can be tuned and controlled to a certain extent de-
pending on the applied reaction conditions. Despite numerous
papers reporting epoxide–aziridine and/or epoxide–thiirane mi-
grations, only one article dealing with an aziridine-to-thiirane
rearrangement has been published so far.[5] Moreover, the
transformations in that particular study appeared to induce the
formation of side products as well, as treatment of a variety
of polysubstituted 1-tosyl-2-(tosyloxymethyl)aziridines with an
excess amount of benzyltriethylammonium tetrathiomolybdate
([BnEt3N]2MoS4) in CH3CN afforded the corresponding thiiranes
as the major products (75–80 %) and cyclic disulfides as the
minor compounds (20–25 %).
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hydride reduction of the thiocyanato moiety followed by intra-
molecular aziridine ring opening. Subsequent exposure of the
obtained 2-(aminomethyl)episulfide intermediates to triphos-
gene resulted in the formation of 5-(chloromethyl)thiazolidin-2-
ones.

In continuation of our research efforts concerning the LiAlH4-
induced regioselective ring rearrangement of 2-(cyanoethyl)-
aziridines into either 2-(aminomethyl)pyrrolidines or 3-amino-
piperidines,[6] and in light of the growing interest in sulfur-
containing heterocycles,[7] the deployment of 2-(thiocyanato-
methyl)aziridines as substrates for a hydride-promoted thia-aza-
Payne rearrangement was envisaged. The feasibility of the
premised aziridine-to-thiirane interconversion was assessed
starting from nonactivated 2-(thiocyanatomethyl)aziridines 1.
These aziridines, bearing an electron-donating group on the
nitrogen atom and differing in substitution patterns, can be
prepared from corresponding 2-monosubstituted 2-(bromo-
methyl)aziridines 2, 2,2-disubstituted aziridines 3, or 2,3-disub-
stituted aziridines 4, which have amply proven to be versatile
precursors for further synthetic elaboration (Figure 1).[6,8]

Figure 1. Diverse aziridine substrate classes.

Results and Discussion

At the outset of this study, 2-(bromomethyl)aziridine 2a was
converted into 2-(thiocyanatomethyl)aziridine 5a in 90 % yield
upon treatment with KSCN (2 equiv.) in DMF at 70 °C,[8a] and
then 5a was used as a model substrate for the premised thia-
aza-Payne rearrangement (Table 1). In a first attempt, aziridine
5a was treated with LiAlH4 (2 equiv.) and indium(III) trifluoro-
methanesulfonate [In(OTf )3, 0.3 equiv.] at reflux temperature,[6]

but these reaction conditions resulted in intermolecular dimer
formation instead of intramolecular ring rearrangement
(Table 1, entry 1). Next, an equimolar amount of LiAlH4 and
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In(OTf )3 was used, which led to complete conversion into de-
sired thiirane 6a (Table 1, entry 2). However, upon standing
for a few hours, the reaction product appeared to be unstable,
probably as a result of the presence of residual In(OTf )3. Lower-
ing the reaction temperature from reflux temperature to 0 °C
in the absence of In(OTf )3 again resulted in dimer formation
(Table 1, entry 3), whereas increasing the amount of LiAlH4

(1.7 equiv.) in combination with a reaction temperature of
–78 °C afforded desired thiirane 6a in an acceptable yield of
78 % (Table 1, entry 4). As isolated 2-(aminomethyl)thiirane 6a
still appeared to be unstable upon standing for a few days, it
was trapped through treatment with triphosgene (1 equiv.) in
THF to furnish 5-(chloromethyl)thiazolidin-2-one 7a in 85 %
yield. Mechanistically, the thia-aza-Payne rearrangement of 2-
(thiocyanatomethyl)aziridine 5a can be rationalized by hydride
addition across the thiocyanato moiety with concomitant re-
lease of HCN. The in situ formed sulfide anion effects intra-
molecular aziridine ring opening, and this results in 2-(amino-
methyl)thiirane 6a after aqueous workup. Although nonacti-
vated aziridines generally require activation of the ring system
prior to ring opening (in contrast to activated aziridines),[9] the
ring opening of 1-benzylaziridine 5a can be attributed to the
Lewis acid activity of LiAlH4 (through coordination of aluminum
with nitrogen).[10] Subsequent treatment of obtained 2-(amino-
methyl)thiirane 6a with triphosgene resulted in N-acylation to
give carbamate 8a, and this was followed by regioselective
chloride-induced ring opening of the thiirane core at the less-
substituted carbon atom[7d,11] and ring transformation into cor-
responding 5-(chloromethyl)thiazolidin-2-one 7a. Initial attack
of the amino group in 6a across triphosgene was corroborated
by reaction of thiirane 6a with methyl chloroformate and Boc2O
(Boc = tert-butoxycarbonyl) on an analytical scale, which af-
forded the N-acylated products without thiirane ring opening.

Table 1. Optimization of the reaction conditions for the thia-aza-Payne rear-
rangement of 1-benzyl-2-(thiocyanatomethyl)aziridine (5a).

Entry LiAlH4 In(OTf)3 Temp. Yield [%] of 6a
[equiv.] [equiv.] [°C]

1 2 0.3 reflux –[c]

2 1 1 reflux 45[d]

3 1.2 0 0 –[c]

4 1.7 0 –78 78

[a] Reaction conditions: KSCN (2 equiv.), DMF, 70 °C, 17 h.[8a] [b] Reac-
tion conditions: Triphosgene (1 equiv.), THF, r.t., 17 h. [c] Dimer formation.
[d] Thiirane 6a appeared to be unstable in the presence of residual In(OTf)3.

Having the optimal reaction conditions for the conversion of
aziridine 5a into thiirane 6a in hand, other 2-(thiocyanato-
methyl)aziridines were prepared next to trigger the observed
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thia-aza-Payne rearrangement. In a first approach, monosubsti-
tuted 2-(thiocyanatomethyl)aziridines 5b–e (R2 = H) were syn-
thesized from corresponding 2-(bromomethyl)aziridines 2b–e
(2 equiv. KSCN, DMF, 70 °C, 17 h), which were subsequently
confronted with LiAlH4 (1.7 equiv.) at –78 °C under an argon
atmosphere to furnish 2-(aminomethyl)thiiranes 6b–e in good
to excellent yields (79–92 %; Table 2, entries 2–5). Owing to the
unstable nature of obtained thiiranes 6b–e upon storing and
during purification on silica gel, these intermediates were im-
mediately treated with triphosgene (1 equiv.) in THF to produce
stable 5-(chloromethyl)thiazolidin-2-ones 7b–e in 81–99 %
yield.

Table 2. Scope of the thia-aza-Payne rearrangement of 2-(thiocyanato-
methyl)aziridines 5 and subsequent ring transformation with the use of tri-
phosgene.

Entry R1 R2 Product (yield[a] [%])
5 6 7

1 Ph H 5a (90) 6a (78) 7a (85)
2 4-MeC6H4 H 5b (87) 6b (82) 7b (89)
3 4-ClC6H4 H 5c (95) 6c (79) 7c (81)
4 iPr H 5d (83) 6d (92) 7d (85)
5 cyclohexyl H 5e (81) 6e (86) 7e (99)
6 Ph Me 5f (86) 6f (94) 7f (97)
7 4-MeC6H4 Me 5g (96) 6g (91) 7g (99)
8 4-MeOC6H4 Me 5h (91) 6h (93) 7h (92)

[a] Yield of isolated product.

The effect of an additional substituent at the aziridine C2
position on the thia-aza-Payne rearrangement was investigated
next. In that respect, 2-methyl-2-(thiocyanatomethyl)aziridines
5f–h (R2 = Me) were synthesized in excellent yields (86–96 %)
starting from 2-bromomethyl-2-methylaziridines 3a–c upon
treatment with an equimolar amount of KSCN in DMF at 65 °C
(Table 2, entries 6–8).[8d] Subsequent addition of an excess
amount of LiAlH4 (1.7 equiv.) in THF at –78 °C induced the de-
sired aziridine-to-thiirane reorganization, and 2-(amino-
methyl)thiiranes 6f–h were isolated in high yields (91–94 %).
As a consequence, it can be concluded that the presence of a
quaternary carbon center in aziridines 5 does not have a nega-
tive impact on the thia-aza-Payne rearrangement. On the con-
trary, 2-aminomethyl-2-methylthiiranes 6f–h were isolated in
slightly higher yields (91–94 %) than 2-(aminomethyl)thiiranes
6a–e (78–92 %) and appeared to be more stable upon pro-
longed storage at 4 °C and during purification on silica gel.
Subsequently, obtained 2,2-disubstituted thiiranes 6f–h were
treated with triphosgene (1 equiv.) in THF at room temperature
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to afford corresponding 5-chloromethyl-5-methylthiazolidin-2-
ones 7f–h in almost quantitative yields (92–99 %; Table 2,
entries 6–8). Notably, also in the case of gem-disubstituted
thiiranes 6f–h, ring opening of the thiirane core by chloride
proceeded regioselectively at the less-substituted carbon
atom.[12]

For aziridine substrate class 4 (Figure 1) featuring a vic-disub-
stitution pattern, the preparation of the corresponding 3-(thio-
cyanatomethyl)aziridines appeared to be highly dependent on
the nature of the substituents of the involved aziridines. Tosyl-
ation of 2-(4-chlorophenyl)-3-(hydroxymethyl)aziridine 4a with
4-toluenesulfonyl chloride (TsCl, 1.05 equiv.) in the presence of
4-(dimethylamino)pyridine (DMAP, 0.1 equiv.) and Et3N
(1.1 equiv.) in CH2Cl2, followed by nucleophilic substitution
upon the addition of KSCN (1 equiv.) in DMF at 65 °C, afforded
3-(thiocyanatomethyl)aziridine 10a in 52 % yield as a single re-
action product (Table 3). Surprisingly, by applying the same re-
action conditions to 2-phenyl-3-(hydroxymethyl)aziridine 4b, 3-
(thiocyanatomethyl)aziridine 10b and 2-[phenyl(thiocyanato)-
methyl]aziridine 11b were obtained in a 55:45 ratio. Despite

Table 3. Thia-aza-Payne rearrangement of (thiocyanatomethyl)aziridines 10 and 11, followed by ring transformation upon treatment with triphosgene.

Conversion of 3-aryl-2-(hydroxymethyl)aziridines 4 into (thiocyanatomethyl)aziridines 10 and 11

Substrate R Ar Ratio (10/11)[a] Product (yield[b] [%])

4a Bn 4-ClC6H4 10a/11a (100:0) 10a (52) 11a (–)[c]

4b Bn Ph 10b/11b (55:45) 10b (–)[d] 11b (–)[d]

4c iPr Ph 10c/11c (30:70) 10c (0) 11c (44)

Conversion of (thiocyanatomethyl)aziridines 10 and 11 into 2-(aminomethyl)thiiranes 12 and 13

Substrate(s) R Ar Ratio (12/13)[a] Product (yield[b] [%])

10a Bn 4-ClC6H4 – 12a (88) 13a (–)[c]

10b + 11b Bn Ph 12b/13b (55:45) 12b (–)[e] 13b (–)[e]

11c iPr Ph – 12c (–)[c] 13c (90)

Conversion of 2-(aminomethyl)thiiranes 12 and 13 into thiazolidin-2-ones 14 and 15

Substrate(s) R Ar Ratio (14/15)[a] Product (yield[b] [%])

12a Bn 4-ClC6H4 – 14a (71) 15a (–)[c]

12b + 13b Bn Ph 14b/15b (53:47) 14b (33) 15b (22)
13c iPr Ph – 14c (–)[c] 15c (95)

[a] Determined by analysis of the crude reaction mixture by 1H NMR spectroscopy (CDCl3). [b] Yield of isolated product. [c] Not applicable. [d] Aziridines 10b
and 11b were isolated as a mixture in a combined yield of 28 %, and this mixture was used as such in the next step. [e] Thiiranes 12b and 13b were isolated
as a mixture in a combined yield of 93 %, and this mixture was used as such in the next step.
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intensive efforts, structural isomers 10b and 11b could not be
separated, and – as a consequence – this mixture was used as
such in the next step. In addition to the unexpected influence
of the 2-aryl substituent on the thiocyanate-induced tosyloxy
displacement, the effect of the N-substituent in vic-disubsti-
tuted aziridines 4 was also studied by tosylation and subse-
quent treatment with KSCN of 1-isopropyl-2-phenylaziridine 4c.
Again, a mixture of isomers 10c and 11c was obtained in a ratio
of 30:70, although in favor of 2-[phenyl(thiocyanato)methyl]-
aziridine 11c in this case. Subsequent purification of the reac-
tion mixture by column chromatography (silica gel) allowed the
isolation of major isomer 11c in 44 % yield. Notably, analysis
of intermediates 10a and 10b by NMR spectroscopy (CDCl3)
appeared to be impossible owing to unclear resolution of the
corresponding signals. On the basis of the obtained experimen-
tal results, the addition of KSCN to in situ formed 3-(tosyloxy-
methyl)aziridines 9 seems to provoke a competition between
ring opening at the benzylic position (route a) and the
expected direct tosyloxy group displacement (route b)
(Table 3).[8c] Remarkably, aziridines 4a–c gave rise to a different
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reactivity profile, which pointed to the fact that the observed
thiocyanate-induced nucleophilic attack across 1-alkyl-2-aryl-3-
(tosyloxymethyl)aziridines 9 is governed by a subtle interplay
between the different substituents present at the aziridine scaf-
fold.

In a next step, obtained (thiocyanatomethyl)aziridines 10
and 11 were treated with LiAlH4 (1.7 equiv.) in THF at –78 °C,
which evoked a thia-aza-Payne rearrangement to afford
thiirane(s) 12 and/or 13 in excellent yield(s) (88–93 %, Table 3).
The relative trans stereochemistry of thiiranes 13b and 13c was
confirmed by the vicinal coupling constants between the 2H
and 3H protons on the thiirane ring (Jtrans = 5.2–5.4 Hz), which
is in accordance with the literature.[13] Separation of thiiranes
12b and 13b, obtained from aziridine mixture 10b and 11b,
appeared to be inconvenient, and as a consequence, the mix-
ture was used as such in the ring-transformation reaction with
triphosgene (1 equiv.) in THF. After heating at reflux tempera-
ture for 4 h, corresponding thiazolidin-2-ones 14b and 15b
were produced, and they could eventually be separated and
isolated by means of preparative TLC (silica gel) in yields of 33
and 22 %, respectively. Aminomethylated thiiranes 12a and 13c
(obtained from aziridines 10a and 11c, respectively) were also
treated with triphosgene (1 equiv.) in THF under reflux condi-
tions, and they afforded 5-(chloromethyl)thiazolidin-2-ones 14a
and 15c in yields of 71 and 95 %, respectively. The molecular
identity of thiazolidin-2-one 15c was unequivocally established
by means of single-crystal X-ray analysis (see the Supporting
Information), which provided clear evidence for the regioselect-
ive chloride-induced ring opening of thiiranes 13b and 13c at
the benzylic position.[11b,11c]

From the above-described results, it is clear that nonacti-
vated 2-(thiocyanatomethyl)aziridines 1, derived from corre-
sponding aziridines 2–4, represent valuable substrates for an
unprecedented and efficient thia-aza-Payne rearrangement, as
shown by the synthesis and characterization of 12 2-(amino-
methyl)thiiranes. Furthermore, the involved experiments show
that the aziridine-to-thiirane migrations are irreversible and oc-
cur with inversion at the stereogenic center. Moreover, subse-
quent treatment of the obtained 2-(aminomethyl)thiiranes with
triphosgene resulted in the formation of chloromethyl-substi-
tuted thiazolidin-2-ones by regioselective thiirane ring opening
by chloride at the less-substituted or benzylic position, which
is in accordance with the literature concerning the ring opening
of thiiranes.[7d,11,12] Notably, this report discloses the first
method for an aziridine-to-thiirane conversion in a selective
and straightforward manner, and it should therefore be consid-
ered as a powerful strategy in modern organic chemistry.

In a final stage of this study, additional synthetic efforts were
made to explore briefly the reactivity of the obtained 5-chloro-
methyl-substituted thiazolidin-2-one building blocks. To that
end, treatment of thiazolidin-2-one 7c as a representative ex-
ample with KOtBu (1.02 equiv.) in DMSO afforded 5-methylthi-
azolin-2-one 16 in 91 % yield after 2 days at 100 °C through
base-induced dehydrochlorination and subsequent proto-
trophic rearrangement toward a more stable endocyclic double
bond (Scheme 1).[8a] Reaction of same thiazolidin-2-one 7c with
KSCN (2 equiv.) in DMF or NaI (4 equiv.) in acetone under micro-
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wave irradiation resulted in the formation of substitution prod-
ucts 17 and 18, both in 87 % yield. The use of benzylamine,
NaOAc, and KCN as nucleophiles, however, appeared to be less
straightforward and resulted in more complex reaction mix-
tures.

Scheme 1. Reactivity of thiazolidin-2-one 7c with respect to KOtBu, KSCN,
and NaI.

Conclusions

In conclusion, an efficient and reliable thia-aza-Payne rearrange-
ment of nonactivated 2-(thiocyanatomethyl)aziridines toward 2-
(aminomethyl)thiiranes was developed. The deployment of dif-
ferent classes of aziridine substrates showed that diverse substi-
tution patterns did not impose any restrictions on the desired
aziridine-to-thiirane migrations. In addition, the obtained 2-
(aminomethyl)thiiranes were easily converted into 5-(chloro-
methyl)thiazolidin-2-one building blocks, which points to a re-
gioselective thiirane ring opening by chloride.

CCDC 1536450 (for 15c) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre.
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