ORGANIC
LETTERS

2012
Vol. 14, No. 12
2972-2975

Enantioselective Diels—Alder Reaction
of o-(Acylthio)acroleins: A New Entry
to Sulfur-Containing Chiral Quaternary
Carbons

Akira Sakakura,’ Hiroki Yamada,* and Kazuaki Ishihara**$

EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603,
Japan, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya

464-8603, Japan, and JST, CREST, Furo-cho, Chikusa, Nagoya 464-8603, Japan

ishihara@.cc.nagoya-u.ac.jp

Received April 10, 2012

ABSTRACT

i-Bu
(i-Pr)o,N__O

2.75C¢F5SO3H

NH N
s cHo V[ O N(i-Pr),
]/ NH,  (omol%) 0=
R
+

S

7
N

R

EtNO,, 0 °C

R _:(j*"'CHO

up to 91% ee

A catalytic and enantioselective Diels—Alder reaction of a-(carbamoylthio)acroleins induced by an organoammonium salt of chiral triamine is
described. o-(Carbamoylthio)acroleins are designed and synthesized as new sulfur-containing dienophiles for the first time. The Diels—Alder

reaction affords chiral tertiary thiol precursors with up to 91% ee.

The Diels—Alder reaction is one of the most powerful
carbon—carbon bond-forming reactions and is widely used
for the synthesis of various bioactive natural compounds.'
We previously reported the catalytic enantioselective
Diels—Alder reaction and [2 + 2] cycloaddition reac-
tion of a-(acyloxy)acroleins and a-(phthalimido)acroleins
induced by organoammonium salts of chiral triamine 1 with
C¢FsSOsH or Tf,NH (Scheme 1).2 a-(Acyloxy)acroleins
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and o-(phthalimido)acroleins are useful dienophiles for
the synthesis of chiral a-quaternary a-hydroxy or o-amino
acid equivalents. In this context, a-(acylthio)acroleins
would also be useful dienophiles for the construction of
sulfur-containing quaternary carbons. The corresponding
adducts are potential chiral intermediates for the synthesis
of sulfur-containing bioactive natural products.®> For ex-
ample, the Diels—Alder adduct of an a-(acylthio)acrolein
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with isoprene would be readily converted to a key synthetic
intermediate of leinamycin® (Scheme 2). Although some
methods for the synthesis of sulfur-containing quaternary
stereogenic centers have been reported,” most of these
methods produce chiral thioethers and only a few can give
tertiary thiols.’™ We report here the catalytic and enantio-
selective Diels—Alder reaction of a-(acylthio)acroleins to
give optically active tertiary thiol precursors.

Scheme 1. Enantioselective Diels—Alder Reaction of
a-(Acyloxy)acroleins and o-(Phthalimido)acroleins®
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Scheme 2. Diels—Alder Reaction of a-(Acylthio)acroleins for
the Synthesis of Sulfur-Containing Quaternary Carbons
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On the basis of our previous results, benzoyl groups were
considered to be promising candidates as protecting groups
for the a-mercapto group. We first synthesized S-unsubsti-
tuted a-(benzoylthio)acroleins 2 based on the acylation® of
2-(diethoxymethyl)thiirane.”® The Diels—Alder reaction of
2a—d with 2,3-dimethylbutadiene (4 equiv) was conducted
in the presence of 1-2.75C¢FsSOzH (10 mol %) in EtNO, at
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0 °C (Table 1). As a result, the enantioselectivities of the
corresponding adducts 3 highly depended on the benzoyl
groups. The introduction of an electron-donating dialkyl-
amino group at the 4-position increased the enantioselec-
tivity, and dienophile 2d bearing a pyrrolidinyl group gave
the highest enantioselectivity (entry 4). However, the en-
antioselectivity of 2d (72% ee) was still lower than those of
a-(4-methoxybenzoyloxy)acrolein (92% yield, 92% ee)**
and o-(phthalimido)acrolein (82% yield, 96% ee)* in the
1-2.75CFsSO;H-catalyzed Diels—Alder reaction of 2,3-
dimethylbutadiene. It is conceivable that the formation of
stronger hydrogen bonding between the acyl group and an
ammonium proton of the catalyst might stabilize the con-
formation of the transition state to increase the enantio-
selectivity (Figure 1). The lower basicity of thioesters
compared to esters and imides resulted in the lower
enantioselectivity of a-(benzoylthio)acroleins 2a—d than
a-(4-methoxybenzoyloxy)acrolein and a-(phthalimido)-
acrolein. In addition, although the a-benzoylacroleins
2¢ and 2d gave good enantioselectivities, the yields of
the corresponding adducts 3¢ and 3d were low (entries 3
and 4). The low yields were mainly attributed to the low
solubilities of 2¢ and 2d in EtNO,. Therefore, both the
solubility and the basicity of the acyl group of 2 had to be
improved to achieve high yield and enantioselectivity.

Table 1. Enantioselective Diels—Alder Reaction of
o-(Benzoylthio)acroleins 2“

Ar. (0] 1 '2.7506F5SO3H SCOAr
10 mol %,
I/ + S__CHo _ (Oma®%) “ICHO
\ \n/ EINO,, 0°C, 36 h
2 3
entry 2 [Ar] 3, yield (%) ee® (%)

1 2a [Ph] 3a, 58 43
2 2b [4-(MeO)CgH,] 3b, 53 44
3 2¢ [4-(MeoN)CgHyl 3c, 28 68
4 2d [4-[(CH5)4N]CgH,] 3d, 30 72

“Reaction of 2 (0.1 mmol) with 2,3-dimethylbutadiene (4 equiv) was
conducted in the presence of 1-2.75CsFsSO3;H (10 mol %) in EtNO, at
0 °C for 36 h. ” Determined by HPLC analysis.
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Figure 1. Proposed transition-state assembly.
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Thus, we next designed a-(carbamoylthio)acroleins
11a—d (R' = H, Scheme 3) as new o-sulfur-substituted
acroleins to overcome the above problems. The carbamoyl

Scheme 3. Synthesis of a-(Carbamoylthio)acroleins 11—-16

1. Br, (1.05 equiv), rt
then EtgN (for R = H)
or pyridine (for R # H) OEt
JI/CHO (4 equiv), 0 °C, CH,Cl, Br

Rt 2. HC(OEt); (1.3 equiv) |
NH4NO; (5 mol %) R
EtOH, 70 °C H, 50%; 5: R! = Me, 70%
Bu, 72%; 7: R! = Ph, 70%
4-MeOCgH,, 75%
4-FCgHy, 78%

OEt

coo s
4131
nonono

BuLi (0.9 equiv)

o ~78°C HCOH RZ%N._O
XJ\S’S X (excess) S, _cHo
hig CH,Cl ]/
o) o
FENH X =0 11: R' = H {11a: 50%, 11b: 30%
(5 equiv) L>X = NR2, (10) ‘R'= ( : 50%, 11b: o)
CH,Cl,, 0°C 11c: 34%, 11d: 34%

12: R' = Me (12a: 55%)

13: R = Bu (13a: 55%)

14: R' = Ph (14a: 60%)

15: R = 4-MeOCgH, (15a: 41%)
16: R! = 4-FCgH, (16a: 60%)

10a: NR2, = N(i-Pr),, 68%
10b: NR2, = N(CH,),, 78%
10c: NR2, = NBuy, 80%
10d: NR2, = NBn,, 34%

groups were expected to have a stronger electron-donating
ability than the benzoyl groups. However, it would be very
difficult to promote the carbamoylation of 2-(diethoxy-
methyl)thiirane with dialkylcarbamoyl chlorides, since the
dialkylcarbamoyl chlorides were much less electrophilic
than the carboxylic chlorides. Thus, we developed a new
synthetic route for 11 based on the umpolung strategy:
C—S bond formation between a “carbamoylthio cation
R,NCOS"” and a “vinyl anion RCH=C CHO” (Scheme 3).
According to this strategy, bis(carbamoyl)disulfides 10, syn-
thetic equivalents of a carbamoylthio cation, were prepared
from bis(chlorocarbonyl)disulfide’ and secondary amines.
Lithiation'® of a-bromoacrolein diethylacetals 4'' generated
the corresponding vinyl anion. The reaction of the vinyl anion
with 10 followed by acid hydrolysis of the acetal moiety gave
11a—d in yields of 30—50%.

As expected, a-(carbamoylthio)acroleins 11a—d were
readily soluble in EtNO, under the reaction conditions,
and showed high reactivities and enantioselectivity in the
1-2.75CsFsSO;H-catalyzed Diels—Alder reaction with
2,3-dimethylbutadiene (entries 1—4, Table 2). Although
11b bearing a pyrrolidinecarbonylthio group gave the
highest enantioselectivity (76% ee), the yield of the corre-
sponding adduct 17b was low (20%) because 11b was labile
under the reaction conditions (entry 2). Dienophile 11a
bearing an N,N-diisopropylaminocarbonylthio group was

Table 2. Enantioselective Diels—Alder Reaction of a-(Carbamoylthio)acroleins 11—16“

R%N.__O
T H 1+2.75C4F5S05H (10 mol % SCONR?;
2. mo
R3_/ R S]/C (0] 6 593 ( °) RSQICHO

A R EtNO,, 0°C,1.50r3d R

11-16 17-26
entry diene dienophile adduct 17-27, yield (%) exolendo” e (%)
R R’

NG-Pr),
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SCONR?Z,
17b, 20 — 76

1 H

2 =z 11b H N(CH,), 4
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4 H NBn,

=
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z “ICHO 19, 67 — 73
|
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7 a H NG-P 20,74 — 67
= a (i-Pr), "'CHO
N
8 @ 11a H NG-Pr), AX\?CHO 21,79 56:44 0
................................................................... SCONGPY
9 22 Me NG-Pr); 23788 87:13 88
10 132 Bu N(i-Pr), 23,83 91:9 84
11 @ 14a Ph N(i-Pr), ’ CHO 24, 68 75:25 91
12 152 4-(MeO)CeH,  N(i-Pr), ) R 25,42 78:22 90
13 16a  4-FCeH, N(i-Pr), (-Pr),COS 26, 67 75:25 )

“Reactions of 11—16 (0.1 mmol) with a diene (4 equiv) were conducted in the presence of 1-2.75C4FsSO3H (10 mol %) in EtNO, at 0 °C for 1.5 days
(for 11) or 3 days (for 12—16). ® Determined by "H NMR analysis. ¢ Determined by HPLC analysis.
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Figure 2. X-ray single-crystal structure of exo-26 with thermal
ellipsoids drawn at a 50% probability level. C = black, H =
white, N = blue, O = red, S = yellow, F = green.

stable and gave the adduct 17a in 65% yield with 74% ee
(entry 1). With the optimized dienophile 11a in hand, we
next examined the enantioselective Diels—Alder reaction
with representative dienes (entries 5—8). 2-Alkyl-substi-
tuted dienes such as isoprene, myrcene, and (E)-f-farne-
sene smoothly reacted with 11a to give the corresponding
4-alkyl-substituted adducts 18—20 with >99% regioselec-
tivity and 67—81% ee. In contrast, the reaction of 11a with
cyclopentadiene gave the corresponding adduct 21 in
racemic form (entry 8).

According to the synthetic method for 11 desribed in
Scheme 3, S-substituted a-(carbamoylthio)acroleins 12a—
16a (R' # H) were synthesized in 41—60% yields. In this
reaction sequence, the bromination of S-substituted acro-
leins followed by acetalization selectively afforded cis-3-
substituted o-bromoacrolein diethylacetals 5—9 despite
the fact that the starting S-substituted acroleins were iso-
meric mixtures.'?

The Diels—Alder reactions of fS-substituted a-(carba-
moylthio)acroleins 12a—16a with cyclopentadiene were
also catalyzed by 1:C¢FsSOs;H (10 mol %) and gave the
corresponding adducts 22—26 with high enantioselectiv-
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ities (entries 9—13). In particular, S-aryl-substituted die-
nophiles 14a—16a showed more than 90% ee (entries
11—13). The absolute configuration of the major diaster-
eomer of the adduct 26 was determined to be (2R,3R) by
X-ray crystallographic analysis (Figure 2).® The stereo-
chemical outcome of ex0-26 was consistent with those of
the Diels—Alder adducts of a-(acyloxy)acroleins and a-
phthalimidoacroleins.?

The carbamoyl group in the Diels—Alder adducts could
be removed by reductive cleavage. For example, the treat-
ment of 22 with LiAlH, (6 equiv) and ZnCl, (3 equiv)'?
followed by acetylation of the resultant hydroxyl group
and mercapto group gave 27 in 71% yield (Scheme 4).

Scheme 4. Derivatization of 22

1. LiAIH,4 (6 equiv)

ZnCl, (3 equiv)
7 4
lCHO THF, t,1h —~0Ac

SCON(i-Pr), 2. AcO (3 equiv) SAc
22 DMAP (2 equiv) 27
CH,Cly—pyridine (3:1 viv) (71%)
m,1h

In conclusion, we have developed an organocatalytic
and enantioselective Diels—Alder reaction of a-(carba-
moylthio)acroleins to provide chiral tertiary thiol precur-
sors for the first time. -Unsubstituted or S-substituted
a-(carbamoylthio)acroleins 11—16 were designed and
synthesized as new sulfur-containing dienophiles.
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