Multisubstituted Furan Formation from (Z)- or (E)-Enynyl Acetates: Tandem Reactions Accelerated by Electron-Donating Groups on Aromatic Rings

Noriko Okamoto and Reiko Yanada*

Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan

Supporting Information

ABSTRACT: Multisubstituted furans were readily prepared from (Z)- or (E)-conjugated enynyl acetates with NXS under metal-free conditions at room temperature via the same haloallenyl ketone intermediates. This tandem haloallenyl ketone formation—furan formation reaction sequence was accelerated by electron-donating groups on the aromatic rings.

INTRODUCTION

Among heterocycles, five- and six-membered heterocycles are the most common structural motifs appearting in natural products and are found in industrial intermediates and pharmaceuticals. Of the various synthetic methodologies, cyclization reactions of simple acyclic compounds are attractive ways to construct these heterocycles.¹ Electrophilic cyclizations have been achieved as an efficient method in the synthesis of indoles, pyrroles, furans, and thiophenes employing electrophiles such as transition metals² and/or halogenation reagents.³ The typical course of these cyclization reactions involves (i) coordination of the electrophilic source to the unsaturated carbon-carbon bond of the (Z)-envne to generate A; (ii) nucleophilic attack of the heteroatom on the activated intermediate to produce B; and (iii) facile removal⁴ or rearrangement⁵ of the group G bonded to the heteroatom to generate the heterocyclic products C (Scheme 1, path A). We

Scheme 1. Synthesis of Heteroaromatics C from (Z)- or (E)-Enyne Stereoisomers

have reported the tandem synthesis of indoles and isoquinolines through a similar reaction pathway catalyzed by $In(OTf)_3$ or $PtCl_2$ as a π -electron coordination metal catalyst.⁶ On the other hand, the same cyclization reaction from (*E*)-enyne stereoisomers has not been reported because of their steric factors (path B). Recently, we have communicated a regio- and stereoselective (*Z*)- or (*E*)-haloenol ester synthesis.⁷ Various (*Z*)- and (*E*)-enynyl acetates could be obtained by Sonogashira coupling reaction of (*Z*)- or (*E*)-haloenol esters and alkynes. Here, we report the synthesis of multisubstituted furans from these (*Z*)- or (*E*)-enynyl acetates. Without requiring a metal catalyst, these tandem reactions were accelerated by electrondonating groups on the aromatic rings.

RESULTS AND DISCUSSION

The starting materials, (Z)- or (E)-enynyl acetates 1 or 2, were readily synthesized regio- and stereoselectively from consecutive Sonogashira coupling reaction of (Z)- or (E)-iodoenyl acetates **F** or **G**, obtained from the reaction of alkyne **E** with NIS and acetic acid according to our method.⁷ The results are summarized in Table 1.

Our initial investigation focused on the optimization of electrophilic source to unsaturated carbon-carbon bond. We hypothesized that $PtCl_2$ -catalyzed cyclization reaction might provide a convenient access to furans.^{6c} Contrary to our expectations, the reaction did not occur at all (Table 2, entry 1). Recently, Jiang and co-workers reported the iodocyclization reaction of (*Z*)-enynyl acetate 1 ($R^1 = R^2 = H$) with iodine to produce 2,5-substituted 3-iodofurans under basic conditions.⁸ We examined the same reaction with 1a and iodine, but furan 3a was obtained in low yield (Table 2, entry 2). Next we treated 1a with NXS as the electrophilic source directed against the triple bond of 1a. Most substrates 1 could afford the corresponding 2,4,5-trisubstituted 3-halofurans 3a-3k' with

Received: February 14, 2012 Published: March 22, 2012

© 2012 American Chemical Society

Table 1. Stereoselective Synthesis of (Z)- and (E)-Enynyl Acetates

	$R^{2} = aryl$ R^{2									
entry	\mathbb{R}^1	R ²	R ³	1 or 2	yield (%) (Z:E)					
1	OMe	Ph	p-MeC ₆ H ₄	1a	95 (Z)					
2	OMe	Ph	Ph	1b	quant (20:1)					
3	OMe	Ph	cyclohexyl	1c	86 (14:1)					
4	OMe	Ph	"Bu	1d	90 (25:1)					
5	OMe	<i>p</i> -MeOC ₆ H ₄	Ph	1e	99 (10:1)					
6	OMe	p-MeC ₆ H ₄	Ph	1f	81 (11:1)					
7	OMe	p-FC ₆ H ₄	Ph	1g	88 (9:1)					
8	NHCO ₂ Et	Ph	p-MeC ₆ H ₄	1h	97 (25:1)					
9	NHAc	Ph	p-MeC ₆ H ₄	1i	quant (14:1)					
10	OMe	"Bu	Ph	2a	96 (E)					
11	OMe	"Bu	<i>p</i> -MeOC ₆ H ₄	2b	87 (E)					
12	OMe	"Bu	p-MeC ₆ H ₄	2c	86 (E)					
13	OMe	"Bu	p-FC ₆ H ₄	2d	96 (E)					
14	OMe	ⁿ Bu	"Bu	2e	81 (E)					
15	OMe	cyclohexyl	p-MeC ₆ H ₄	2f	72 (E)					
16	OMe	Ph	"Bu	2g	76 (E)					
17	NHCO ₂ Et	ⁿ Bu	p-MeC ₆ H ₄	2h	93 (E)					
18	NHAc	"Bu	p-MeC ₆ H ₄	2i	69 (E)					
19	Me	ⁿ Bu	p-MeC ₆ H ₄	2j	82 (E)					

entry	(Z)-enynyl acetate 1	Е	time (h)	furan 3	yield (%)
1^a	1a ($R^1 = OMe, R^2 = Ph, R^3 = p-MeC_6H_4$)	$PtCl_2$	24.00		recovery of 1a
2^{b}	1a	I_2	6.00	3a ($R^1 = OMe, R^2 = Ph, R^3 = p-MeC_6H_4, X = I$)	$(12)^{c}$
3^d	1a	NBS	2.00	3b ($R^1 = OMe, R^2 = Ph, R^3 = p-MeC_6H_4, X = Br$)	90
4^d	1a	NIS	0.25	3a ($R^1 = OMe, R^2 = Ph, R^3 = p-MeC_6H_4, X = I$)	71
5^d	1b $(R^1 = OMe, R^2 = Ph, R^3 = Ph)$	NIS	1.00	$3c (R^1 = OMe, R^2 = Ph, R^3 = Ph, X = I)$	61
6^d	1c (R^1 = OMe, R^2 = Ph, R^3 = cyclohexyl)	NIS	4.50	3d ($R^1 = OMe$, $R^2 = Ph$, $R^3 = cyclohexyl$, $X = I$)	61
7^d	1d $(R^1 = OMe, R^2 = Ph, R^3 = {}^nBu)$	NIS	6.00	3e $(R^1 = OMe, R^2 = Ph, R^3 = {}^nBu, X = I)$	67
8^d	1e ($R^1 = OMe, R^2 = p-MeOC_6H_4, R^3 = Ph$)	NIS	0.25	$3f (R^1 = OMe, R^2 = p-MeOC_6H_4, R^3 = Ph, X = I)$	56
9^d	1f (R^1 = OMe, R^2 = <i>p</i> -MeC ₆ H ₄ , R^3 = Ph)	NBS	1.00	3g ($R^1 = OMe, R^2 = p - MeC_6H_4, R^3 = Ph, X = Br$)	$(81)^{c}$
10^d	1f	NIS	0.50	3h $(R^1 = OMe, R^2 = p-MeC_6H_4, R^3 = Ph, X = I)$	50
11^d	$1g (R^1 = OMe, R^2 = p-FC_6H_4, R^3 = Ph)$	NIS	1.50	3i $(R^1 = OMe, R^2 = p - FC_6H_4, R^3 = Ph, X = I)$	59
12^d	1h ($R^1 = NHCO_2Et$, $R^2 = Ph$, $R^3 = p-MeC_6H_4$)	NIS	0.25	3j ($R^1 = NHCO_2Et$, $R^2 = Ph$, $R^3 = p-MeC_6H_4$, $X = I$)	57
13^d	1i (R^1 = NHAc, R^2 = Ph, R^3 = p-MeC ₆ H ₄)	NIS	6.00	3k (R^1 = NHAc, R^2 = Ph, R^3 = <i>p</i> -MeC ₆ H ₄ , X = I)	21
				$3\mathbf{k}'$ (R ¹ = NAc ₂ , R ² = Ph, R ³ = p-MeC ₆ H ₄ , X = I)	23

^aCompound 1a (1 equiv) and PtCl₂ (0.1 equiv) in toluene at 70 °C. ^bCompound 1a (1 equiv), I₂ (1.5 equiv), and NaHCO₃ (1.5 equiv) in CH₂Cl₂ at room temp.⁸ The yield was obtained from ¹H NMR, because 3a or 3g was obtained as inseparable mixture with another structurally unknown compound. ^dCompound 1 (1 equiv) and NXS (1.2 equiv) in DCE/MeCN = 1/1 at room temp.

NXS (Table 2, entries 3–13). Unfortunately, the reactions were accompanied by some structurally unknown byproduct. Therefore, we obtained moderate yields of the iodofurans 3

(Table 2, entries 4-8, 10-13). NBS gave higher product yields than the yields obtained with NIS, although longer reaction times were needed (Table 2, entries 3, 4, 9 and 10). The

Table 3. Multisubstituted Furan 3 Synthesis with (E)-Enynyl Acetate 2

entry	(E)-enynyl acetate 2	Е	time (h)	furan 3	yield (%)		
1^a	2a $(R^1 = OMe, R^2 = {}^nBu, R^3 = Ph)$	$PtCl_2$	24.0		recovery of 2a		
2^{b}	2a	I_2	20.0	3l ($R^1 = OMe, R^2 = {}^nBu, R^3 = Ph, X = I$)	51		
3 ^c	2a	NBS	1.0	3m ($R^1 = OMe, R^2 = {}^nBu, R^3 = Ph, X = Br$)	91		
4 ^{<i>c</i>}	2a	NCS	24.0		recovery of 2a		
5 ^c	2a	NIS	2.0	31 ($R^1 = OMe, R^2 = {}^nBu, R^3 = Ph, X = I$)	92		
6 ^{<i>c</i>}	2b ($\mathbb{R}^1 = OMe, \mathbb{R}^2 = {}^nBu, \mathbb{R}^3 = p - MeOC_6H_4$)	NIS	0.5	3n ($R^1 = OMe, R^2 = {}^nBu, R^3 = p-MeOC_6H_4, X = I$)	82		
7^c	2c ($\mathbb{R}^1 = OMe, \mathbb{R}^2 = {}^nBu, \mathbb{R}^3 = p - MeC_6H_4$)	NIS	1.0	30 ($\mathbb{R}^1 = OMe, \mathbb{R}^2 = {}^nBu, \mathbb{R}^3 = p \cdot MeC_6H_4, \mathbb{X} = I$)	95		
8 ^c	2d ($\mathbb{R}^1 = OMe, \mathbb{R}^2 = {}^nBu, \mathbb{R}^3 = p - FC_6H_4$)	NIS	2.0	3p ($R^1 = OMe, R^2 = {}^nBu, R^3 = p - FC_6H_4, X = I$)	93		
9 ^c	2e $(R^1 = OMe, R^2 = {}^nBu, R^3 = {}^nBu)$	NIS	4.0	$3q (R^1 = OMe, R^2 = {}^nBu, R^3 = {}^nBu, X = I)$	77		
10^{c}	2f (\mathbb{R}^1 = OMe, \mathbb{R}^2 = cyclohexyl, \mathbb{R}^3 = <i>p</i> -MeC ₆ H ₄)	NIS	4.5	$3\mathbf{r}$ (R ¹ = OMe, R ² = cyclohexyl, R ³ = p -MeC ₆ H ₄ , X = I)	67		
11^c	2g ($R^1 = OMe, R^2 = Ph, R^3 = {}^nBu$)	NIS	5.0	3e $(R^1 = OMe, R^2 = Ph, R^3 = {}^nBu, X = I)$	69		
12 ^c	2h ($\mathbb{R}^1 = \mathbb{NHCO}_2\mathbb{E}t$, $\mathbb{R}^2 = {}^n\mathbb{B}u$, $\mathbb{R}^3 = p-\mathbb{MeC}_6\mathbb{H}_4$)	NIS	1.0	3s ($\mathbb{R}^1 = \mathbb{NHCO}_2\mathbb{E}t$, $\mathbb{R}^2 = {}^n\mathbb{B}u$, $\mathbb{R}^3 = p-\mathbb{MeC}_6\mathbb{H}_4$, $\mathbb{X} = \mathbb{I}$)	78		
13 ^c	2i $(R^1 = NHAc, R^2 = {}^nBu, R^3 = p-MeC_6H_4)$	NIS	8.0	3t ($R^1 = NHAc$, $R^2 = {}^nBu$, $R^3 = p-MeC_6H_4$, $X = I$)	36		
				$3t' (R^1 = NAc_2, R^2 = {}^nBu, R^3 = p-MeC_6H_4, X = I)$	44		
14 ^c	2j ($R^1 = Me, R^2 = {}^nBu, R^3 = p-MeC_6H_4$)	NIS	5.0	3u ($\mathbb{R}^1 = Me, \mathbb{R}^2 = {}^nBu, \mathbb{R}^3 = p-MeC_6H_4, X = I$)	84		
^a Compound 2: (1 cavir) and PtCl (0.1 cavir) in talyons at 70 °C ^b (E) Enymed contacts 2: (1 cavir) I (1.5 cavir) and NeHCO (1.5 cavir) in							

^{*a*}Compound **2a** (1 equiv) and PtCl₂ (0.1 equiv) in toluene at 70 °C. ^{*b*}(*E*)-Enynyl acetate **2a** (1 equiv), I₂ (1.5 equiv), and NaHCO₃ (1.5 equiv) in CH₂Cl₂ at room temp. ^{*b*} Compound **2** (1 equiv) and NXS (1.2 equiv) in DCE/MeCN = 1/1 at room temp. ^{*d*}Compound **2**_j (1 equiv), NIS (1.2 equiv), Pd(OAc)₂ (a little), and CuI (a little) in DCE/MeCN = 1/1 at room temp.

reaction rate seemed to depend on the substituent \mathbb{R}^3 : the reaction was faster when \mathbb{R}^3 was an aromatic substituent rather than an aliphatic substituent (Table 2, entries 4–7). The nature of the \mathbb{R}^2 group on the double bond had a slight effect on the reaction rate (Table 2, entries 5, 8, 10 and 11). Interestingly, intermediates were observed on TLC in the case of slow reactions (≥ 1 h) (vide infra). The reaction of the compound 1i having the *N*-acetyl electron-donating substituent as \mathbb{R}^1 afforded the corresponding furan 3k together with *N*-diacetylated product 3k', probably arising from *N*-acetylation of 3k by transfer from *O*-acetyl group of starting compound 1i.

Next, we examined the reaction of various (E)-enynyl acetate 2 with some electrophiles, applying the standard conditions used for the formation of 3 from (Z)-enynyl acetate 1. As expected from the structural factors, the PtCl₂-catalyzed cyclization reaction did not proceed (Table 3, entry 1). According to the mechanism proposed by Jiang and coworkers,⁸ we assumed that (E)-enynyl acetate 2 also would not react with I2. Contrary to our expectations, furan 31 could be formed in 51% yield (Table 3, entry 2). Bromofuran 3m was obtained from 2a by using NBS (Table 3, entry 3). The use of NCS resulted in recovery of starting material 2a (Table 3, entry 4). Surprisingly, most of the substrates 2 could be converted into multisubstituted furans 3 in higher yields than the yields of the reaction with (Z)-enynyl acetate 1 and NIS (Table 3, entries 5-14). With respect to the reactivity, similar tendencies with the results obtained from (Z)-enynyl acetate 1 were observed: (i) aromatic substituent R³ underwent a facile furan formation (Table 3, entries 5-9) and (ii) the reaction proceeded via the intermediate (vide infra). The furan formation reaction mentioned here can proceed under mild and metal-free conditions and can provide a powerful methodology toward the synthesis of diversely substituted furans.

In an effort to understand the reaction mechanism, we attempted to isolate and identify the reaction intermediate (eq 1). When either (*Z*)- or (*E*)-enynyl acetates 1d or 2g was stirred with NIS at room temperature for only 10 min, the same

allenylketone 4a was obtained. Compound 4b was also obtained from 2e. Because allenylketone 4 was relatively unstable, 4a or 4b was gradually isomerized in low yield under neutral conditions into the corresponding furan 3e or 3q after storage at room temperature (eq 2).

On the basis of the results obtained above, we propose a plausible reaction mechanism (Scheme 2). Initially, electrophilic addition of NXS to the triple bond of (*Z*)- or (*E*)-enynyl acetates 1 or 2 was assisted by an electron-donating group (EDG) at the para-position on the aromatic ring of 1 or 2 to afford haloallenyl ketone intermediate 4 through ionic intermediate **H**. EDG of haloallenyl ketone 4 also assisted in the formation of intermediate **I**. Intramolecular Michael-type migration of X to the conjugated polyene moiety, leading to haloirenium zwitterion **J**, which subsequently underwent 1,2-halogen migration and nucleophilic attack of oxygen anion, furnished 3-halofuran 3. Gevorgyan and co-workers reported furan 3 formation from iodoallenylketone 4 (EDG = H, \mathbb{R}^2 = Ph, \mathbb{R}^3 = "Bu, X = I) via 1,2-iodomigration with Au(III)-catalyst at room temperature for 3 days.⁹ In our experiment, enynyl

Scheme 2. Plausible Reaction Mechanism for the Synthesis of Furans

acetate 1d or 2g (EDG = OMe, $R^2 = Ph$, $R^3 = {}^{n}Bu$) gave furan 3e at room temperature after 5–6 h under metal-free conditions (Table 2, entry 7, and Table 3, entry 11). These results suggest that the EDG on the aromatic ring assisted in the formation of furan 3.

Halofurans are attractive and important building blocks that provide sites for further functionalization, for example, C–C, C–N, or C–S bond formation.¹⁰ To further explore the utility of our methodology, we studied the Sonogashira coupling reaction of 3-iodofuran **31** with terminal alkynes. The corresponding 2,3,4,5-tetrasubstituted furans **5a** and **5b** were obtained in high yields (eq 3).

In summary, we have demonstrated a highly efficient multisubstituted furan synthesis under metal-free conditions from (Z)- or (E)-enynyl acetates with NXS via the same haloallenyl ketone intermediates. This tandem allenyl ketone formation—furan formation reaction sequence was accelerated by electron-donating groups on the aromatic rings. Our approach allows for excellent regioselective synthesis of 2,4,5-trisubstituted 3-halofurans. The 3-iodofuran was also utilized for the transformation to a tetrasubstituted furan by Pd-catalyzed coupling reaction.

EXPERIMENTAL SECTION

General Experimental Methods. ¹H NMR and ¹³C NMR spectra were recorded on 600 MHz spectrometer. Chemical shifts are reported in δ (ppm) from tetramethylsilane as an internal standard.

Data are reported as follows: chemical shifts, relative integration value, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz). Infrared spectra were obtained using an FT spectrometer. Analytical thin layer chromatography was performed on Merck silica gel 60 F_{254} TLC plates.

General Procedure for the Preparation of (*Z*)- and (*E*)-Enynyl Acetates 1 and 2. To a solution of (*Z*)- or (*E*)-iodoenol acetate (0.5 mmol) in Et_3N (3 mL) were added $Pd(OAc)_2$ (5.6 mg, 0.025 mmol), PPh₃ (13 mg, 0.05 mmol), CuI (4.7 mg, 0.025 mmol), and alkyne (0.75 mmol), and the mixture was stirred at 50 °C under nitrogen. The reaction was monitored by TLC to establish completion. Saturated aqueous NH₄Cl solution was added to the reaction mixture and extracted with AcOEt (three times). The combined organic solution was washed with brine, dried over anhydrous MgSO₄, and concentrated at the reduced pressure. Column chromatography on silica gel using hexanes/ethyl acetate as an eluent afforded 1 or 2.

(Z)-1-(4-Methoxyphenyl)-2-phenyl-4-(p-tolyl)but-1-en-3-yn-1-yl Acetate (1a). White solid: ¹H NMR (CDCl₃) δ 7.38 (2H, dd, J = 7.6, 2.1 Hz), 7.33 (2H, d, J = 8.2 Hz), 7.25–7.23 (3H, m), 7.16 (2H, d, J = 8.9 Hz), 7.12 (2H, d, J = 7.6 Hz), 6.71 (2H, dd, J = 6.9, 2.1 Hz), 3.75 (3H, s), 2.35 (3H, s), 2.31 (3H, s); ¹³C NMR (CDCl₃) δ 168.6, 159.9, 151.6, 138.5, 136.1, 130.2, 129.6, 129.1, 128.3, 127.6, 126.6, 120.2, 113.7, 113.5, 95.7, 86.8, 55.2, 21.5, 21.0; IR (CHCl₃, cm⁻¹) 1763, 1606, 1507, 1464, 1445, 1370, 1300, 1253, 1195, 1174, 1094, 1033, 1016; MS (EI) *m*/*z* = 382 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₆H₂₂O₃ 382.1569, found 382.1568.

(Z)-1-(4-Methoxyphenyl)-2,4-diphenylbut-1-en-3-yn-1-yl Acetate (**1b**). Yellow solid: ¹H NMR (CDCl₃) δ 7.44 (2H, dd, *J* = 3.2, 1.6 Hz), 7.38 (2H, dd, *J* = 7.9, 1.7 Hz), 7.32–7.31 (3H, m), 7.27–7.23 (3H, m), 7.16 (2H, d, *J* = 8.9 Hz), 6.72 (2H, d, *J* = 8.9 Hz), 3.76 (3H, s), 2.32 (3H, s); ¹³C NMR (CDCl₃) δ 168.5, 160.0, 151.9, 136.0, 131.4, 130.3, 129.6, 128.3, 128.3, 127.7, 126.5, 123.3, 113.6, 95.4, 87.4, 55.2, 21.0; IR (CHCl₃, cm⁻¹) 1759, 1606, 1511, 1489, 1443, 1370, 1254, 1174, 1095, 1032, 1027; MS (EI) *m*/*z* = 368 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₅H₂₀O₃ 368.1412, found 368.1412.

(Z)-4-Cyclohexyl-1-(4-methoxyphenyl)-2-phenylbut-1-en-3-yn-1yl Acetate (1c). Orange solid: ¹H NMR (CDCl₃) δ 7.30 (2H, dd, J = 7.6, 2.1 Hz), 7.22–7.18 (3H, m), 7.11 (2H, d, J = 8.9 Hz), 6.69 (2H, d, J = 8.9 Hz), 3.75 (3H, s), 2.60 (1H, s), 2.27 (3H, s), 1.84–1.72 (4H, m), 1.51 (3H, br s), 1.34 (3H, br s); ¹³C NMR (CDCl₃) δ 168.5, 159.7, 150.9, 136.7, 130.2, 129.6, 128.1, 127.4, 126.9, 114.1, 113.5, 101.0, 78.4, 55.2, 32.7, 29.9, 25.9, 24.8, 21.0; IR (CHCl₃, cm⁻¹) 2935, 2856, 1757, 1607, 1510, 1445, 1369, 1298, 1251, 1236, 1196, 1176, 1153, 1060, 1032, 837; MS (EI) m/z = 374 (M⁺); HRMS (EI) m/zcalcd for C₂₅H₂₆O₃ 374.1882, found 374.1887.

(*Z*)-1-(4-*Methoxyphenyl*)-2-*phenyloct*-1-*en*-3-*yn*-1-*yl* Acetate (1*d*). Pale yellow solid: ¹H NMR (CDCl₃) δ 7.30 (2H, dd, *J* = 7.6, 2.1 Hz), 7.21–7.19 (3H, m), 7.10 (2H, d, *J* = 8.9 Hz), 6.69 (2H, d, *J* = 8.9 Hz), 3.74 (3H, s), 2.41 (2H, t, *J* = 7.2 Hz), 2.26 (3H, s), 1.56–1.53 (2H, m), 1.47–1.45 (2H, m), 0.93 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 168.6, 159.7, 151.0, 136.7, 130.2, 129.6, 128.2, 127.4, 126.8, 114.1, 113.5, 97.0, 78.4, 55.2, 30.9, 22.0, 21.0, 19.5, 13.6; IR (CHCl₃, cm⁻¹) 2961, 2936, 1757, 1606, 1510, 1465, 1444, 1370, 1296, 1252, 1176, 1151, 1029; MS (EI) *m*/*z* = 348 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₃H₂₄O₃ 348.1725, found 348.1724.

(Z)-1,2-Bis(4-methoxyphenyl)-4-phenylbut-1-en-3-yn-1-yl Acetate (1e). Orange solid: ¹H NMR (CDCl₃) δ 7.44–7.43 (2H, m), 7.32–7.30 (5H, m), 7.19 (2H, dd, *J* = 6.9, 2.1 Hz), 6.79 (2H, dd, *J* = 6.9, 2.1 Hz), 6.73 (2H, dd, *J* = 6.9, 2.1 Hz), 3.79 (3H, s), 3.77 (3H, s), 2.31 (3H, s); ¹³C NMR (CDCl₃) δ 168.6, 159.9, 159.1, 151.1, 131.4, 130.8, 130.2, 129.7, 129.3, 128.3, 128.2, 126.8, 123.4, 113.8, 113.6, 113.1, 95.3, 87.6, 55.2, 21.0; IR (CHCl₃, cm⁻¹) 2961, 2937, 1757, 1607, 1577, 1512, 1490, 1464, 1443, 1370, 1299, 1293, 1256, 1243, 1193, 1174, 1115, 1090, 1029, 1020, 836; MS (EI) *m*/*z* = 398 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₆H₂₂O₄ 398.1518, found 398.1518.

(*Z*)-1-(4-Methoxyphenyl)-4-phenyl-2-(p-tolyl)but-1-en-3-yn-1-yl Acetate (**1f**). Orange solid: ¹H NMR (CDCl₃) δ 7.43 (2H, dd, *J* = 3.2, 1.6 Hz), 7.31–7.26 (5H, m), 7.18 (2H, d, *J* = 8.9 Hz), 7.05 (2H, d, *J* = 8.2 Hz), 6.72 (2H, d, *J* = 8.9 Hz), 3.75 (3H, s), 2.31 (3H, s), 2.31 (3H, s); ¹³C NMR (CDCl₃) δ 168.6, 159.9, 151.5, 137.5, 133.0, 131.4, 130.2, 129.5, 129.1, 128.3, 128.2, 126.7, 123.4, 113.6, 95.3, 87.6, 55.2, 21.2, 21.0; IR (CHCl₃, cm⁻¹) 1757, 1606, 1508, 1490, 1464, 1443, 1370, 1300, 1254, 1193, 1174, 1091, 1029, 1016, 989, 837; MS (EI) m/z = 382 (M⁺); HRMS (EI) m/z calcd for C₂₆H₂₂O₃ 382.1569, found 382.1565.

(*Z*)-2-(4-*Fluorophenyl*)-1-(4-*methoxyphenyl*)-4-*phenylbut*-1-*en*-3-*yn*-1-*yl* Acetate (**1g**). Yellow solid: ¹H NMR (CDCl₃) δ 7.44 (2H, dd, *J* = 3.2, 1.6 Hz), 7.36–7.31 (5H, m), 7.16 (2H, d, *J* = 8.2 Hz), 6.94 (2H, t, *J* = 8.6 Hz), 6.73 (2H, d, *J* = 8.2 Hz), 3.77 (3H, s), 2.31 (3H, s); ¹³C NMR (CDCl₃) δ 168.5, 163.0, 161.4, 160.1, 152.1, 132.1, 132.1, 131.5, 131.4, 130.3, 129.4, 128.5, 128.4, 126.4, 123.2, 115.5, 115.3, 113.7, 113.5, 112.6, 95.7, 87.2, 55.2, 21.0; IR (CHCl₃, cm⁻¹) 2937, 2840, 1762, 1605, 1507, 1490, 1465, 1443, 1370, 1301, 1254, 1238, 1194, 1174, 1158, 1101, 1088, 1029, 1014, 840; MS (EI) *m*/*z* = 386 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₅H₁₉FO₃ 386.1318, found 386.1315.

(Z)-1-(4-((Ethoxycarbonyl)amino)phenyl)-2-phenyl-4-(p-tolyl)but-1-en-3-yn-1-yl Acetate (1h). Orange solid: ¹H NMR (CDCl₃) δ 7.38–7.36 (2H, m), 7.33 (2H, d, J = 8.2 Hz), 7.24–7.22 (5H, m), 7.15 (2H, d, J = 8.2 Hz), 7.12 (2H, d, J = 8.2 Hz), 6.58 (1H, br s), 4.20 (2H, q, J = 7.1 Hz), 2.35 (3H, s), 2.32 (3H, s), 1.29 (3H, t, J = 7.2 Hz); ¹³C NMR (CDCl₃) δ 168.7, 153.3, 151.3, 138.6, 138.6, 136.0, 131.4, 129.7, 129.7, 129.1, 129.0, 128.4, 127.8, 120.2, 117.8, 114.4, 96.2, 86.7, 61.4, 21.5, 21.0, 14.5; IR (CHCl₃, cm⁻¹) 3433, 2985, 1762, 1734, 1609, 1586, 1522, 1509, 1445, 1411, 1370, 1316, 1238, 1194, 1180, 1015, 843, 818; MS (EI) m/z = 439 (M⁺); HRMS (EI) m/zcalcd for C₂₈H₂₅NO₄ 439.1784, found 439.1783.

(Z)-1-(4-Acetamidophenyl)-2-phenyl-4-(p-tolyl)but-1-en-3-yn-1yl Acetate (1i). Brown solid: ¹H NMR (CDCl₃) δ 7.58 (1H, s), 7.35– 7.32 (4H, m), 7.27–7.24 (5H, m), 7.12 (4H, t, *J* = 8.9 Hz), 2.35 (3H, s), 2.33 (3H, s), 2.12 (3H, s); ¹³C NMR (CDCl₃) δ 168.9, 168.5, 151.1, 138.7, 138.5, 135.9, 131.4, 129.6, 129.5, 129.1, 128.5, 127.9, 120.1, 118.9, 114.6, 96.3, 86.6, 24.6, 21.5, 21.0; IR (CHCl₃, cm⁻¹) 3434, 1762, 1693, 1603, 1589, 1516, 1508, 1445, 1405, 1370, 1314, 1248, 1196, 1179, 1095, 1015, 846; MS (EI) *m*/*z* = 409 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₇H₂₃NO₃ 409.1678, found 409.1681.

(E)-1-(4-Methoxyphenyl)-2-(phenylethynyl)hex-1-en-1-yl Acetate (2a). Orange oil: ¹H NMR (CDCl₃) δ 7.77 (2H, d, J = 8.9 Hz), 7.37– 7.37 (2H, m), 7.31–7.29 (3H, m), 6.89 (2H, d, J = 8.9 Hz), 3.82 (3H, s), 2.29 (2H, t, J = 7.9 Hz), 2.25 (3H, s), 1.67–1.63 (2H, m), 1.42– 1.41 (2H, m), 0.96 (3H, t, J = 7.2 Hz); ¹³C NMR (CDCl₃) δ 168.7, 159.8, 150.4, 131.3, 129.0, 128.3, 128.0, 127.6, 123.6, 113.3, 112.1, 94.0, 88.4, 55.3, 31.0, 30.1, 22.4, 20.8, 14.0; IR (CHCl₃, cm⁻¹) 2961, 2933, 1751, 1608, 1512, 1490, 1465, 1443, 1370, 1299, 1251, 1176, 1098, 1058; MS (EI) m/z = 348 (M⁺); HRMS (EI) m/z calcd for C₂₃H₂₄O₃ 348.1725, found 348.1732.

(E)-1-(4-Methoxyphenyl)-2-((4-methoxyphenyl)ethynyl)hex-1-en-1-yl Acetate (**2b**). Yellow oil: ¹H NMR (CDCl₃) δ 7.77 (2H, d, *J* = 8.9 Hz), 7.31 (2H, d, *J* = 8.9 Hz), 6.88 (2H, d, *J* = 8.9 Hz), 6.83 (2H, d, *J* = 8.2 Hz), 3.81 (3H, s), 3.80 (3H, s), 2.28 (2H, t, *J* = 7.6 Hz), 2.24 (3H, s), 1.64–1.63 (2H, m), 1.42–1.40 (2H, m), 0.95 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 168.7, 159.7, 159.5, 149.7, 132.7, 128.9, 127.7, 115.8, 114.0, 113.3, 112.3, 94.0, 87.0, 55.3, 55.2, 31.0, 30.1, 22.3, 20.8, 13.9; IR (CHCl₃, cm⁻¹) 2961, 2935, 2839, 1751, 1607, 1570, 1507, 1465, 1442, 1370, 1289, 1248, 1196, 1176, 1099, 1056, 1033, 834; MS (EI) *m*/*z* = 378 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₄H₂₆O₄ 378.1831, found 378.1830.

(E)-1-(4-Methoxyphenyl)-2-(p-tolylethynyl)hex-1-en-1-yl Acetate (**2c**). Yellow oil: ¹H NMR (CDCl₃) δ 7.77 (2H, d, *J* = 8.9 Hz), 7.27 (2H, d, *J* = 7.6 Hz), 7.11 (2H, d, *J* = 7.6 Hz), 6.88 (2H, d, *J* = 8.9 Hz), 3.82 (3H, s), 2.35 (3H, s), 2.28 (2H, t, *J* = 7.9 Hz), 2.25 (3H, s), 1.66–1.61 (2H, m), 1.42–1.40 (2H, m), 0.95 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 168.7, 159.7, 150.0, 138.2, 131.1, 129.0, 128.9, 127.6, 120.5, 113.3, 112.2, 94.2, 87.7, 55.2, 31.0, 30.1, 22.3, 21.5, 20.8, 14.0; IR (CHCl₃, cm⁻¹) 2959, 2932, 2862, 1753, 1607, 1508, 1464, 1441, 1369, 1298, 1250, 1196, 1177, 1098, 1055, 1034, 837; MS (EI) *m*/*z* = 362 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₄H₂₆O₃ 362.1882, found 362.1882.

(E)-2-((4-Fluorophenyl)ethynyl)-1-(4-methoxyphenyl)hex-1-en-1yl Acetate (**2d**). Orange oil: ¹H NMR (CDCl₃) δ 7.74 (2H, d, *J* = 8.9 Hz), 7.34–7.33 (2H, m), 6.99 (2H, t, *J* = 8.6 Hz), 6.89 (2H, d, *J* = 8.2 Hz), 3.82 (3H, s), 2.28 (2H, t, *J* = 7.6 Hz), 2.24 (3H, s), 1.64–1.62 (2H, m), 1.42–1.41 (2H, m), 0.96 (3H, t, *J* = 7.6 Hz); ¹³C NMR $(\text{CDCl}_3) \delta$ 168.6, 163.2, 161.5, 159.8, 150.5, 133.1, 133.1, 129.0, 127.6, 119.7, 119.7, 115.6, 115.5, 113.3, 112.0, 92.7, 88.1, 55.3, 30.9, 30.1, 22.3, 20.8, 13.9; IR (CHCl₃, cm⁻¹) 2961, 2934, 1755, 1608, 1506, 1465, 1442, 1370, 1299, 1251, 1238, 1196, 1177, 1155, 1098, 1094, 1056, 1033, 893, 837; MS (EI) $m/z = 366 \text{ (M}^+\text{)}; \text{HRMS (EI) } m/z \text{ calcd for } C_{23}H_{23}FO_3 366.1631, found 366.1632.}$

(E)-2-Butyl-1-(4-methoxyphenyl)oct-1-en-3-yn-1-yl Acetate (2e). Yellow oil: ¹H NMR (CDCl₃) δ 7.70 (2H, d, *J* = 8.9 Hz), 6.84 (2H, d, *J* = 8.9 Hz), 3.81 (3H, s), 2.33 (2H, t, *J* = 6.9 Hz), 2.21 (3H, s), 2.17 (2H, dd, *J* = 8.2, 6.9 Hz), 1.58–1.48 (4H, m), 1.42–1.34 (4H, m), 0.93–0.90 (6H, m); ¹³C NMR (CDCl₃) δ 168.8, 159.4, 149.1, 128.8, 127.7, 113.2, 112.7, 95.5, 78.8, 55.2, 31.4, 30.6, 30.0, 22.4, 22.0, 20.8, 19.4, 14.0, 13.6; IR (CHCl₃, cm⁻¹) 2960, 2934, 2874, 2862, 1753, 1608, 1511, 1466, 1442, 1370, 1297, 1252, 1239, 1195, 1177, 1085, 1035, 836; MS (EI) *m*/*z* = 328 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₁H₂₈O₃ 328.2038, found 328.2035.

(E)-2-Cyclohexyl-1-(4-methoxyphenyl)-4-(p-tolyl)but-1-en-3-yn-1-yl Acetate (**2f**). Orange oil: ¹H NMR (CDCl₃) δ 7.76 (2H, d, *J* = 8.9 Hz), 7.27 (2H, d, *J* = 7.6 Hz), 7.11 (2H, d, *J* = 8.2 Hz), 6.87 (2H, d, *J* = 8.9 Hz), 3.81 (3H, s), 2.47–2.43 (1H, m), 2.34 (3H, s), 2.25 (3H, s), 1.82–1.69 (4H, m), 1.61–1.55 (3H, m), 1.32–1.24 (3H, m); ¹³C NMR (CDCl₃) δ 168.9, 159.7, 148.9, 138.1, 131.1, 129.1, 129.0, 127.8, 120.6, 117.6, 113.2, 95.1, 86.3, 55.2, 39.2, 31.2, 26.4, 25.9, 21.5, 20.8; IR (CHCl₃, cm⁻¹) 2934, 1755, 1607, 1512, 1451, 1370, 1251, 1196, 1177, 1062, 1034, 837; MS (EI) *m*/*z* = 388 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₆H₂₈O₃ 388.2038, found 388.2037.

(E)-1-(4-Methoxyphenyl)-2-phenyloct-1-en-3-yn-1-yl Acetate (**2g**). Orange oil: ¹H NMR (CDCl₃) δ 7.83 (2H, d, J = 8.9 Hz), 7.48 (2H, d, J = 8.2 Hz), 7.34 (2H, t, J = 7.6 Hz), 7.28–7.25 (1H, m), 6.89 (2H, d, J = 8.9 Hz), 3.84 (3H, s), 2.34 (2H, t, J = 6.9 Hz), 1.98 (3H, s), 1.51–1.50 (2H, m), 1.41–1.37 (2H, m), 0.90 (3H, t, J = 7.6 Hz); ¹³C NMR (CDCl₃) δ 168.9, 160.0, 150.0, 137.6, 129.2, 128.4, 128.1, 127.5, 127.4, 113.3, 112.7, 95.9, 79.4, 55.3, 30.5, 22.0, 20.8, 19.5, 13.6; IR (CHCl₃, cm⁻¹) 2961, 1936, 1757, 1608, 1511, 1465, 1444, 1370, 1306, 1294, 1252, 1237, 1195, 1178, 1150, 1062, 1033, 1011, 834, 809; MS (EI) m/z = 348 (M⁺); HRMS (EI) m/z calcd for C₂₃H₂₄O₃ 348.1725, found 348.1725.

(E)-1-(4-((Ethoxycarbonyl)amino)phenyl)-2-(p-tolylethynyl)hex-1-en-1-yl Acetate (**2h**). Orange oil: ¹H NMR (CDCl₃) δ 7.78 (2H, d, J = 8.9 Hz), 7.37 (2H, d, J = 8.2 Hz), 7.26 (2H, d, J = 7.6 Hz), 7.11 (2H, d, J = 7.6 Hz), 6.65 (1H, br s), 4.23 (2H, q, J = 7.1 Hz), 2.34 (3H, s), 2.29 (2H, t, J = 7.9 Hz), 2.24 (3H, s), 1.65–1.61 (2H, m), 1.41–1.40 (2H, m), 1.31 (3H, t, J = 6.9 Hz), 0.95 (3H, t, J = 7.2 Hz); ¹³C NMR (CDCl₃) δ 168.7, 153.3, 149.7, 138.2, 138.2, 131.1, 129.9, 129.0, 128.3, 120.4, 117.6, 113.0, 94.6, 87.5, 61.3, 31.1, 30.0, 22.3, 21.4, 20.7, 14.5, 13.9; IR (CHCl₃, cm⁻¹) 2961, 2932, 1734, 1611, 1586, 1521, 1508, 1410, 1370, 1256, 1237, 1195, 1183, 1097, 1066, 1016, 892, 818; MS (EI) *m*/*z* = 419 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₆H₂₉NO₄ 419.2097, found 419.2106.

(E)-1-(4-Acetamidophenyl)-2-(p-tolylethynyl)hex-1-en-1-yl Acetate (2i). Orange solid: ¹H NMR (CDCl₃) δ 7.77 (2H, d, *J* = 8.2 Hz), 7.47–7.45 (3H, m), 7.26 (2H, d, *J* = 7.6 Hz), 7.10 (2H, d, *J* = 8.2 Hz), 2.34 (3H, s), 2.29 (2H, t, *J* = 7.6 Hz), 2.25 (3H, s), 2.15 (3H, s), 1.64–1.63 (2H, m), 1.41–1.40 (2H, m), 0.95 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 168.9, 168.3, 149.6, 138.4, 138.1, 131.2, 130.7, 129.1, 128.2, 120.3, 118.8, 113.2, 94.7, 87.4, 31.1, 30.1, 24.6, 22.4, 21.5, 20.8, 14.0; IR (CHCl₃, cm⁻¹) 3435, 2961, 2931, 2862, 1755, 1691, 1608, 1588, 1518, 1515, 1507, 1405, 1370, 1315, 1299, 1239, 1194, 1182, 1099, 1055, 1017, 1003, 893; MS (EI) *m*/*z* = 389 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₅H₂₇NO₃ 389.1991, found 389.1997.

(E)-1-(p-Tolyl)-2-(p-tolylethynyl)hex-1-en-1-yl Acetate (2j). Yellow oil: ¹H NMR (CDCl₃) δ 7.72 (2H, d, *J* = 8.2 Hz), 7.27 (2H, d, *J* = 7.6 Hz), 7.17 (2H, d, *J* = 8.2 Hz), 7.11 (2H, d, *J* = 7.6 Hz), 2.35 (3H, s), 2.34 (3H, s), 2.30 (2H, t, *J* = 7.6 Hz), 2.24 (3H, s), 1.65–1.63 (2H, m), 1.42–1.40 (2H, m), 0.95 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 168.7, 150.3, 138.6, 138.2, 132.2, 131.2, 129.1, 128.6, 127.4, 120.5, 113.1, 94.4, 87.6, 31.1, 30.1, 22.4, 21.5, 21.4, 20.8, 14.0; IR (CHCl₃, cm⁻¹) 2961, 2929, 2863, 1757, 1539, 1507, 1370, 1236, 1195, 1184, 1099, 1055, 893, 810; MS (EI) *m*/*z* = 346 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₄H₂₆O₂ 346.1933, found 346.1940.

General Procedure of the Synthesis of Multisubstituted Furans from (Z)- or (E)-Enynyl Acetates. To a solution of (Z)enynyl acetates 1 or (E)-enynyl acetates 2 (0.1 mmol) in 1,2dichloroethane (0.25 mL) and MeCN (0.25 mL) was added NXS (0.12 mmol), and the mixture was stirred at room temperature. After the completion of the reaction was confirmed by TLC, 10% Na₂S₂O₃ aqueous solution was added for quenching. The aqueous layer was extracted with AcOEt (two times). The combined organic layers were dried over Na₂SO₄ and concentrated. The crude product was purified by column chromatography to give 3.

3-lodo-5-(4-methoxyphenyl)-4-phenyl-2-(p-tolyl)furan (**3a**). White needle: mp 99–100 °C; ¹H NMR (CDCl₃) δ 7.99 (2H, d, *J* = 8.2 Hz), 7.46–7.43 (3H, m), 7.36–7.35 (4H, m), 7.27 (2H, d, *J* = 8.2 Hz), 6.78 (2H, d, *J* = 8.9 Hz), 3.76 (3H, s), 2.40 (3H, s); ¹³C NMR (CDCl₃) δ 159.1, 150.2, 148.3, 138.1, 134.2, 130.6, 129.1, 128.6, 128.0, 127.6, 127.0, 126.4, 126.2, 123.0, 113.8, 70.3, 55.2, 21.4; IR (CHCl₃, cm⁻¹) 2937, 1612, 1571, 1513, 1497, 1487, 1464, 1444, 1375, 1301, 1252, 1179, 1106, 1068, 1034, 942, 835; MS (EI) *m*/*z* = 466 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₄H₁₉IO₂ 466.0430, found 466.0432.

3-Bromo-5-(4-methoxyphenyl)-4-phenyl-2-(p-tolyl)furan (**3b**). Colorless oil: ¹H NMR (CDCl₃) δ 7.97 (2H, d, *J* = 8.2 Hz), 7.44–7.40 (7H, m), 7.27 (2H, d, *J* = 8.2 Hz), 6.79 (2H, d, *J* = 8.9 Hz), 3.78 (3H, s), 2.40 (3H, s); ¹³C NMR (CDCl₃) δ 159.2, 147.8, 147.3, 137.9, 132.4, 130.5, 129.2, 128.7, 127.9, 127.1, 127.1, 125.6, 123.4, 123.0, 113.9, 100.3, 55.2, 21.4; IR (CHCl₃, cm⁻¹) 2938, 2839, 1611, 1513, 1501, 1488, 1464, 1444, 1420, 1379, 1301, 1254, 1178, 1110, 1073, 1034, 969, 943, 835, 809; MS (EI) *m*/*z* = 418 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₄H₁₉BrO₂ 418.0568, found 418.0562.

3-lodo-5-(4-methoxyphenyl)-2,4-diphenylfuran (*3c*). White needle: mp 127–128 °C; ¹H NMR (CDCl₃) δ 8.11 (2H, d, *J* = 7.6 Hz), 7.47–7.43 (5H, m), 7.37–7.35 (5H, m), 6.78 (2H, d, *J* = 8.9 Hz), 3.77 (3H, s); ¹³C NMR (CDCl₃) δ 159.2, 149.9, 148.6, 134.1, 130.7, 130.4, 128.7, 128.4, 128.1, 128.0, 127.1, 126.4, 126.4, 122.9, 113.9, 71.0, 55.2; IR (CHCl₃, cm⁻¹) 1611, 1570, 1512, 1489, 1464, 1445, 1376, 1301, 1253, 1179, 1112, 1065, 1030, 963, 942, 835; MS (EI) *m*/*z* = 452 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₃H₁₇IO₂ 452.0273, found 452.0272.

2-Cyclohexyl-3-iodo-5-(4-methoxyphenyl)-4-phenylfuran (**3d**). White needle: mp 122–124 °C; ¹H NMR (CDCl₃) δ 7.43–7.26 (7H, m), 6.76 (2H, d, *J* = 8.9 Hz), 3.77 (3H, s), 2.88–2.84 (1H, m), 1.90 (4H, dt, *J* = 36.7, 6.9 Hz), 1.76–1.65 (3H, m), 1.44–1.30 (3H, m); ¹³C NMR (CDCl₃) δ 158.7, 158.2, 147.4, 134.1, 130.4, 128.5, 127.6, 126.8, 123.5, 123.5, 113.7, 69.5, 55.2, 37.8, 31.1, 26.2, 25.9; IR (CHCl₃, cm⁻¹) 2935, 2856, 1616, 1512, 1489, 1451, 1444, 1300, 1252, 1236, 1198, 1179, 1034, 988, 953, 835; MS (EI) *m*/*z* = 458 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₃H₂₃IO₂ 458.0743, found 458.0748.

2-Butyl-3-iodo-5-(4-methoxyphenyl)-4-phenylfuran (**3e**). Colorless oil: ¹H NMR (CDCl₃) δ 7.42–7.35 (3H, m), 7.31–7.29 (4H, m), 6.76 (2H, d, *J* = 8.9 Hz), 3.76 (3H, s), 2.79 (2H, t, *J* = 7.6 Hz), 1.74–1.71 (2H, m), 1.46–1.44 (2H, m), 0.98 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 158.8, 155.1, 147.8, 134.2, 130.4, 128.5, 127.6, 126.8, 123.7, 123.5, 113.8, 71.2, 55.2, 30.3, 27.7, 22.3, 13.9; IR (CHCl₃, cm⁻¹) 2960, 2934, 1610, 1512, 1488, 1466, 1443, 1299, 1252, 1179, 1034, 835; MS (EI) *m*/*z* calcd for C₂₁H₂₁IO₂ 432.0586, found 432.0583.

3-lodo-4,5-bis(4-methoxyphenyl)-2-phenylfuran (**3f**). White needle: mp 99–100 °C; ¹H NMR (CDCl₃) δ 8.11 (2H, d, *J* = 7.6 Hz), 7.46 (2H, t, *J* = 7.9 Hz), 7.38–7.36 (3H, m), 7.27 (2H, d, *J* = 8.9 Hz), 6.99 (2H, d, *J* = 8.9 Hz), 6.79 (2H, d, *J* = 8.9 Hz), 3.88 (3H, s), 3.77 (3H, s); ¹³C NMR (CDCl₃) δ 159.4, 159.1, 149.7, 148.6, 131.8, 130.5, 128.4, 128.1, 127.0, 126.4, 126.2, 126.1, 123.1, 114.2, 113.9, 71.8, 55.2; IR (CHCl₃, cm⁻¹) 2961, 2839, 1612, 1518, 1499, 1465, 1443, 1300, 1289, 1251, 1178, 1032, 942, 835; MS (EI) *m*/*z* = 482 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₄H₁₉IO₃ 482.0379, found 482.0386.

3-Bromo-5-(4-methoxyphenyl)-2-phenyl-4-(p-tolyl)furan (**3***g*). White solid: ¹H NMR (CDCl₃) δ 8.09 (2H, d, *J* = 6.9 Hz), 7.46– 7.41 (4H, m), 7.33 (1H, t, *J* = 7.2 Hz), 7.29–7.25 (4H, m), 6.80 (2H, d, *J* = 8.9 Hz), 3.77 (3H, s), 2.42 (3H, s); ¹³C NMR (CDCl₃) δ 159.2, 148.0, 146.8, 137.7, 131.6, 130.3, 129.5, 129.5, 129.2, 128.5, 127.8, 127.1, 125.6, 123.0, 113.9, 101.2, 55.2, 21.4; IR (CHCl₃, cm⁻¹) 2961, 2935, 2839, 1608, 1520, 1499, 1465, 1379, 1301, 1254, 1238, 1197, 1179, 1114, 1068, 1032, 942; MS (EI) $m/z = 418 \text{ (M}^+\text{)}$; HRMS (EI) m/z calcd for C₂₄H₁₉BrO₂ 418.0568, found 418.0559.

3-lodo-5-(4-methoxyphenyl)-2-phenyl-4-(p-tolyl)furan (**3**h). White needle: mp 117–119 °C; ¹H NMR (CDCl₃) δ 8.11 (2H, d, J = 8.2 Hz), 7.45 (2H, t, J = 7.6 Hz), 7.40–7.34 (3H, m), 7.26–7.25 (4H, m), 6.79 (2H, t, J = 5.8 Hz), 3.77 (3H, s), 2.43 (3H, s); ¹³C NMR (CDCl₃) δ 159.1, 149.8, 148.6, 137.8, 131.0, 130.5, 129.5, 128.4, 128.1, 127.0, 126.4, 126.4, 123.1, 113.9, 71.4, 55.2, 21.4; IR (CHCl₃, cm⁻¹) 1613, 1604, 1519, 1499, 1482, 1301, 1253, 1179, 1032, 941, 835; MS (EI) m/z = 466 (M⁺); HRMS (EI) m/z calcd for C₂₄H₁₉IO₂ 466.0430, found 466.0429.

3-(4-Fluorophenyl)-4-iodo-2-(4-methoxyphenyl)-5-phenylfuran (**3***i*). White solid: mp 137–139 °C; ¹H NMR (CDCl₃) δ 8.10 (2H, d, J = 7.6 Hz), 7.47 (2H, t, J = 7.9 Hz), 7.38–7.32 (5H, m), 7.16 (2H, t, J = 8.6 Hz), 6.80 (2H, d, J = 8.9 Hz), 3.79 (3H, s); ¹³C NMR (CDCl₃) δ 163.4, 161.8, 159.3, 150.1, 148.8, 132.5, 132.4, 130.3, 130.0, 130.0, 128.4, 128.2, 127.1, 126.4, 125.4, 122.7, 115.9, 115.7, 114.0, 71.0, 55.3; IR (CHCl₃, cm⁻¹) 1606, 1517, 1498, 1301, 1254, 1236, 1197, 1179, 1157, 1065, 1031, 943, 841, 810; MS (EI) *m*/*z* = 470 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₃H₁₆FIO₂ 470.0179, found 470.0183.

Ethyl (4-(4-lodo-3-phenyl-5-(p-tolyl)furan-2-yl)phenyl)carbamate (**3***j*). Pale yellow solid: mp 180–181 °C; ¹H NMR (CDCl₃) δ 8.00 (2H, d, *J* = 8.2 Hz), 7.46–7.44 (3H, m), 7.36 (4H, t, *J* = 7.9 Hz), 7.28–7.26 (4H, m), 6.54 (1H, br s), 4.21 (2H, q, *J* = 7.1 Hz), 2.41 (3H, s), 1.30 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 153.4, 150.5, 148.0, 138.3, 137.3, 134.0, 130.6, 129.1, 128.7, 128.1, 127.6, 127.0, 126.5, 126.3, 125.3, 118.3, 70.4, 61.3, 21.4, 14.5; IR (CHCl₃, cm⁻¹) 3434, 1733, 1614, 1593, 1584, 1518, 1498, 1413, 1236, 1197, 1098, 1061, 942, 821; MS (EI) *m*/*z* = 523 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₆H₂₂INO₃ 523.0644, found 523.0647.

N-(4-(4-*I*odo-3-*phenyI*-5-(*p*-tolyI)*furan*-2-yI)*phenyI*)*acetamide* (**3***k*). Colorless needle: mp 236–239 °C; ¹H NMR (CDCl₃) δ 8.00 (2H, d, *J* = 8.2 Hz), 7.48–7.34 (9H, m), 7.28 (2H, d, *J* = 8.2 Hz), 7.18 (1H, br s), 2.41 (3H, s), 2.16 (3H, s); ¹³C NMR (CDCl₃) δ 168.2, 150.6, 147.8, 138.3, 137.2, 134.0, 130.6, 129.1, 128.8, 128.1, 127.5, 127.3, 126.5, 126.2, 119.5, 70.5, 24.7, 21.4; IR (CHCl₃, cm⁻¹) 3435, 2926, 1691, 1603, 1517, 1497, 1407, 1370, 1315, 942, 822, 812; MS (EI) *m*/*z* = 493 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₅H₂₀INO₂ 493.0539, found 493.0538.

N-Acetyl-*N*-(4-(4-iodo-3-phenyl-5-(p-tolyl)furan-2-yl)phenyl)acetamide (**3**k'). Pale yellow oil: ¹H NMR (CDCl₃) δ 8.01 (2H, d, *J* = 8.2 Hz), 7.54–7.47 (5H, m), 7.37 (2H, d, *J* = 6.2 Hz), 7.29 (2H, d, *J* = 8.2 Hz), 7.01 (2H, d, *J* = 8.9 Hz), 2.42 (3H, s), 2.27 (6H, s); ¹³C NMR (CDCl₃) δ 172.9, 151.3, 146.9, 138.7, 138.2, 133.8, 130.7, 130.4, 129.2, 129.1, 128.9, 128.8, 128.4, 127.3, 126.6, 126.4, 70.9, 26.9, 21.4; IR (CHCl₃, cm⁻¹) 2925, 1712, 1607, 1511, 1497, 1445, 1417, 1370, 1293, 1245, 1108, 1068, 1028, 1015, 942, 822; MS (EI) *m*/*z* = 535 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₇H₂₂INO₃ 535.0644, found 535.0641.

3-Butyl-4-iodo-2-(4-methoxyphenyl)-5-phenylfuran (*31*). White needle: mp 36–38 °C; ¹H NMR (CDCl₃) δ 8.05 (2H, d, *J* = 6.9 Hz), 7.59 (2H, d, *J* = 8.9 Hz), 7.43 (2H, t, *J* = 7.6 Hz), 7.32 (1H, t, *J* = 7.2 Hz), 6.97 (2H, d, *J* = 8.9 Hz), 3.84 (3H, s), 2.62 (2H, t, *J* = 8.2 Hz), 1.63–1.60 (2H, m), 1.50–1.45 (2H, m), 0.98 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 159.0, 149.5, 148.2, 130.5, 128.3, 127.8, 127.1, 126.2, 124.6, 123.8, 114.1, 71.3, 55.3, 31.8, 26.8, 22.8, 13.9; IR (CHCl₃, cm⁻¹) 2960, 2934, 1615, 1605, 1506, 1483, 1465, 1292, 1253, 1236, 1198, 1178, 1040, 946, 834; MS (EI) *m*/*z* = 432 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₁H₂₁IO₂ 432.0586, found 432.0585.

3-Bromo-4-butyl-5-(4-methoxyphenyl)-2-phenylfuran (**3***m*). Pale yellow needle: mp 36 °C; ¹H NMR (CDCl₃) δ 8.04 (2H, d, J = 8.2 Hz), 7.61 (2H, d, J = 8.9 Hz), 7.43 (2H, t, J = 7.9 Hz), 7.31 (1H, t, J = 7.6 Hz), 6.98 (2H, d, J = 8.9 Hz), 3.86 (3H, s), 2.66 (2H, t, J = 7.9 Hz), 1.65–1.61 (2H, m), 1.47–1.46 (2H, m), 0.98 (3H, t, J = 7.2 Hz); ¹³C NMR (CDCl₃) δ 159.1, 147.7, 146.4, 130.1, 128.4, 127.6, 127.0, 125.4, 123.8, 122.4, 114.1, 101.8, 55.3, 31.6, 24.7, 22.8, 13.9; IR (CHCl₃, cm⁻¹) 2961, 2933, 2862, 1604, 1506, 1486, 1465, 1457, 1443, 1293, 1252, 1237, 1178, 1045, 1027, 950, 834; MS (EI) *m*/*z* = 384 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₁H₂₁BrO₂ 384.0725, found 384.0717.

3-Butyl-4-iodo-2,5-bis(4-methoxyphenyl)furan (**3***n*). White needle: mp 64–66 °C; ¹H NMR (CDCl₃) δ 7.97 (2H, d, *J* = 8.9 Hz), 7.58 (2H, d, *J* = 8.9 Hz), 6.97 (4H, dd, *J* = 8.6, 1.7 Hz), 3.85 (6H, s), 2.61 (2H, t, *J* = 8.2 Hz), 1.62–1.61 (2H, m), 1.48–1.46 (2H, m), 0.98 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 159.3, 158.9, 149.7, 147.6, 127.8, 127.0, 124.3, 123.9, 123.4, 114.1, 113.7, 69.8, 55.3, 31.8, 26.8, 22.8, 13.9; IR (CHCl₃, cm⁻¹) 2960, 2935, 1615, 1507, 1495, 1465, 1442, 1305, 1294, 1251, 1178, 1099, 1038, 946, 834; MS (EI) *m*/*z* = 462 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₂H₂₃IO₃ 462.0692, found 462.0687.

3-Butyl-4-iodo-2-(4-methoxyphenyl)-5-(p-tolyl)furan (**3***o*). White needle: mp 49–50 °C; ¹H NMR (CDCl₃) δ 7.93 (2H, d, *J* = 8.2 Hz), 7.58 (2H, d, *J* = 8.9 Hz), 7.23 (2H, d, *J* = 8.9 Hz), 6.96 (2H, d, *J* = 8.9 Hz), 3.84 (3H, s), 2.61 (2H, dd, *J* = 9.3, 7.2 Hz), 2.38 (3H, s), 1.63–1.60 (2H, m), 1.48–1.46 (2H, m), 0.98 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 159.0, 149.8, 147.8, 137.8, 129.0, 127.8, 127.0, 126.2, 124.4, 123.9, 114.1, 70.6, 55.3, 31.8, 26.8, 22.8, 21.3, 13.9; IR (CHCl₃, cm⁻¹) 2960, 2934, 1616, 1507, 1494, 1465, 1457, 1443, 1292, 1252, 1237, 1197, 1178, 1098, 1040, 946, 834, 821; MS (EI) *m/z* = 446 (M⁺); HRMS (EI) *m/z* calcd for C₂₂H₂₃IO₂ 446.0743, found 446.0743.

3-Butyl-5-(4-fluorophenyl)-4-iodo-2-(4-methoxyphenyl)furan (**3p**). Colorless needle: mp 51–52 °C; ¹H NMR (CDCl₃) δ 8.02 (2H, dd, *J* = 4.8, 2.4 Hz), 7.58 (2H, d, *J* = 8.9 Hz), 7.12 (2H, t, *J* = 8.6 Hz), 6.98 (2H, d, *J* = 8.2 Hz), 3.86 (3H, s), 2.61 (2H, t, *J* = 8.2 Hz), 1.62–1.60 (2H, m), 1.50–1.45 (2H, m), 0.98 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 163.1, 161.5, 159.1, 148.8, 148.2, 128.2, 128.1, 127.1, 126.9, 126.8, 124.5, 123.7, 115.4, 115.3, 114.1, 71.1, 55.3, 31.8, 26.8, 22.8, 13.9; IR (CHCl₃, cm⁻¹) 2960, 1615, 1597, 1506, 1493, 1466, 1291, 1253, 1238, 1178, 1159, 1094, 1040, 946, 838; MS (EI) *m*/*z* = 450 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₁H₂₀FIO₂ 450.0492, found 450.0494.

2,4-Dibutyl-3-iodo-5-(4-methoxyphenyl)furan (**3q**). Colorless oil: ¹H NMR (CDCl₃) δ 7.48 (2H, d, *J* = 8.9 Hz), 6.94 (2H, d, *J* = 8.9 Hz), 3.83 (3H, s), 2.70 (2H, t, *J* = 7.6 Hz), 2.52 (2H, t, *J* = 8.2 Hz), 1.67– 1.64 (2H, m), 1.57–1.55 (2H, m), 1.43–1.39 (4H, m), 0.96 (3H, t, *J* = 7.6 Hz), 0.94 (3H, t, *J* = 7.6 Hz); ¹³C NMR (CDCl₃) δ 158.6, 154.6, 147.2, 126.7, 124.3, 122.2, 114.0, 71.7, 55.3, 31.9, 30.2, 27.6, 26.6, 22.7, 22.2, 13.9, 13.8; IR (CHCl₃, cm⁻¹) 2960, 2933, 2874, 2862, 1616, 1601, 1576, 1559, 1506, 1466, 1457, 1443, 1292, 1250, 1178, 1041, 1017, 834; MS (EI) *m*/*z* = 412 (M⁺); HRMS (EI) *m*/*z* calcd for C₁₉H₂₅IO₂ 412.0899, found 412.0894.

3-Cyclohexyl-4-iodo-2-(4-methoxyphenyl)-5-(p-tolyl)furan (**3r**). White viscous oil: ¹H NMR (CDCl₃) δ 7.86 (2H, d, *J* = 8.2 Hz), 7.45 (2H, d, *J* = 8.9 Hz), 7.21 (2H, d, *J* = 8.2 Hz), 6.96 (2H, d, *J* = 8.9 Hz), 3.85 (3H, s), 2.80–2.78 (1H, m), 2.37 (3H, s), 1.95–1.75 (7H, m), 1.37–1.24 (3H, m); ¹³C NMR (CDCl₃) δ 159.53, 150.90, 148.91, 137.89, 129.83, 128.89, 127.89, 127.49, 126.93, 124.09, 113.77, 66.54, 55.31, 37.30, 31.34, 26.92, 25.97, 21.33; IR (CHCl₃, cm⁻¹) 2931, 1615, 1506, 1494, 1465, 1450, 1294, 1251, 1176, 1045, 1029, 939, 836; MS (EI) *m*/*z* calcd for C₂₄H₂₅IO₂ 472.0899, found 472.0901.

Ethyl (4-(3-Butyl-4-iodo-5-(p-tolyl)furan-2-yl)phenyl)carbamate (**3s**). White needle: mp 135–137 °C; ¹H NMR (CDCl₃) δ 7.93 (2H, d, J = 8.2 Hz), 7.61 (2H, d, J = 8.9 Hz), 7.45 (2H, d, J = 8.2 Hz), 7.24 (2H, d, J = 8.2 Hz), 6.63 (1H, br s), 4.25 (2H, q, J = 7.1 Hz), 2.64–2.63 (2H, m), 2.39 (3H, s), 1.63–1.60 (2H, m), 1.48–1.47 (2H, m), 1.33 (3H, t, J = 7.2 Hz), 0.98 (3H, t, J = 7.2 Hz); ¹³C NMR (CDCl₃) δ 153.5, 150.1, 147.5, 138.0, 137.2, 129.0, 127.7, 126.3, 126.3, 125.3, 118.7, 70.8, 61.4, 31.7, 26.9, 22.8, 21.4, 14.6, 13.9; IR (CHCl₃, cm⁻¹) 3435, 2961, 2933, 1733, 1585, 1522, 1411, 1316, 1258, 1185, 1098, 1066, 946, 839; MS (EI) m/z = 503 (M⁺); HRMS (EI) m/z calcd for C₂₄H₂₆INO₃ 503.0957, found 503.0950.

N-(4-(3-Butyl-4-iodo-5-(p-tolyl)furan-2-yl)phenyl)acetamide (**3t**). Pale yellow solid: mp 168–170 °C; ¹H NMR (CDCl₃) δ 7.93 (2H, d, *J* = 8.2 Hz), 7.61 (2H, d, *J* = 8.9 Hz), 7.58 (2H, d, *J* = 8.9 Hz), 7.37 (1H, br s), 7.25 (2H, t, *J* = 7.6 Hz), 2.63 (2H, t, *J* = 8.2 Hz), 2.39 (3H, s), 2.20 (3H, s), 1.64–1.58 (2H, m), 1.50–1.45 (2H, m), 0.98 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 168.3, 150.2, 147.3, 138.0, 137.0, 129.0, 127.6, 127.1, 126.3, 126.1, 125.5, 119.8, 70.9, 31.7, 26.9, 24.7, 22.8, 21.4, 13.9; IR (CHCl₃, cm⁻¹) 3435, 2961, 2932, 1690, 1599, 1586, 1517, 1509, 1405, 1370, 1314, 1237, 1197, 946 809; MS (EI) m/z = 473 (M⁺); HRMS (EI) m/z calcd for C₂₃H₂₄INO₂ 473.0852, found 473.0855.

N-Acetyl-*N*-(4-(3-butyl-4-iodo-5-(p-tolyl)furan-2-yl)phenyl)acetamide (**3t**'). White solid: mp 104–106 °C; ¹H NMR (CDCl₃) δ 7.95 (2H, d, *J* = 8.2 Hz), 7.76 (2H, d, *J* = 8.9 Hz), 7.26 (2H, d, *J* = 8.2 Hz), 7.21 (2H, d, *J* = 8.2 Hz), 2.68 (2H, t, *J* = 8.2 Hz), 2.40 (3H, s), 2.33 (6H, s), 1.66–1.63 (2H, m), 1.51–1.50 (2H, m), 1.01 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 173.0, 151.0, 146.5, 138.4, 138.0, 131.5, 129.1, 129.0, 127.4, 127.2, 126.5, 126.4, 71.0, 31.6, 27.0, 22.8, 21.4, 13.9; IR (CHCl₃, cm⁻¹) 2961, 2933, 1713, 1506, 1370, 1292, 1238, 1197, 1035, 1014, 946, 821; MS (EI) *m*/*z* = 515 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₅H₂₆INO₃ 515.0957, found 515.0956.

3-Butyl-4-iodo-2,5-di-p-tolylfuran (*3u*). White needle: mp 49–50 °C; ¹H NMR (CDCl₃) δ 7.94 (2H, d, *J* = 8.2 Hz), 7.56 (2H, d, *J* = 8.2 Hz), 7.24 (4H, d, *J* = 7.6 Hz), 2.64 (2H, t, *J* = 8.2 Hz), 2.39 (6H, s), 1.63–1.61 (2H, m), 1.48–1.47 (2H, m), 0.99 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 150.0, 147.9, 137.9, 137.3, 129.3, 129.0, 128.3, 127.8, 126.3, 125.5, 125.2, 70.8, 31.7, 26.9, 22.8, 21.4, 21.3, 13.9; IR (CHCl₃, cm⁻¹) 2960, 2928, 2862, 1507, 1493, 1467, 1457, 1100, 946, 822; MS (EI) *m*/*z* calcd for C₂₂H₂₃IO 430.0794, found 430.0791.

Allenylketone **4a**. Orange oil: ¹H NMR (CDCl₃) δ 8.01 (2H, d, *J* = 8.9 Hz), 7.47 (2H, d, *J* = 8.2 Hz), 7.38 (2H, t, *J* = 7.6 Hz), 7.32 (1H, d, *J* = 7.6 Hz), 6.97 (2H, d, *J* = 8.9 Hz), 3.90 (3H, s), 2.47–2.43 (2H, m), 1.46–1.45 (2H, m), 1.23–1.21 (2H, m), 0.83 (3H, t, *J* = 7.6 Hz); ¹³C NMR (CDCl₃) δ 202.2, 190.4, 163.9, 132.1, 132.0, 130.5, 128.8, 128.3, 128.0, 113.8, 108.0, 68.8, 55.5, 40.0, 31.1, 21.4, 13.6; IR (CHCl₃, cm⁻¹) 2961, 2935, 2874, 2862, 1652, 1601, 1575, 1509, 1465, 1314, 1260, 1167, 1031, 857, 842; MS (EI) *m*/*z* = 432 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₁H₂₁IO₂ 432.0586, found 432.0587.

Allenylketone **4b**. Orange oil: ¹H NMR (CDCl₃) δ 7.86 (2H, d, J = 8.2 Hz), 6.93 (2H, d, J = 8.9 Hz), 3.88 (3H, s), 2.46–2.43 (2H, m), 2.30 (2H, t, J = 7.2 Hz), 1.53–1.33 (6H, m), 1.12–1.10 (2H, m), 0.95 (3H, t, J = 7.2 Hz), 0.77 (3H, t, J = 7.2 Hz); ¹³C NMR (CDCl₃) δ 206.3, 192.2, 163.0, 131.2, 130.9, 113.4, 107.5, 66.9, 55.4, 39.5, 31.0, 29.6, 28.1, 22.4, 21.1, 13.9, 13.6; IR (CHCl₃, cm⁻¹) 2961, 2933, 2874, 1643, 1602, 1509, 1466, 1312, 1257, 1032, 843; MS (EI) *m*/*z* = (M⁺); HRMS (EI) *m*/*z* calcd for C₁₉H₂₅IO₂ 412.0899, found 412.0899.

Sonogashira Coupling Reaction of 3-lodofuran 3 with Terminal Alkynes. To a solution of 3-iodofuran 3 (0.1 mmol) in Et_3N (1 mL) were added $PdCl_2(PPh_3)_2$ (7 mg, 0.01 mmol), CuI (1.9 mg, 0.01 mmol), and alkyne (0.3 mmol), and the mixture was stirred at 50 °C under nitrogen. The reaction was monitored by TLC to establish completion. Saturated aqueous NH_4Cl solution was added to the reaction mixture and extracted with AcOEt (three times). The combined organic solution was washed with brine, dried over anhydrous $MgSO_{44}$, and concentrated at the reduced pressure. Column chromatography on silica gel using hexane/ethyl acetate as an eluent afforded 5.

3-Butyl-4-(hex-1-yn-1-yl)-2-(4-methoxyphenyl)-5-phenylfuran (**5a**). Pale yellow oil: ¹H NMR (CDCl₃) δ 8.13 (2H, d, *J* = 7.6 Hz), 7.62 (2H, d, *J* = 8.2 Hz), 7.40 (2H, t, *J* = 7.9 Hz), 7.27 (1H, t, *J* = 6.9 Hz), 6.97 (2H, d, *J* = 8.2 Hz), 3.85 (3H, s), 2.69 (2H, t, *J* = 7.9 Hz), 2.55 (2H, t, *J* = 6.9 Hz), 1.67–1.66 (4H, m), 1.56–1.55 (2H, m), 1.46–1.44 (2H, m), 0.98 (3H, t, *J* = 7.2 Hz), 0.97 (3H, t, *J* = 7.6 Hz); ¹³C NMR (CDCl₃) δ 158.8, 151.4, 147.1, 130.8, 128.4, 127.3, 127.0, 124.3, 124.1, 124.0, 114.1, 107.4, 97.3, 73.1, 55.3, 31.8, 30.9, 24.5, 22.8, 22.0, 19.5, 14.0, 13.6; IR (CHCl₃, cm⁻¹) 2960, 2934, 2873, 2862, 1605, 1572, 1507, 1465, 1443, 1294, 1250, 1177, 1035, 834; MS (EI) *m*/*z* = 386 (M⁺); HRMS (EI) *m*/*z* calcd for C₂₇H₃₀O₂ 386.2246, found 386.2252.

3-Butyl-2-(4-methoxyphenyl)-5-phenyl-4-(phenylethynyl)furan (**5b**). Pale yellow needle: mp 63–65 °C; ¹H NMR (CDCl₃) δ 8.18 (2H, d, *J* = 8.2 Hz), 7.65 (2H, d, *J* = 7.6 Hz), 7.56 (2H, d, *J* = 6.9 Hz), 7.44 (2H, t, *J* = 7.2 Hz), 7.40–7.36 (3H, m), 7.30 (1H, t, *J* = 6.9 Hz), 6.99 (2H, d, *J* = 8.9 Hz), 3.86 (3H, s), 2.78 (2H, t, *J* = 7.6 Hz), 1.76–1.74 (2H, m), 1.50–1.49 (2H, m), 0.98 (3H, t, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 158.9, 152.2, 147.5, 131.3, 130.6, 128.5, 128.4, 128.1, 127.7, 127.1, 124.6, 123.9, 123.7, 112.7, 114.1, 106.7, 96.0, 82.5, 55.3, 31.8,

The Journal of Organic Chemistry

24.5, 22.8, 14.0; IR (CHCl₃, cm⁻¹) 2960, 2934, 2862, 1607, 1598, 1572, 1507, 1484, 1464, 1443, 1295, 1250, 1178, 1136, 1028, 967, 834; MS (EI) m/z = 406 (M⁺); HRMS (EI) m/z calcd for $C_{29}H_{26}O_2$ 406.1933, found 406.1924.

ASSOCIATED CONTENT

S Supporting Information

¹H and ¹³C NMR spectra of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: ryanada@ps.hirokoku-u.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by a Grant-in-Aid for Scientific Research from JSPS KAKENHI (23590032). N.O. is grateful to the Research Foundation by Hiroshima International University.

REFERENCES

(1) (a) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C. Tetrahedron 1998, 54, 1955–2020.
(b) König, B. F. In Hetarenes and Related Ring Systems: Science of Synthesis; Maas, G., Ed.; George Thieme Verlag: Stuttgart, 2001; Category 2, Vol. 9, pp 183–286.

(2) (a) Battistuzzi, G.; Cacchi, S.; Fabrizi, G. Eur. J. Org. Chem. 2002, 2671-2681. (b) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127-2198. (c) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285-2309. (d) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873-2920. (e) Yao, T.; Zhang, X.; Larock, R. C. J. Org. Chem. 2005, 70, 7679-7685. (f) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410-3449. (g) Xiao, Y.; Zhang, J. Angew. Chem., Int. Ed. 2008, 47, 1903-1906. (h) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395-3442. (i) Takaya, J.; Udagawa, S.; Kusama, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2008, 47, 4906-4909. (j) Yamamoto, Y.; Gridnev, I. D.; Patil, N. T.; Jin, T. Chem. Commun. 2009, 5075-5087. (3) (a) Arcadi, A.; Cacchi, S.; Giuseppe, S. D.; Fabrizi, G.; Marinelli, F. Org. Lett. 2002, 4, 2409-2412. (b) Barluenga, J.; Trincado, M.; Rubio, E.; González, J. M. Angew. Chem., Int. Ed. 2003, 42, 2406-2409. (c) Hessian, K. O.; Flynn, B. L. Org. Lett. 2003, 5, 4377-4380. (d) Yue, D.; Cà, N. D.; Larock, R. C. Org. Lett. 2004, 6, 1581-1584. (e) Sniady, A.; Wheeler, K. A.; Dembinski, R. Org. Lett. 2005, 7, 1769-1772. (f) Liu, Y.; Zhou, S. Org. Lett. 2005, 7, 4609-4611. (g) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 10292-10296. (h) Alves, D.; Luchese, C.; Nogueira, C. W.; Zeni, G. J. Org. Chem. 2007, 72, 6726-6734. (i) Xie, Y.-X.; Liu, X.-Y.; Wu, L.-Y.; Han, Y.; Zhao, L.-B.; Fan, M.-J.; Liang, Y.-M. Eur. J. Org. Chem. 2008, 1013-1018. (j) Arimitsu, S.; Jacobsen, J. M.; Hammond, G. B. J. Org. Chem. 2008, 73, 2886-2889. (k) Mehta, S.; Waldo, J. P.; Larock, R. C. J. Org. Chem. 2009, 74, 1141-1147. (1) Mehta, S.; Larock, R. C. J. Org. Chem. 2010, 75, 1652-1658. (m) Godoi, B.; Schumacher, R. F.; Zeni, G. Chem. Rev. 2011, 111, 2937-2980.

(4) (a) Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. **2008**, 130, 15720–15725. (b) Huo, Z.; Gridnev, I. D.; Yamamoto, Y. J. Org. Chem. **2010**, 75, 1266–1270. (c) Schumacher, R. F.; Rosário, A. R.; Souza, A. C. G.; Menezes, P. H.; Zeni., G. Org. Lett. **2010**, 12, 1952–1955.

(5) (a) Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 10546–10547. (b) Fürstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024–15025. (c) Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 4473–4475. (d) Nakamura, I.; Yamagishi, U.; Song, D.; Konta, S.; Yamamoto, Y. Angew. Chem., Int. Ed. 2007, 46, 2284–2287. Article

(6) (a) Yanada, R.; Obika, S.; Kono, H.; Takemoto, Y. Angew. Chem., Int. Ed. 2006, 45, 3822–3825. (b) Obika, S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. J. Org. Chem. 2007, 72, 4462–4468.
(c) Okamoto, N.; Miwa, Y.; Minami, H.; Takeda, K.; Yanada, R. Angew. Chem., Int. Ed. 2009, 48, 9693–9696. (d) Okamoto, N.; Takeda, K.; Yanada, R. J. Org. Chem. 2010, 75, 7615–7625.

(7) Okamoto, N.; Miwa, Y.; Minami, H.; Takeda, K.; Yanada, R. J. Org. Chem. 2011, 76, 9133–9138.

(8) Chen, Z.; Huang, G.; Jiang, H.; Huang, H.; Pan, X. J. Org. Chem. 2011, 76, 1134–1139.

(9) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500-10501.

(10) (a) Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem. 2003, 68, 2861–2873. (b) Chinchilla, R.; Najera, C.; Yus, M. Chem. Rev. 2004, 104, 2667–2722. (c) Gao, F.; Lee, Y.; Mandai, K.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2010, 49, 8370–8374.