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Abstract: Arylzinc reagents, prepared from aryl halides/zinc
powder or aryl Grignard reagents/zinc chloride, were found to
undergo coupling with aryl and alkenyl halides without the aid
of transition-metal catalysis to give biaryls and styrene
derivatives, respectively. In this context, we have already
reported the corresponding reaction using aryl Grignard
reagents instead of arylzinc reagents. Compared with the
Grignard cross-coupling, the present reaction features high
functional-group tolerance, whereby electrophilic groups such
as alkoxycarbonyl and cyano groups are compatible as
substituents on both the arylzinc reagents and the aryl halides.
Aryl halides receive a single electron and thereby become
activated as the corresponding anion radicals, which react with
arylzinc reagents, thus leading to the cross-coupling products.

The cross-coupling reaction of arylmetals with aryl and
alkenyl halides under transition-metal catalysis is widely used
for the synthesis of biaryls and styrene derivatives.[1] The
Negishi coupling utilizes palladium complexes as catalysts
and arylzinc reagents as arylmetals that are compatible with
various electrophilic functional groups.[2] On the other hand,
we have recently reported the transition-metal-free coupling
of aryl Grignard reagents with aryl and alkenyl halides.[3–5]

Single-electron transfer (SET) from aryl Grignard reagents to
aryl and alkenyl halides makes the cross-coupling possible
without the aid of transition-metal catalysis. However, the use
of aryl Grignard reagents limits the scope of substrates to
those without electrophilic substituents that would react with
aryl Grignard reagents. Herein, we report that the coupling

reaction of arylzinc reagents with aryl and alkenyl halides
proceeds through a single-electron-transfer mechanism to
give biaryls and styrene derivatives with electrophilic sub-
stituents such as alkoxycarbonyl and cyano groups without
using any costly additives.

Phenylzinc iodide (1a) was prepared by mixing iodoben-
zene and zinc powder (2 equiv) in N,N,N’,N’-tetramethylurea
(TMU) at 110 8C for 16 h followed by five-fold dilution with
THF and filtration to remove the unreacted zinc.[6] The
reaction of 2-iodonaphthalene (2a) with the THF/TMU
solution of 1a (1.5 equiv) in toluene (toluene/THF/TMU =

5:4:1) at 110 8C was not completed (70% conv.) in 24 h, giving
2-phenylnaphthalene (3aa) in 52% yield in addition to
considerable amounts (10%) of naphthalene (4a) and 2,2’-
binaphthyl (5a ; Table 1, entry 1).[7] A longer reaction time
(48 h) was required for full conversion of 2a (Table 1,
entry 2). The addition of LiCl accelerated the reaction,
thereby allowing it to be completed in 24 h (Table 1,
entries 3–5). Considering the intensive investigation into this
issue by Koszinowski[8] , LiCl likely enhances the reactivity of
PhZnI by forming more nucleophilic lithium zincates such as
Li+[PhZnICl]� . A higher selectivity for 3aa was observed
when using a larger amount of LiCl, where 4 equiv was found
to be sufficient.[9]

The coupling reaction in the presence of 4 equiv of LiCl is
applicable to various arylzinc iodides and aryl halides

Table 1: Coupling of phenylzinc iodide with 2-iodonaphthalene.[a]

Entry Amount of Conv. of Yield [%][b]

LiCl (equiv) 2a [%][b] 3aa 4a 5a

1 0 70 52 7 3
2[c] 0 >99 82 9 8
3 1.5 >99 81 4 7
4 4 >99 95 (92)[d] 1 2
5 8 >99 91 2 2

[a] The reaction was carried out under a nitrogen atmosphere at 110 8C
for 24 h using a THF/TMU (4:1) solution of phenylzinc iodide (1a :
0.35m, 0.86 mL, 0.30 mmol) and 2-iodonaphthalene (2a : 0.20 mmol) in
the presence or absence of LiCl in toluene (0.86 mL). [b] Determined by
GC. [c] Reaction time = 48 h. [d] The yield of isolated product is given in
parentheses.
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(Table 2). Besides 2-iodonaphthalene (2 a), diverse aryl
iodides underwent the coupling reaction with phenylzinc
iodide (1a ; Table 2, entries 1–13).[10] The reaction of aryl
iodides with a substituent that would react with aryl Grignard
reagents gave the corresponding biphenyls (Table 2, entries 2
and 3). p-(Trifluoromethyl)phenyl iodide (2d) did not
undergo halogen–metal exchange with PhZnI (1a) in contrast
to the case with PhMgBr,[3a]but rather gave the coupling
product in a high yield (Table 2, entry 4). Chloro substitution
was also compatible (Table 2, entry 5). A methoxy-substi-
tuted phenyl iodide was more reactive than a methyl-sub-
stituted one, the conversion of which was only 85 % even after
48 h to give 1a in 71% yield (Table 2, entries 6 and 7). Ortho
substitution was tolerated (Table 2, entries 8 and 9). Hetero-
aryl iodides also participated in the coupling (Table 2,
entries 10–13). The reaction of aryl bromides gave the

coupling products in comparable yields (Table 2, entries 14–
16).[11] Ester functionality is also compatible on the phenylzinc
moiety (Table 2, entries 17–19). Phenylzinc reagents with an
electron-withdrawing or -donating group underwent coupling
with aryl iodides (Table 2, entries 20–24). Finally, the coupling
is applicable to heteroarylzinc reagents (Table 2, entries 25
and 26).

In addition to aryl halides, alkenyl iodides can be used as
sp2-carbon electrophiles to give styrene derivatives upon
reaction with arylzinc reagents (Table 3).[4] (E)- and (Z)-1-
octenyl iodides (6a) underwent coupling with phenylzinc
iodide (1a), thereby giving the corresponding coupling

products with retention of stereochemsitry (Table 3, entries 1
and 2). (E)-Styryl iodide (6 b) also participated in the coupling
(Table 3, entry 3). b-Iodoacrylate 6c, which has a low-lying
LUMO, showed high reactivity and underwent coupling with
1a even at 80 8C to give cinnamate 7ac (Table 3, entry 4).
Ethoxycarbonyl and methoxy groups were compatible as
substituents on the arylzinc reagents (Table 3, entries 5 and
6).

Arylzinc reagents are also readily available through
transmetalation of aryl Grignard reagents with zinc salts. As
shown in Scheme 1, a phenylzinc reagent prepared from
PhMgBr and ZnCl2

[12] underwent coupling with 2-iodonaph-
thalene (2a) under the conditions employed in Table 2
(toluene/THF/TMU = 5:4:1, 110 8C, 24 h) but the reaction
did not reach completion (36 % yield/47% conv.).[13] The use
of diglyme as a cosolvent instead of toluene enhanced the
reaction rate, thus resulting in the production of 3 aa in 93%
yield (> 99% conv. of 2a).[14] Other aryl iodides including
those with an ester moiety underwent coupling to give 3ab
and 3ag.[15] Phenylzinc reagents with an electron-donating or
-withdrawing group at the para position and an o-tolylzinc
reagent participated in the coupling. An indolylzinc reagent
prepared from the corresponding organolithium underwent
coupling. Styrene derivatives 7aa and 7 ac were obtained
through coupling with alkenyl iodides.

Table 3: Coupling of arylzinc iodides with alkenyl iodides.[a]

Entry Ar1 in Ar1–ZnI (1) Alkenyl halide (6) Yield Product
R3 R4 [%][b]

1 Ph (1a) hexyl H (E)-6a 84 (E)-7aa
2 Ph (1a) H hexyl (Z)-6a 76 (Z)-7aa
3 Ph (1a) Ph H (E)-6b 90 (E)-7ab
4[c] Ph (1a) CO2Et H (E)-6c 80 (E)-7ac
5[d] p-EtOCOC6H4 (1b) hexyl H (E)-6a 81 (E)-7ba
6 p-MeOC6H4 (1d) hexyl H (E)-6a 91 (E)-7da

[a] The reaction was carried out under a nitrogen atmosphere at 110 8C
for 24 h using a THF/TMU (4:1) solution (0.7 mL on average) of an
arylzinc iodide (1: 0.30 mmol), an alkenyl halide (6 : 0.20 mmol), and LiCl
(0.80 mmol) in toluene (0.7 mL on average). Full conversion of 6 was
observed for all entries. [b] The yield of isolated product based on 6. [c] At
80 8C. [d] Reaction time= 48 h.

Table 2: Coupling of arylzinc iodides with aryl halides.[a]

Entry Ar1 in Ar1–ZnI (1) Ar2–X (2) t [h] Yield Product
[%][b]

1 Ph (1a) 2-naphthyl–I (2a) 24 92 3aa
2 Ph (1a) p-EtOCOC6H4–I (2b) 24 88 3ab
3 Ph (1a) p-NCC6H4–I (2c) 24 91 3ac
4 Ph (1a) p-CF3C6H4–I (2d) 24 85 3ad
5 Ph (1a) p-ClC6H4–I (2e) 24 78 3ae
6 Ph (1a) p-MeOC6H4–I (2 f) 24 91 3af
7 Ph (1a) p-MeC6H4–I (2g) 48 71[c] 3ag
8 Ph (1a) o-PhC6H4–I (2h) 24 90 3ah
9 Ph (1a) o-homoallyl-C6H4–I

(2 i)
24 92 3ai

10 Ph (1a) 1-PhSO2-5-indolyl–I
(2 j)

48 90 3aj

11 Ph (1a) 1-Me-5-indolyl–I (2k) 48 71[d] 3ak
12 Ph (1a) 6-quinolyl–I (2 l) 48 78 3al
13 Ph (1a) 3-quinolyl–I (2m) 48 72 3am
14 Ph (1a) 2-naphthyl–Br (2’a) 48 92 3aa
15 Ph (1a) p-EtOCOC6H4–Br (2’b) 48 83 3ab
16 Ph (1a) p-NCC6H4–Br (2’c) 48 94 3ac
17 p-EtOCOC6H4

(1b)
2-naphthyl–I (2a) 48 84 3ba

18 p-EtOCOC6H4

(1b)
p-CF3C6H4–I (2d) 48 80 3bd

19 p-EtOCOC6H4

(1b)
Ph–I (2n) 48 92 3bn

20 p-CF3C6H4 (1c) 2-naphthyl–I (2a) 48 89 3ca
21 p-CF3C6H4 (1c) p-EtOCOC6H4–I (2b) 48 80 3cb
22 p-MeOC6H4 (1d) 2-naphthyl–I (2a) 48 89 3da
23 p-MeOC6H4 (1d) p-EtOCOC6H4–I (2b) 24 88 3 db
24 p-MeOC6H4 (1d) p-CF3C6H4–I (2d) 24 88 3dd
25 2-thienyl (1e) 2-naphthyl–I (2a) 24 98 3ea
26 2-thienyl (1e) 1-PhSO2-5-indolyl–I

(2 j)
24 97 3ej

[a] The reaction was carried out under a nitrogen atmosphere at 110 8C
using a THF/TMU (4:1) solution (0.8 mL on average) of an arylzinc
iodide (1: 0.30 mmol), an aryl halide (2 or 2’: 0.20 mmol), and LiCl
(0.80 mmol) in toluene (0.8 mL on average). Unless otherwise noted, the
conversion of 2 or 2’ was >90%. [b] The yield of isolated product based
on 2 or 2’. [c] Conversion of 2g was 85%. 87% yield/>99% conversion
was achieved with a reaction time of 96 h. [d] Conversion of 2k was 82 %.
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In our report,[3a] the occurrence of SET initiation in the
coupling of aryl Grignard reagents with aryl halides was
confirmed by the observation that the addition of lithium 4,4’-
di-tert-butylbiphenylide (LDBB) drastically accelerated the
coupling. This result may be rationally understood by infer-
ring that LDBB works as a much more efficient single-
electron donor than Grignard reagents in the slow initiation
step and thus the overall reaction rate is increased. We
conducted similar experiments for the arylzinc coupling using
LDBB or SmI2 as a single-electron donor. The reactivity of 2-
bromonaphthalene (2’a) toward PhZnI (1a) is quite low at
80 8C, giving only 7% yield of coupling product 3aa
(Scheme 2). By contrast, the treatment of 2’a with LDBB
(0.2 equiv)[16] or SmI2 (0.1 equiv),[17] 20 min before the addi-
tion of 1 a, gave 3aa in 34 % or 31 % yield, respectively.[18] The
observed acceleration is compatible with SET initiation, and
it is likely that [Np–Br]C� , generated by SET, has a lifetime
long enough to react with 1a before undergoing decomposi-
tion to NpC.[19]

Considering the above result in conjunction with similar-
ities in intrinsic character between arylzinc and arylmagne-
sium reagents, the present coupling reaction is likely to follow
the mechanism of the Grignard cross-coupling[3b] as shown in
Scheme 3, exemplified by the reaction of Ph–ZnI (1a) with 2-
iodonaphthalene (Np–I: 2 a). The reaction is initiated by SET
from Ph–ZnI to Np–I to give the anion radical [Np–I]C� , which
reacts with Ph–ZnI. SET from the resulting anion radical,
[Ph–Np]C� , to Np–I gives the coupling product Ph–Np and
regenerates [Np–I]C� , thereby beginning another propagation
cycle. The cation radical [Ph–ZnI]C+, generated upon SET in
the initiation step, reacts with Ph–ZnI to give the anion
radical [Ph–Ph]C� , which acts as another single-electron donor
toward Np–I to give [Np–I]C� and Ph–Ph. A small amount of
Ar1–Ar1 derived from Ar1–ZnI is always observed.[20] Lack of
involvement by aryl radical intermediates is confirmed by the
fact that no cyclization products were detected in the reaction
of o-homoallylphenyl iodide (2 i ; Table 2, entry 9).[21] The
conservation of stereochemistry in the reaction of alkenyl
halides (Table 3) also supports there being no involvement of
s-radical species.[4, 22]

In conclusion, we have developed a coupling reaction of
arylzinc reagents with aryl and alkenyl halides. The cross-
coupling reaction, mediated by single-electron transfer,
features a wide substrate scope that includes substrates with
an electrophilic substituent such as an alkoxycarbonyl or
cyano group.
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[22] We reported competition between different aryl bromides in the
reaction with PhMgBr to show operation of the SET mechanism
in the Grignard cross-coupling (Ref. [3a], Scheme 3). A similar
outcome was obtained in the competition reaction between the
aryl bromides or iodides when using PhZnI instead of PhMgBr
(Scheme S1 and S2 in the Supporting Information). In addition,
the effect of the addition of a catalytic amount of a Fe, Cu, Ni,

Co, or Pd complex on the selectivity of the cross-coupling
reaction was examined (Schemes S1–S4 in the Supporting
Information), to show that these transition-metal complexes
are not involved as small amounts of impurities that catalyze the
present cross-coupling reaction. For details, see the Supporting
Information.
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