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A novel route to functionalized azulenes is devised from a
dihydroazulene precursor. Thus, bromination of 1,1-dicyano-
2-phenyl-1,8a-dihydroazulene followed by heating in the
presence of bromide ions provides an efficient way to gener-
ate 3-bromo-1-cyano-2-phenylazulene. Formation of this
somewhat unexpected product was confirmed by X-ray crys-
tallographic analysis. It undergoes a palladium-catalyzed

Introduction

Derivatives of azulene (1) are interesting building blocks
for advanced materials with electronic and photonic appli-
cations.[1] The azulene system has a remarkable polarizabil-
ity and a tendency to form a stabilized tropylium cation as
well as a cyclopentadienyl anion, which may be enhanced
by suitable functionalization by donor and acceptor
groups.[2] Cyano-substituted azulenes have proven as good
electron acceptors that may be employed in organic metals.
Thus, Hafner and co-workers[3] showed that the electron
donor tetrathiafulvalene forms a charge-transfer complex
with 2,4,6,8-tetracyanoazulene (2). This compound was
prepared from 2-cyanoazulene (3) by nucleophilic substitu-
tion reactions in the seven-membered ring, followed by hy-
drolysis and dehydrogenation steps. In contrast, the five-
membered ring of azulene is reactive towards electrophiles,
and mostly so at the 1- and 3-positions.[4] For example, re-
action of cyanogen bromide with azulene (1) in the presence
of stannic chloride has provided 1-cyanoazulene (4).[5]

However, with a ten-fold excess of the cyanogen bromide–
stannic chloride complex, 1,3-dibromoazulene and 1-
bromo-3-cyanoazulene (5) were obtained.[5] Interestingly, it
was observed that compound 4 was inert to an excess of
cyanogen bromide and stannic chloride and thus not able
to act as a precursor for 5 under these conditions. Cyano-
azulene derivatives such as 5 containing a reactive bromide
substituent are potential precursors for larger conjugated
electron-accepting scaffolds. Thus, it has recently been
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cross-coupling reaction with trimethylsilylacetylene, afford-
ing a new azulene building block for acetylenic scaffolding.
Oxidative homo-coupling hereof provides an azulene dimer,
for which the optical and electrochemical properties are com-
pared to the other azulenes.
(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
Germany, 2007)

shown that halide-functionalized azulenes undergo the
Sonogashira cross-coupling reaction[6] with alkynes and
that the resulting ethynylazulenes are efficient building
blocks for acetylenic scaffolding[7] as well as for metathe-
sis.[8]

We became interested to exploit the possibility for dihy-
droazulenes, such as 6, to act as precursors for cyano-
bromo-substituted azulenes. Dihydroazulenes have at-
tracted attention as photoswitches as they undergo, after
light irradiation, a 10-electron retro-electrocyclization to the
isomeric vinylheptafulvene compounds, which, in turn, un-
dergo a thermal cyclization back to the dihydroazulene
forms.[9,10] Gierisch and Daub[9] showed that dihydroazul-
enes could in fact also be converted into the corresponding
1-cyanoazulenes, albeit in low yields. We report here a new
efficient synthetic procedure for obtaining a 3-bromo-1-cy-
ano-substituted azulene from a dihydroazulene precursor
and its further reactivity towards alkynes, providing new
electron acceptors and chromophores.

Results and Discussion
Our synthesis starts from a 2-phenyl-substituted deriva-

tive of 6, namely compound 7 (Scheme 1) that was readily
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Scheme 1.

prepared according to a general literature protocol.[11] We
reckoned from calculations (vide infra) that bromination of
this compound should give preferably the 7,8-dibromo
compound 8. Indeed, treating 7 with bromine gave 8 in
quantitative yield.[12] Single crystals of 8 were grown from
CH2Cl2/pentane and subjected to an X-ray crystallographic
analysis, which confirmed the proposed structure (Fig-
ure 1). When a 0.05  solution of 8 in CH2Cl2 was left over-
night at 40 °C, it was converted to a mixture of the two
azulenes 9 and 10[13] formed in a ratio of 4:7 and in a total
yield of 61%. In contrast, heating simply the dihy-
droazulene 7 overnight at 40 °C in CH2Cl2 caused no azu-
lene formation. Heating 8 in the presence of one equivalent
of bromide (Bu4NBr) gave solely compound 9 in a yield of
79%.[14] Yet, running the reaction under more dilute condi-
tions (0.009 ) and in the absence of Bu4NBr produced so-
lely the cyanoazulene 10 in a yield of 72%. While exploi-
tation of 1-cyanoazulene (4) as a precursor for 1-bromo-3-
cyanoazulene (5) was previously discarded,[5] we find that
treating azulene 10 with a small excess of Br2 in CH2Cl2
resulted in clean conversion to the bromide 9. These obser-
vations suggest that at least two mechanisms can be respon-
sible for the formation of 9 from the precursor 8: i) initial
elimination of either HBr or HCN, followed by nucleophilic
attack of bromide at C3 with expulsion of either cyanide or
bromide (SN2�), followed by a final elimination reaction, or
ii) initial formation of 10 after two elimination reactions,
followed by electrophilic substitution by attack of either Br2

or BrCN. The structures of both 9 and 10 were confirmed
by X-ray crystallography (Figure 1).[15]

The formation of azulenes 9 and 10 from dibromide 8
can also be promoted by light irradiation. Thus, photolysis
at 350 nm of a dilute sample of 8 (0.009 ) in dry CH2Cl2
(1.5 mL; without stabilizator) for 1 hour showed complete
conversion to the cyanoazulene 10 (as judged from an 1H
NMR spectroscopic investigation of the reaction mixture
after evaporation of the solvent), while photolysis for
1 hour of 8 (0.009 ) in the presence of Bu4NBr (0.05 )
instead provided the bromide 9 (together with a minor un-
identified by-product).

The first step of the bromination of dihydroazulene 7 was
subjected to a computational study employing the Gaussian
03 program package[16] in order to compare stabilities of
possible cations. The isomeric ions were optimized at the
semiempirical PM3 level, and on each structure a frequency
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Figure 1. X-ray crystal structures of 8, 9, and 10.

analysis was performed to secure that a real minimum had
been obtained. Then single point energy calculations were
performed at the B3LYP/6-311+G(2d,p) level. The relative
energies (at 0 K) of the ions are depicted in Figure 2. As

Figure 2. Relative cation energies calculated at the B3LYP/6-
311+G(2d,p) level on PM3-optimized structures.
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expected from simple resonance formulas, an attack at C8
is the most favorable. Electrophilic attack of Br+ at for ex-
ample the 2- or 3-positions requires more than
20 kcalmol–1 relative to attack at C8. For the subsequent
attack of bromide, we find that the kinetic product of ad-
dition (assumed so from a proximity effect), namely the 7,8-
dibromide 8 (7S,8S,8aR stereoisomer), is also the thermo-
dynamic product as the 2,8-, 3a,8-, and 5,8-dibromides are
more energetic by +17.9, +25.3, and +7.1 kcalmol–1,
respectively. All in all, the calculations substantiate the ex-
clusive formation of the dibromide 8 from bromination of
7.

The bromide 9 was subjected to a Sonogashira cross-
coupling reaction[6] with trimethylsilylacetylene employing
the catalyst system of Hundertmark et al.[17] (Scheme 2).
The product 11[18] was desilylated with K2CO3 in MeOH/
THF, and the terminal alkyne intermediate was then sub-
jected to an oxidative Hay homo-coupling reaction[19] to
give the azulene dimer 12.[20] Single crystals of 12 were
grown from toluene/CHCl3, and the crystal structure is
shown in Figure 3. Angles of 22° and 38° are observed be-
tween the phenyl and azulene rings.

Scheme 2.

Figure 3. Crystal structure of 12.

The new azulene derivatives are strong chromophores as
is evident from the UV/Vis absorption spectra shown in
Figure 4. The azulene monomers 9 and 10 exhibit a bright
violet and blue-violet color, respectively, in solution. They
are only weakly fluorescent with structured emissions at
433 nm (φfl = 0.5 ‰) for 9 and 431 nm (φfl = 0.4 ‰) for 10
in CH2Cl2 (λexc = 322 nm). Compounds 11 and 12 are both
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green in the solid state, which is also the case in solution
for the dimer 12, while the monomer 11 exhibits a bright
blue color in solution. Cyclic voltammetry investigations in
CH2Cl2 (0.1  Bu4NPF6) show irreversible reductions at
–1.23 (9), –1.38 (10), –1.80 (11), and –1.81 (12) V vs. Fc+/
Fc. Taking into account the electron-accepting nature of
acetylenic scaffolds,[21] it is somewhat surprising that com-
pounds 11 and 12 are the poorest acceptors in the series.

Figure 4. UV/Vis absorption spectra in CH2Cl2.

In conclusion, we have developed a new efficient synthe-
sis of a 3-bromo-functionalized azulene. This compound is
readily incorporated into new redox-active acetylenic chro-
mophores. We are currently investigating the possibility for
controlling the light-induced conversion of 8 into azulenes
via a ring-opened intermediate.

Supporting Information (see also the footnote on the first page of
this article): A Table containing a summary of general crystallo-
graphic data.

CCDC-626060 (for 8), -626062 (for 9), -626061 (for 10), -626063
(for 12) contain the detailled supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
datarequest/cif.
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