

Article

Subscriber access provided by EDINBURGH UNIVERSITY LIBRARY | @ http://www.lib.ed.ac.uk

Near-Complete Suppression of Oxygen Evolution for Photoelectrochemical H2O Oxidative H2O2 Synthesis

Kan Zhang, Jiali Liu, Luyang Wang, Bingjun Jin, Xiaofei Yang, Shengli Zhang, and Jong Hyeok Park

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.9b13410 • Publication Date (Web): 11 Mar 2020

Downloaded from pubs.acs.org on March 12, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Near-Complete Suppression of Oxygen Evolution for Photoelectrochemical H₂O Oxidative H₂O₂ Synthesis

Kan Zhang,^{*,†} Jiali Liu,[†] Luyang Wang,[§]Bingjun Jin, ^{||} Xiaofei Yang, [‡] Shengli Zhang,[†] and Jong Hyeok Park^{*, ||}

 [†] Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Material and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
[‡] College of Science, Nanjing Forestry University, Nanjing 210037, PR China

[§] College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518118, PR China

^{II} Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea

KEYWORDS: Water oxidation, Hydrogen peroxide, Fermi level pinning, BiVO₄ photoanode

ABSTRACT: Solar energy-assisted water oxidative hydrogen peroxide (H_2O_2) production on an anode combined with H_2 production on a cathode increases the value of solar water splitting, but the challenge of the dominant oxidative product, O_2 , needs to be overcome. Here, we report a SnO_{2-x} overlayer coated BiVO₄ photoanode, which demonstrates a great ability to near-completely suppress O_2 evolution for photoelectrochemical (PEC) H_2O oxidative H_2O_2 evolution. Based on the surface hole accumulation measured by surface photovoltage, downward quasi-hole Fermi energy at the photoanode/electrolyte interface and thermodynamic Gibbs free energy between 2-electron and 4-electron competitive reactions, we are able to consider the photoinduced holes of $BiVO_4$ that migrate to the SnO_{3-x} overlayer kinetically favour H_2O_2 evolution with great selectivity by reduced band bending. The formation of H_2O_2 may be mediated by the formation of hydroxyl radicals (OH•), from 1-electron water oxidation reactions, as evidenced by spin-trapping electron paramagnetic resonance (EPR) studies conducted herein. In addition to the H₂O oxidative H₂O, evolution from PEC water splitting, the $SnO_{2-x}/BiVO_4$ photoanode can also inhibit H_2O_2 decomposition into O_2 under either electrocatalysis or photocatalysis conditions for continuous H₂O₂ accumulation. Overall, the $SnO_{2,x}/BiVO_4$ photoanode achieves a Faraday efficiency (FE) of over 86% for H_2O_2 generation in a wide potential region (0.6~2.1 V vs. reversible hydrogen electrode (RHE)) and an H_2O_2 evolution rate averaging 0.825 μ mol/min/cm⁻² at 1.23 V vs. RHE under AM 1.5 illumination, corresponding to a solar to H₂O₂ efficiency of \sim 5.6%; this performance surpasses almost all previous solar energy-assisted H₂O₂ evolution performances. Because of the simultaneous production of H₂O₂ and H₂ by solar water splitting in the PEC cells, our results highlight a potentially greener and more cost-effective approach for "solar-to-fuel" conversion.

INTRODUCTION

As an important chemical in industrial chemistry, the market size for hydrogen peroxide (H_2O_2) has reached 3.5 billion USD in 2015 with a compound annual growth rate of more than 5% from 2016 to 2024. ¹ Because traditional anthraquinone oxidative H_2O_2 production requires large plants and suffers from inconvenient transportation, ² photocatalytic or electrochemical (EC) H_2O_2 production has attracted considerable attention, partially due to onsite production and low cost. Currently, photocatalytic or EC O_2 reductive H_2O_2 production through the two-electron pathway has been widely studied. ³⁻⁸ However, the reduction reaction needs to continuously supply a feedstock of O_2 gas, which sacrifices H_2 production due to water reduction. ⁹ Catalysing water oxidation for H_2O_2 production is, therefore, an alternative strategy since H_2 production by water reduction does not need to be sacrificed to generate dual-energy carriers through the redox coupling of water. ^{10, 11} Unfortunately, the production of H_2O_2 via an oxidative water process is a formidable challenge, which requires the two-electron transfer from the photoanodes. H_2O_2 evolution is thermodynamically less favourable than O_2 evolution, as shown in the following equations: ¹²

 $_{2}H_{2}O + _{4}e^{-}/h^{+} \rightarrow O_{2} + _{2}H_{2} (E^{o} = +1.23 V vs. RHE)$ (1)

 $_{2}H_{2}O + 2e^{-}/h^{+} \rightarrow H_{2}O_{2} + H_{2} (E^{\circ} = +1.77 \text{ V vs. RHE})$ (2)

Therefore, there is no significant concern for H_2O_2 evolution by EC water oxidation.

Recently, Fuku and Sayama demonstrated that BiVO₄based photoanodes can selectively catalyse H_2O to H_2O_2 in the presence of HCO₃⁻. ¹³ Norskov and Zheng's groups have subsequently exhibited the EC oxidation of water to H_2O_2 in a HCO₃-containing electrolyte using various kinds of photoanode materials, such as BiVO₄, SnO₂, and WO₃; these authors demonstrated that the free energy of absorbed OH is a key factor in thermodynamically favourable H₂O₂ evolution. ^{14, 15} Despite the numerous efforts regarding this advanced water oxidation process, the EC approach resulted in an unsatisfactory Faraday efficiency (FE) ($\leq 80\%$) and required a high operation potential with a narrow potential window between 2.7 and 3.2 V (vs. reversible hydrogen electrode (RHE)). 16-20 In addition to the thermodynamic issue regarding the competitive oxidation reaction between oxygen evolution and H₂O₂ production, the decomposition of highly reactive H_2O_2 readily occurs at the photoanodes (Eq 3)²

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 29

30

38

39

40

41

42

43

44 45

46 47

48 49 50

51 52

53 54

55

56

57 58 59

60

 $H_2O_2 \rightarrow O_2 + 2H^+ + 2e^- E^\circ = +0.68 \text{ V vs. RHE}$ (3)

Therefore, competitive O_2 evolution may occur in two ways: 4-electron transfer or stepped 2-electron transfer via a H_2O_2 intermediate, which highlights a key counterbalance between suppressing H_2O_2 decomposition and boosting 2electron water oxidation.

Here, we report a photoelectrochemical (PEC) approach for highly selective water oxidative H_2O_2 production using a surface-modified BiVO₄ photoanode. An electrodeposited SnO₂ overlayer with oxygen vacancies on the BiVO₄ photoanode significantly modulates the surface hole oxidation reaction kinetics. This process turns the complete reaction of H_2O_2 and O_2 evolution at the photoanodes into H_2O_2 evolution and OH radical (OH·) generation during the water oxidation process, accompanied by the suppression of H_2O_2 decomposition in the hole re-oxidation process. As a result, the O_2 evolution is almost completely suppressed by substituting OH·, achieving an average FE for H_2O_2 evolution of 86% at a widely applied bias ranging from 0.6 to 2.1 V (vs. RHE).

RESULTS AND DISCUSSION

The BiVO₄ electrodes were prepared by electrodeposition based on a previous report. ²¹ The SnO₂ overlayer with controllable oxygen vacancies was electrochemically deposited on the porous BiVO₄ electrodes in a mildly acidic plating solution using SnCl₂ as a precursor, followed by annealing at 450 °C under air or argon (Ar) conditions (see the experimental section in detail). The oxygen vacancies were determined by electron paramagnetic resonance (EPR) spectra, as shown in Figure 1a. The strong EPR signal with g=2.25 for SnO₂ annealed at 450 °C in Ar can be assigned to ionized oxygen vacancies (V_0). ²² The X-ray photoelectron spectroscopy (XPS) Sn 3d spectra of SnO₂ annealed at 450 °C in Ar shows an ~0.4 eV blueshift compared to the sample annealed at 450 °C in air (Figure S1), which is ascribed to fewer O neighbours around Sn on average. ²³ The X-ray diffraction (XRD) pattern of SnO₂ annealed at 450 °C in Ar also displays relatively weaker

Figure 1 (a) EPR spectra of electrodeposited SnO_2 annealed at 450 °C in Ar and air, (b) top-view and (c) cross-sectional SEM image, (d) and (e) HR-TEM image with the corresponding electron diffraction spot and (f) HAADF-STEM-EDX elemental mapping of the $SnO_{2-x}/BiVO_4$ photoanode.

diffraction peaks compared to SnO₂ annealed at 450 °C in 1 air (Figure S₂), and no diffraction peaks can be assigned to 2 SnO, indicating that neither Ar nor air annealing affects 3 the crystal structure of SnO₂. Herein, the SnO₂ overlayer 4 obtained by this means on the BiVO₄ photoanode can be 5 labeled as SnO_{2-x}/BiVO₄ and SnO₂/BiVO₄. The scanning 6 electron microscopy (SEM) image of a typical SnO₂₋ 7 $_{x}$ /BiVO₄ electrode is shown in Figure 1b, which displays a similar porous morphology to the pure BiVO₄ electrode 8 9 (Figure S₃) because of the very thin SnO_2 (<6 nm) layer on the BiVO₄ surface. The total thickness of the $SnO_{2-x}/BiVO_4$ 10 electrode is approximately 800 nm, as shown in Figure 1c, 11 elemental mapping shows the homogeneous and 12 distribution of Sn in the entire electrode (Figure S4). 13 Additionally, the XRD patterns and Raman shifts of the 14 $SnO_{2-x}/BiVO_4$ or $SnO_2/BiVO_4$ photoanodes do not show an 15 obvious effect on the BiVO₄ crystals by the SnO₂ coating 16 (Figure S₅). Note that an overly negative potential for 17 electrodepositing SnO₂ can reduce Bi³⁺ to Bi^o, ²⁴ although it 18 seems to form a thick SnO₂ overlayer (Figure S6). The 19 thickness of the SnO_{2-x} overlayer is determined by high-20 resolution transmission electron microscopy (HR-TEM), 21 which demonstrates a 6 nm thick SnO₂ layer that 22 conformally covers the BiVO₄ particles (Figure 1d). The fast 23 Fourier transform (FFT) pattern exhibits a highly 24 crystalline nature with characteristic crystallographic 25 orientations of (100), (110), and (010) for monoclinal BiVO₄, 26 which is simultaneously accompanied by crystallographic 27 orientations of (110) for tetragonal SnO₂. A HR-TEM image 28 taken from the SnO_{2-x}/BiVO₄ interface region reveals a less 29 than 2 nm channel in addition to the lattice spacings of 30 0.467 and 0.475 nm corresponding to the (110) and (011) 31 planes of monoclinic BiVO₄, respectively, and the lattice 32 spacing of 0.23 nm is consistent with the d value of the (1-33 1-1) plane of SnO₂ (Figure 1e). The Bi 4f and V 2p XPS 34 spectra peaks of BiVO₄ are shifted to higher binding 35 energies after coating with SnO_2 or SnO_{2-x} , which might be 36 caused by the interactions of Sn⁴⁺ with Bi and V atoms in 37 the interfacial region (Figure S7).²⁵ The high-angle annular dark-field scanning transmission electron microscopy 38 (HAADF-STEM) image with elemental maps in Figure 1f 39 solidly demonstrates the surface coverage of SnO₂ with a 40 maximum thickness of 6 nm. The HAADF-STEM-EDS 41 elemental mapping for cross-view demonstrated the 42 conformal coating of SnO_{2-x} on BiVO₄ surface (Figure S8). 43 As the O is XPS spectra of annealed pure BiVO₄ at 450 °C 44 in either Ar or air overlap, excluding the possible V_{0} 45 induced by this process (Figure S9). The optical absorption 46 spectra show no significant change in the band gap of 47 $BiVO_4$ with either SnO_2 or SnO_{2-x} coverages (Figure S10). 48 PEC H₂O₂ generation was performed in 1 M NaHCO₃ 49 50

solution with a pH of 8.3 under AM 1.5 illumination (100 mW/cm²). As shown in Figure 2a, the dark currents of BiVO₄, SnO_{2-x}/BiVO₄, and SnO₂/BiVO₄ photoanodes demonstrate that either SnO₂ or SnO_{2-x} coverages are responsible for suppressing the surface reaction kinetics of BiVO₄. Although it is consistent with the activity trends in EC oxidative H₂O to H₂O₂ predicted by Nørskov and Zheng et al., ¹⁴ the SnO_{2-x}/BiVO₄ photoanode exhibits an enhanced

58 59

60

photocurrent density compared to the BiVO₄ and SnO₂/BiVO₄ photoanodes, along with an obvious cathodic shift of the onset potential. The results clearly indicate that the SnO_{2-x} overlayer can efficiently improve the PEC performance of the BiVO₄ photoanode. However, the SnO₂ overlayer plays a negative role with respect to the photocurrent density. A more in-depth discussion and analysis regarding PEC performance and dark current are provided in Figure S11. Because the band edge potentials of SnO₂ straddle that of BiVO₄, the decreased photocurrent density of $SnO_2/BiVO_4$ photoanode indicates that the Type I band edge configuration somewhat affects the number of surface-reaching holes, even though the thickness of SnO₂ is only 6 nm. ²⁶ Compared with SnO₂, the valance band (VB) edge of SnO_{2-x} is shifted up by ~0.5 eV, as determined by VB-XPS (Figure S12), presumably ascribing to the presence of V_o. As evidenced by first-principles calculations, a new band state appears and up-shifts the VB edge for SnO_{2-x}, which is consistent with the results of the valence band XPS spectra (Figure S13). The upward VB edge will reduce the energy barrier of the hole migration from $BiVO_4$ to SnO_{2-x} to improve the water oxidation photocurrent. The possible hole migration can be further demonstrated by the transient-state surface photovoltage (TS-SPV) responses, in which the photoanodes exposed to the air atmosphere give rise to upward band bending that leads to the surface migration of photoinduced holes due to the surface absorbed water. ²⁷ As shown in Figure 2b, the surface migration behaviour of the photoinduced hole enables positive SPV signals for all photoanodes. Clearly, the $SnO_{2-x}/BiVO_4$ photoanode has the highest signal intensity, indicating that the photoinduced holes that reach the photoanode surface are dramatically promoted by the SnO_{2-x} overlayer. Moreover, both the $SnO_2/BiVO_4$ and SnO_{2-x}/BiVO₄ photoanodes favour long-lived holes at the surface, as the delay times of the photovoltage signals are significantly prolonged as a result of the reduction of surface recombination. ²⁸ The PEC water oxidative H₂O₂ evolution was quantified by the N,N-diethyl-1,4phenylene-diamine (DPD) method, which was determined by calibrating the standards of the H₂O₂ solution (Figure S14). The real-time FE for H_2O_2 production is displayed in Figure 2c. In the PEC reaction region, the real-time FE for all photoanodes can be maintained at a steady level, and either the SnO₂ or SnO_{2-x} overlayers significantly increase the real-time FE of the BiVO₄ photoanode from an average of 23% to an average of 61% and 86% in the applied bias ranging from 0.6 to 2.1 V (vs. RHE). The enhanced realtime FE by either the SnO_2 or SnO_{2-x} overlayers is suddenly dropped from 88% to 66% and from 81% to 39%, respectively, when the applied bias is larger than 2.1 V (vs. RHE) where the EC reaction occurs. The phenomenon is in good agreement with their dark current behaviours in which the $SnO_2/BiVO_4$ and $SnO_{2-x}/BiVO_4$ photoanodes show a larger overpotential and a lower current density. In most cases, beyond EC water splitting, not only one but several EC products (e.g., H₂O₂, O₂, or OH·) are generally thermodynamically favoured. 29-31 From an EC viewpoint, the applied bias is associated with the Fermi level at the

Figure 2. (a) J–V curves of BiVO₄, SnO₂/BiVO₄ and SnO_{2-x}/BiVO₄ photoanodes in 1 M NaHCO₃ electrolyte (pH = 8.3) under AM 1.5 illumination; (b) the TS-SPV responses of the BiVO₄, SnO₂/BiVO₄ and SnO_{2-x}/BiVO₄ photoanodes. The wavelength and intensity of the excitation pulse are 355 nm and 50 μ J, respectively; (c) calculated real-time FE of the H2O2 evolution at various applied biases of the BiVO₄, SnO₂/BiVO₄ and SnO_{2-x}/BiVO₄ photoanodes; (d) A simplified comparison depicting the fundamental differences in interfacial charge transfer energetics between EC and PEC WOR; (e) the actual quantities of the O₂ evolution amounts of the BiVO₄, SnO₂/BiVO₄ and SnO_{2-x}/BiVO₄ photoanodes at 1.23 V vs. RHE in 1 M NaHCO₃ electrolyte (pH = 8.3) under AM 1.5 illumination and corresponding overall FE values of both O₂ and H₂O₂ evolution (navy, green and dark yellow columns are the FE values of H₂O₂ evolution of the BiVO₄, SnO₂/BiVO₄ and SnO_{2-x}/BiVO₄ and SnO_{2-x}/BiVO₄ photoanodes, respectively); and (f) Mott-Schottky plots measured in under dark and 218

electrode/reactant interface; either an increase or decrease will cause a change in the potential drop across the EC double layer, thereby varying the activation energies and rate constants for all possible interfacial charge transfer processes. This process is hypothesized to be an essential reason for the applied bias depending on the EC product selectivity.³² In contrast to the EC reaction, the quasi-Fermi level formed at the electrode/reactant interface in the PEC reaction is pinned; therefore, the activation energies and rate constants for the interfacial charge transfers are less affected ³³⁻³⁵. Different mechanisms are responsible for the dramatic FE changes in water oxidative H₂O₂ generation across the EC and PEC regions (Figure 2d).

Since the accumulation amount of H_2O_2 was measured by the DPD method, the estimated amount that solely corresponds to the H_2O_2 yield might not be accurate due to another possibility of the decomposition of H_2O_2 by Eq 3. To explore the underlying mechanism, these photoanodes were continuously illuminated for 600 s at 1.23 V vs. RHE in a 1 M NaHCO₃ electrolyte, and the time courses of the PEC reaction are shown in Figure S15. The corresponding incident photon-to-electron conversion efficiency (IPCE) at 1.23 V vs RHE show that all photoanodes exhibit a maximum value of 65% at 460 nm (Figure S16), which is consistent with characteristic IPCE curve of BiVO₄ for PEC water splitting ^{36, 37}. Clearly, the SnO₂/BiVO₄ and SnO_{2-x}/BiVO₄ photoanodes display better stability than the $BiVO_4$ photoanode during the H_2O_2 evolution process, ascribing to the passivation effect of the overlayers that suppresses the photo-corrosion of BiVO₄. ^{38,} ³⁹ Importantly, the O_2 evolution over the SnO_{2-x}/BiVO₄ photoanode is almost undetectable, whereas the BiVO₄ and SnO₂/BiVO₄ photoanodes show total O₂ amounts of 2.628 and 0.773 µmol, respectively, during a H₂O₂ evolution process of 600 s. The calculated overall real-time FE for H_2O_2 and O_2 evolution is exhibited in Figure 2e. Considering the total H₂O₂ and O₂ amounts, the overall real-time FE of the BiVO4 photoanode is near 100%, corresponding to competitive H₂O₂ and O₂ evolution processes. However, for SnO₂/BiVO₄ and SnO_{2-x}/BiVO₄ photoanodes, the overall real-time FE is less than 100%, suggesting products other than H₂O₂ and O₂ are generated by PEC water oxidation. In particular, the $SnO_{2-x}/BiVO_4$ photoanode is not capable of O₂ evolution, which is an important indication of the near-complete suppression of O_2 evolution that occurs by neither water oxidation nor H₂O₂ decomposition.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18 19 20

21 22

23

24

25 26

27

28

29

30 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

Figure 3. (a) Free energy diagram of water oxidation plotted at U=1.77 V vs. RHE on BiVO₄ (111), SnO₂ (110) and SnO_{2-x} (110). (b) Disk-ring currents recorded at 1600 rpm in a 1 M NaHCO₃ electrolyte. EPR responses of OH-generation by BiVO₄, SnO₂ and SnO_{2-x} under visible light illumination in 1 M NaHCO₃ (c) and 1 M phosphate buffer (d) solutions, respectively without applied bias.

In the photo-oxidative water process, the H₂O₂ evolution reaction can compete with the O₂ evolution reaction if photogenerated holes in the VB edge of the photoanode are deeper than the overpotential required by H_2O_2 evolution. 40, 41 Because of the same VB edge originating from BiVO₄, the activity trends between the H_2O_2 and O_2 evolution processes can be considered the different surface thermodynamic processes as well as the hole quasi-Fermi level for BiVO₄, SnO₂, and SnO_{2-x} to drive the water oxidation kinetics. The signatures of the quasi-Fermi level changes are displayed in Figure 2f. Notably, the Fermi level of BiVO₄ is pinned as observed at an unchanged flat-band potential under dark and illumination conditions. Significantly, the flat-band potential shifts anodically upon the SnO_{2-x} coverage, and the positive shift does not contribute to the cathodic shift of the photocurrent onset potential in any case because it represents less upward band bending. 42, 43 Thus, we conjecture that the cathodic shift of the photocurrent for the SnO_{2-x}/BiVO₄ photoanode may be the cause of the changing water oxidation reaction from O_2 evolution to H_2O_2 evolution. The mechanism diagram is shown in Figure S17. Figure 3a shows the calculated free energy diagram for the 2-electron and 4electron oxidation processes of water on the BiVO₄, SnO₂, and SnO_{2-x} surfaces from the thermodynamic models in Figure S18. At a theoretical potential of 1.77 V vs. RHE for H_2O_2 evolution, it can be seen that the free energy for absorbed OH^{*} (ΔG_{OH^*}) is the key bifurcating point to

determine the O_2 or H_2O_2 evolution. For the BiVO₄ photoanode, the reaction step from absorbed OH^* to H_2O_2 evolution is downhill in the free energy, suggesting much more favourable thermodynamics for H_2O_2 evolution. Remarkably, the ΔG_{OH^*} of the SnO₂ and SnO_{2-x} surfaces leads to an uphill reaction for H₂O₂ evolution. However, compared with the O_2 evolution, the H_2O_2 evolution on the SnO2 surface is still favourable because of its smaller free energy barrier. In contrast, SnO_{2-x} exhibits thermodynamically unfavourable H₂O₂ evolution as a result of a much higher free energy barrier for H_2O_2 formation. The results are consistent with their EC performances but inconsistent with their PEC activity trends for H_2O_2 generation, as shown in Figure 2a. Therefore, the reduced band bending in $SnO_{2-x}/BiVO_4$ that is associated with the hole quasi-Fermi level seems to be responsible for PEC H₂O₂ generation with high selectivity. In addition to the water oxidative H₂O₂ evolution, the H_2O_2 decomposition performances on the BiVO₄, SnO₂ and SnO_{2-x} surfaces were monitored in real time using the ring-disk electrode technique. As shown in Figure S19, the reaction on the disk electrode is H_2O_2 evolution by BiVO₄, while the reaction on the ring electrode is H₂O₂ decomposition by BiVO₄, SnO₂ and SnO_{2-x}. To avoid otherside reactions, the applied bias for the ring electrode is established at 0.7 V vs. RHE, at which the only possible EC reaction is H_2O_2 decomposition. Figure 3b shows the linear

Figure 4. (a) SnO_{2-x} overlayer associated with the surface states that are energetically shifted away from the intrabandgap region, which overcomes the O₂ evolution reaction. (b) Plots of the theoretical charge number obtained from the J-t curves collected at 1.23 V vs. RHE and the actual quantities of H₂ and H₂O₂ generated by $\text{SnO}_{2-x}/\text{BiVO}_4$ photoanode under AM 1.5 illumination. (c) A summary of PEC H₂O₂ production with various parameters under AM 1.5 illumination. The open-circuit voltage is converted applied bias vs RHE based on pH value of electrolyte.

sweep voltammetry (LSV) curves of different electrodes recorded at a scan rate of 10 mV s⁻¹ in a 1 M NaHCO₃ electrolyte solution at room temperature at 1600 rpm. Under the same disk current generated by water oxidative H_2O_2 evolution, the ring currents that arise from oxidative H_2O_2 decomposition can reflect the equilibrium of the reaction of H_2O_2 evolution and decomposition. ^{44, 45} Remarkably, the ring current of SnO_{2-x} approaches zero in the whole applied bias, indicating negligible H_2O_2 decomposition on the SnO_{2-x}/BiVO₄ photoanode.

1

2

3

4

5

6 7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

22

23 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56 57

58 59

60

Based on these results, the function of the SnO_{2-x} overlayer can be considered to suppress O_2 evolution from both the water oxidation and H_2O_2 decomposition processes. The lower than real-time 100% FE of H_2O_2 evolution, therefore, implies another completive reaction other than the O_2 evolution reaction. To unmask the underlying reaction, EPR detection was used to record hydroxyl radical (OH·) generation as a result of 1-electron transfer during the water oxidation process:

 $H_2O \rightarrow OH + H^+ + e^- E^\circ = +2.73 \text{ V vs. RHE}$ (4)

As shown in Figure 3c, four characteristic peaks of DMPO- OH appear in the HCO_3 -containing electrolyte in the presence of $SnO_2/BiVO_4$ and $SnO_{2-x}/BiVO_4$ photoanodes under visible light irradiation. The signal intensities of OH by the $SnO_{2-x}/BiVO_4$ photoanode are stronger than those of the $SnO_2/BiVO_4$ photoanode, whereas the OH signal in the spectrum of the $BiVO_4$ photoanode is negligible. The results disclose the favoured

1-electron transfer by SnO_2 and SnO_{2-x} overlayers. Furthermore, Figure 3d shows the EPR spectra of the BiVO₄, SnO₂/BiVO₄, and SnO_{2-x}/BiVO₄ photoanodes in a 0.5 M phosphate buffer solution, which is a general electrolyte for O2 evolution. Note that without light illumination, no signals associated with OH can be detected (Figure S20); moreover, H2O2 would not be excited to OH in the absence of ultraviolet (UV) light. The trends of OH generation in the phosphate buffer solution are similar to that in HCO_3^- containing the electrolyte, suggesting essentially a complete reaction of 1-electron transfer during the water oxidation process. The photocatalytic H2O2 degradation over the BiVO4, SnO₂/BiVO₄, and SnO_{2-x}/BiVO₄ photoanodes was investigated under AM 1.5 illumination, which is direct evidence of H₂O₂ accumulation during PEC water oxidation (Figure S21). The H₂O₂ concentration is gradually and rapidly decreased on the illuminated BiVO₄ photoanode, which becomes undetectable for 60 min. In sharp contrast, the H_2O_2 can be preserved by 79% and 81% in illuminated SnO₂/BiVO₄ and SnO_{2-x}/BiVO₄ photoanode solutions, respectively, which is slightly lower than the photocatalysis of H₂O₂ (87%) during 60 min of illumination. The above results demonstrate that the SnO₂- $_{\rm x}$ overlayer is responsible for the thermodynamic suppression of O₂ evolution upon the PEC water oxidation and H₂O₂ oxidation processes.

1

The SnO_{2-x} overlayer regulates the surface reaction kinetics of the BiVO₄ photoanode from the completive 2 reactions of the 2-electron and 4-electron transfers to 3 completive reactions of the 1-electron and 2-electron 4 transfers. The processes of water oxidation are 5 schematically illustrated in Figure 4a. It is well known that 6 the interfacial energetics at semiconductor photoanode is 7 associated with surface state, in general, intra-gap states. Especially for BiVO₄ photoanode, the surface state enables 8 significant regulation of hole transfer kinetic constant for 9 O₂ evolution.^{42, 43} The passivating surface state is of the 10 essence, even in case of co-catalyst deposition.46 The 11 mechanism of such passivation typically is strong 12 interacted by the orbitals of the new surface component to 13 modulate surface states, resulting in formation of new 14 bonding and antibonding orbitals that are energetically 15 shifted out of the bandgap.^{47, 48} Considering the interface 16 fusion (Figure 1e) and quasi-Fermi level change (Figure 2f), 17 the reducing band bending is hypothesized to be 18 independent of the thermodynamic process for H₂O₂ 19 evolution. Since the PEC water splitting over the SnO₂-20 _x/BiVO₄ photoanode involves the H₂O₂ and H₂ evolution 21 processes, the time courses of PEC water oxidative H₂O₂ 22 production and water reductive H₂ production are 23 investigated. At an applied bias of 1.23 V vs. RHE, the 24 obtained H₂ and H₂O₂ quantities as a function of the 25 theoretical electron number calculated on the basis of its 26 photocurrent density are shown in Figure 4b. It can be 27 clearly seen that the H, amounts are well-matched to their 28 theoretical value, while the measured H₂O₂ amounts 29 deviate from the stoichiometric 2-electron transfer with an 30 average production rate of 0.825 µmol/min/cm⁻². The 31 stable photocurrent density and constant FE produce a 32 solar to H₂O₂ efficiency of ~5.6% at 1.23 V vs RHE under 33 AM 1.5 illumination. As mentioned above, the 34 photocurrent for water oxidation involves OH. generation, 35 which is mainly a side reaction to consume the 36 photogenerated holes during H₂O₂ evolution. Nevertheless, 37 to our knowledge, our $SnO_{2-x}/BiVO_4$ photoanode demonstrates superior PEC H₂O₂ evolution relative to 38 other photoanodes for both PEC water oxidative H₂O₂ 39 evolution and PEC O₂ reductive H₂O₂ evolution (Table S1 40 and Figure 4c).^{12, 13, 19, 49, 50} Furthermore, the SEM, XRD and 41 XPS results of these photoanodes after the long-term H₂O₂ 42 evolution show no detectable change in morphology and 43 component (Figure S22), indicating a well structure 44 stability for PEC H₂O₂ evolution. The HAADF-STEM-EDX 45 images of the SnO_{2-x}/BiVO₄ photoanode taken after the 46 long-term H₂O₂ evolution confirm the uniform SnO_{2-x} 47 coverage (Figure S23). Most recently, Surendranath et al. 51 48 and Wang et al. 52 reported the highly selective H₂O₂ 49 synthesis via a flow system using H_2 and O_2 as the reactants, 50 beyond which, the PEC H₂O₂ synthesis by direct water 51 oxidation holds the key to advances required in low-cost 52 and eco-friendly applications. 53 54

CONCLUSION

55

56

57 58 59

60

In this work, we reported that a SnO₂ overlayer with oxygen vacancies (SnO_{2-x}) can tune the activity and

selectivity for PEC water oxidative H₂O₂ generation using a BiVO₄ photoanode under simulated solar light. Our investigations on the charge exchange mechanism demonstrated the near-suppression of O₂ evolution during PEC water splitting, due to the photogenerated holes of $BiVO_4$ migrating to the SnO_{2-x} overlayer; this process regulated the competitive 2-electron/4-electron transfer to a 2-electron/1-electron transfer by interface energetics and the concomitant suppression of H₂O₂ decomposition. As a result, the FE for H₂O₂ generation reached ca. 86% over a wide potential range from 0.6 to 2.1 V vs. RHE with an average H_2O_2 evolution rate of 0.825 µmol/min/cm⁻² at 1.23 V vs. RHE. Because the thermodynamically less favourable H2O oxidative H₂O₂ reaction, this study highlighted the significance of a surface state modulation on the photoanode/electrolyte interface, opening the possibility of highly selective H₂O₂ synthesis from PEC water splitting by Fermi level pining effect.

ASSOCIATED CONTENT

Supporting Information. Detailed experimental sections; figures; tables. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

- * zhangkan@njust.edu.cn
- * lutts@yonsei.ac.kr

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

This work was supported by NSFC (51802157, 21902104), the Natural Science Foundation of Jiangsu Province of China NRF Korea (NRF-2019R1A2C3010479, (BK20180493), 2019M1A2A2065612, 2019M3E6A1064525, 2019R1A4A1029237), the Fundamental Research Funds for the Central Universities (No.30918012202). LY. Wang acknowledges the support by Natural Science Foundation of Top Talent of SZTU (grant no. 2019106101003).

REFERENCES

- (1) Pulidindi, K.; Pandey, H. Hydrogen Peroxide Market Size, 2016. U.S.
- Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. (2) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem. Inter. Ed. 2006, 45, 6962-6984.
- (3) Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W.; Chorkendorff, I.; I. Stephens, E. L.; Rossmeisl, J. Enabling direct H₂O₂ production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137-1143.
- (4) Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; Jaramillo, T. F.; Nørskov, J. K.; Cui, Y. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156-162.

- (5) Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J.; Yang, P.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. *Nat. Catal.* 2018, 1, 282-290.
- (6) Fellinger, T.-P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. *J. Am. Chem. Soc.* 2012, 134, 4072-4075.
- (7) Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. *Nat. Rev. Mater.* 2019, 3, 442-458.
- (8) Jiang, Y.; Ni, P.; Chen, C.; Lu, Y.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective Electrochemical H₂O₂ Production through Two-Electron Oxygen Electrochemistry. *Adv. Energy Mater.* 2018, 8, 1801909.
- (9) Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts. *Angew. Chem. Int. Ed.* 2014, 53, 13454-13459.
- (10) Hirakawa, H.; Shiota, S.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Au Nanoparticles Supported on BiVO₄: Effective Inorganic Photocatalysts for H₂O₂ Production from Water and O₂ under Visible Light. ACS Catal. 2016, 6, 4976-4982.
- Bard, A. J.; Parsons, R.; Hordan, J. Standard Potentials in Aqueous Solution, 1st ed.; Marcel Dekker: New York, 1985.
- (12) Fuku, K.; Sayama, K. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode. *Chem. Commun.* 2016, 52, 5406-5409.
- (13) Shi, X.; Siahrostami, S.; Li, G. L.; Zhang, Y.; Chakthranont, P.; Studt, F.; Jaramillo, T. F.; Zheng, X.; Nørskov, J. K. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide, *Nat. Commun.* 2017, 8, 701.
- (14) Baek, J. H.; Gill, T. M.; Abroshan, H.; Park, S.; Shi, X.; Nørskov, J. K.; Jung, H. S.; Siahrostami, S.; Zheng, X. Selective and Efficient Gd-Doped BiVO₄ Photoanode for Two-Electron Water Oxidation to H₂O₂. ACS Energy Lett. 2019, 4, 720-728.
- (15) Sayama, K. Production of High-Value-Added Chemicals on Oxide Semiconductor Photoanodes under Visible Light for Solar Chemical-Conversion Processes. ACS Energy Lett. 2018, 35, 1093-1101.
- (16) Liu, J.; Zou, Y.; Jin, B.; Zhang, K.; Park, J. H. Hydrogen Peroxide Production from Solar Water Oxidation. ACS Energy Lett. 2019, 4, 3018-3027.
- (17) Fuku, K.; Miyase, Y.; Miseki, Y.; Gunji, T.; Sayama, K. Enhanced Oxidative Hydrogen Peroxide Production on Conducting Glass Anodes Modified with Metal Oxides. *ChemistrySelect* 2016, 1, 5721-5726.
- (18) Kelly, S. R.; Shi, X.; Back, S.; Vallez, L.; Park, S. Y.; Siahrostami, S.; Zheng, X.; Nørskov, J. K. ZnO as an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide. ACS Catal. 2019, 9, 54593-4599.
- (19) Shi, X.; Zhang, Y.; Siahrostami, S.; Zheng, X. Light-Driven BiVO₄-C Fuel Cell with Simultaneous Production of H₂O₂. Adv. Energy Mater. 2019, 8, 1801158.
- (20) Izgorodin, A.; Izgorodina, E.; MacFarlane, D. R. Low overpotential water oxidation to hydrogen peroxide on a MnO_x catalyst. *Energy Environ. Sci.* **2012**, *5*, 9496-9501.

- (21) Kim, T. W.; Choi, K. S. Nanoporous BiVO₄ photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. *Science* 2014, 343, 990-994.
- (22) Gurlo, A. Interplay between O_2 and SnO_2 : Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen. ChemPhysChem 2006, 7, 2041-2052.
- (23) Dong, W.; Xu, J.; Wang, C.; Lu, Y.; Liu, X.; Wang, X.; Yuan, X.; Wang, Z.; Lin, T.; Sui, M.; Chen, I. W.; Huang, F. A Robust and Conductive Black Tin Oxide Nanostructure Makes Efficient Lithium-Ion Batteries Possible. *Adv. Mater.* 2017, 29, 1700136.
- (24) Wang, S.; Chen, P.; Yun, J. H.; Hu, Y.; Wang, L. An Electrochemically Treated BiVO₄ Photoanode for Efficient Photoelectrochemical Water Splitting. *Angew. Chem. Int. Ed.* **2017**, 56, 8500-8504.
- (25) Zhang, K.; Jin, B.; Park, C.; Cho, Y.; Song, X.; Shi, X.; Kim, W.; Zeng, H.; Park, J. H. Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. *Nat. Commun.* **2019**, 10, 2001.
- (26) Lee, D.; Kvit, A.; Choi, K. S. Enabling Solar Water Oxidation by BiVO₄ Photoanodes in Basic Media. *Chem. Mater.* 2018, 30, 4704-4712.
- (27) Donchev, V.; Ivanov, T.; Germanova, K.; Kirilov, K. Surface photovoltage spectroscopy-an advanced method for characterization of semiconductor nanostructures. *Trends. Appl. Spectrosc.* **2010**, **8**, 27-66.
- (28) Fan, H.; Jiang, T.; Li, H.; Wang, D.; Wang, L.; Zhai, J.; He, D.; Wang, P.; Xie, T. Effect of BiVO₄ Crystalline Phases on the Photoinduced Carriers Behavior and Photocatalytic Activity. *J. Phys. Chem. C* 2012, 116, 2425-2430.
- (29) Kwon, Y.; Birdja, Y.; Spanos, I.; Rodriguez, P.; Koper, M. T. Highly Selective Electro-Oxidation of Glycerol to Dihydroxyacetone on Platinum in the Presence of Bismuth. ACS Catal. 2012, 2, 759-764.
- (30) Duan, X.; Xu, J.; Wei, Z.; Ma, J.; Guo, S.; Wang, S.; Liu, H.; Dou, S. Metal-Free Carbon Materials for CO₂ Electrochemical Reduction. *Adv. Mater.* 2017, 29, 1701784.
- (31) Wang, W.; Shang, L.; Chang, G.; Yan, C.; Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Yang, D.; Zhang, T. Intrinsic Carbon-Defect-Driven Electrocatalytic Reduction of Carbon Dioxide. *Adv. Mater.* 2019, 31, 1808276.
- (32) Beranek, M. Selectivity of Chemical Conversions: Do Light-Driven Photoelectrocatalytic Processes Hold Special Promise? Angew. Chem. Int. Ed. 2019, 58, 16724-16729.
- (33) Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J.; Yang, P.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. *Nat. Catal.* **2018**, 1, 282-290.
- (34) Frese, K. W.; Canfield, D. Reduction of CO₂ on n-GaAs electrodes and selective methanol synthesis. J. Electrochem. Soc. 1984, 131, 2518-2522.
- (35) Barton, E. E.; Rampulla, D. M.; Bocarsly, A. B. Selective solar-driven reduction of CO₂ to methanol using a catalyzed p-GaP based photoelectrochemical cell. *J. Am. Chem. Soc.* 2008, 130, 6342-6344.
- (36) Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by "Co-Pi" Catalyst-Modified W:BiVO₄. *J. Am. Chem. Soc.* 2011, 133, 18370–18377.
- (37) Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G., Turner, J. A.; Herring, A. M. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO₄ photoelectrodes for solar water oxidation. *Energy Environ. Sci.*, **2011**, *4*, 5028-5034.
- (38) Kuang, Y.; Jia, Q.; Ma, G.; Hisatomi, T.; Minegishi, T.; Nishiyama, H.; Nakabayashi, M.; Shibata, N.; Yamada, T.;

Kudo, A.; Domen, K. Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. *Nat. Energy* **2016**, **2**, 16191.

- (39) Lee, D. K.; Choi, K. S. Enhancing long-term photostability of BiVO₄ photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy **2018**, 3, 53-60.
- (40) Zhang, K.; Wang, L.; Sheng, X.; Ma, M.; Jung, M. S.; Kim, W.; Lee, H.; Park, J. H. Tunable Bandgap Energy and Promotion of H₂O₂ Oxidation for Overall Water Splitting from Carbon Nitride Nanowire Bundles. *Adv. Energy Mater.* 2016, 6, 1502352.
- (41) Wrighton, M. S.; Ginley, D. S.; Wolczanski, P. T.; Ellis, A. B.; Morse, D. L.; Linz, A. Photoassisted electrolysis of water by irradiation of a titanium dioxide electrode. *Proc. Natl. Acad. Sci.* 1975, 72, 1518-1522.
- (42) Trześniewski, B. J.; Digdaya, I. A.; Nagaki, T.; Ravishankar, S.; Herraiz-Cardona, I.; Vermaas, D. A.; Longo, A.; Gimenez, S.; Smith, W. A. Near-complete suppression of surface losses and total internal quantum efficiency in BiVO₄ photoanodes. *Energy Environ. Sci.* 2016, 10, 1517-1529.
- (43) Yang, W.; Prabhakar, R. R.; Tan, J.; Tilley, S. D.; Moon, J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. *Chem. Soc. Rev.* 2019, 48, 4979-5015.
- (44) Frumkin, A.; Nekrasov, L.; Levich, B.; Ivanov, J. The application of the rotating disk electrode with a ring for the investigation of intermediates of electrochemical reactions. J. Electroanal. *Chem.* **1959**, **1**, 84-90.
- (45) Dalton, F. ECS Classics: Historical origins of the rotating ringdisk electrode. *Electrochem. Soc. Interface* 2016, 25, 50-59.

- (46) Zachäus, C.; Abdi, F. F.; Peter, L. M.; van de Krol, R. Photocurrent of BiVO₄ is limited by surface recombination, not surface catalysis. *Chem. Sci.* 2017, 8, 3712–3719.
- (47) Cohen, R.; Kronik, L.; Shanzer, A.; Cahen, D.; Liu, A.; Rosenwaks, Y.; Lorenz. J. K.; Ellis, A. B. Molecular Control over Semiconductor Surface Electronic Properties: Dicarboxylic Acids on CdTe, CdSe, GaAs, and InP. J. Am. Chem. Soc. 1999, 121, 10545-10553.
- (48) Guijarro, N.; Prévot, M. S.; Sivula, K. Surface modification of semiconductor photoelectrodes. *Phys. Chem. Chem. Phys.* 2015, 17, 15655-15674.
- (49) Fuku, K.; Miyase, Y.; Miseki, Y.; Gunji, T.; Sayama, K. WO₃/BiVO₄ photoanode coated with mesoporous Al₂O₃ layer for oxidative production of hydrogen peroxide from water with high selectivity. *RSC Adv.* **2017**, *7*, 47619-47623.
- (50) Fuku, K.; Miyase, Y.; Miseki, Y.; Funaki, T.; Gunji, T.; Sayama, K. Photoelectrochemical hydrogen peroxide production from water on a WO₃/BiVO₄ photoanode and from O₂ on an Au cathode without external bias. *Chem.-Asian J.* **2017**, 12, 1111-1119.
- (51) Murray, A. T.; Voskian, S.; Schreier, M.; Hatton, T. A.; Surendranath, Y. Electrosynthesis of Hydrogen Peroxide by Phase-Transfer Catalysis. *Joule* **2019**, 3, 1-13.
- (52) Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. Direct electrosynthesis of pure aqueous H_2O_2 solutions up to 20% by weight using a solid electrolyte. *Science* 2019, 366, 226-231.

Page 10 of 10

Insert Table of Contents artwork here

