Gold (I)-Catalyzed Claisen Rearrangement of Allenyl Vinyl Ethers; Synthesis of Substituted 1,3-Dienes

Marie E. Krafft,* Kassem M. Hallal, Dinesh V. Vidhani, John W. Cran

Supporting Information

General Information

Unless otherwise noted all commercial materials were used without further purification. Dichloromethane (CH₂Cl₂), Tetrahydrofuran (THF), and diisopropyl amine (i-Pr₂NH) were purchased from J.T.Baker and distilled prior to use. Methanol was purchased from EMD and was used without further purification. 1,4-dioxane was obtained from ACROS organics and was used without purification. Ethyl vinyl ether, copper bromide (CuBr), mercuric acetate (Hg(OAc)₂), dihydropyran, silverhexafluoroantimonate (AgSbF₆), silver triflate (AgOTf), silvertetrafluoroborate (AgBF₄), silvercarbonate (Ag₂CO₃), silverperchlorate (AgClO₄). (Chloro[1,3bis(2,6-diisopropylphenyl)imidazol-2-ylidene]gold(I) (IPrAuCl) was purchased from Strem chemicals and AuClPPh₃ and all other gold catalysts were purchased from Aldrich.

Thin-Layer chromatographic (TLC) analysis of the reaction was performed using Merck silica gel 60 F_{254} TLC plates and was visualized by anisaldehyde staining and UV. Flash column chromatography was performed using Merck 60 silica gel (230-400 mesh) and Alumina (80-200 mesh). ¹H and ¹³C NMR spectra were recorded with Bruker DRX-500 and 600 spectrometers and referenced to CDCl₃ or C₆D₆. Mass spectral data were obtained via the mass spectrometry lab facility at Florida State University. Infrared (IR) spectra were recorded as thin films on sodium chloride plates using a Perkin-Elmer FT-IR Paragon 1000 Fourier Transform spectrometer with frequencies given in reciprocal centimeters (cm⁻¹).

Propargylic alcohols were prepared by the addition of ethynylmagnesium bromide to the corresponding aldehyde. Allenols were prepared according to Crabbe' homologation method.¹ The allenyl vinyl ethers were prepared according to Yamamoto's procedure.² Spectroscopic data for compounds \mathbf{B} , ${}^{3}\mathbf{D}$, 4 were previously reported.

Reported yields refer to isolated yields of pure material as determined by spectroscopic analysis.

General procedure for synthesis of allenyl vinyl ethers

Vinyl ethers were prepared according to the method of Yamamoto,² the allenyl alcohol was dissolved in ethyl vinyl ether (0.1M) and then mercuric acetate (0.66 equiv.) was added. The reaction mixture was stirred at room temperature overnight. Potassium carbonate was added to the reaction mixture and the product was extracted with diethyl ether, the organic layer was dried over sodium sulfate and then the product was purified using column chromatography with hexane as an eluent.

Synthesis of (1-(vinyloxy)buta-2,3-dien-1-yl)benzene (1a). (1-(vinyloxy)buta-2,3-dien-1-yl)benzene was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using an alumina column and hexane as an eluent and afforded the allenyl vinyl ether in 66% yield as a colorless oil:¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.27 (m, 5H), 6.44 (dd, J = 14.2, 6.7 Hz, 1H), 5.38 (ddd, J = 7.8, 6.5, 6.5 Hz, 1H), 5.32 (ddd J = 7.8, 1.55, 1.45 Hz, 1H), 4.93 (δ_{obs}) (ABdd, $J_{AB} = 11$ Hz, J = 6.5, 1.55 Hz, $\Delta \upsilon = + 23.5$ Hz, 1H; ABdd, $J_{AB} = 11$ Hz, J = 6.5, 1.45 Hz, $\Delta \upsilon = - 23.5$ Hz, 1H), 4.39 (dd, J = 14.2, 1.8 Hz, 1H), 4.11 (dd, J = 6.7, 1.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 208.72, 150.08, 140.15, 128.64, 128.09, 126.51, 92.52, 90.11, 79.54, 77.35; IR (cm⁻¹) 1617.64, 1636.78, 1956.06, 2894.81, 3031.30, 3064.35; HRMS (EI⁺) calc'd for [C₁₂H₁₂O]⁺: m/z 172.08882, found 172.08888.

Synthesis of 1-chloro-4-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene (1b). 1-chloro-4-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using an alumina column and hexane as an eluent and the allenyl vinyl ether was obtained in 75% yield as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.28 (m, 2H), 7.12 – 6.97 (m, 2H), 6.42 (dd, J = 14.2, 6.7 Hz, 1H), 5.33 (ddd, J = 7.5, 6.3, 6.3 Hz, 1H), 5.28 (d, J = 7.5 Hz, 1H), 4.86 (δ_{obs}) (ABdd, $J_{AB} = 11.5$ Hz, J = 6.3, 1.4 Hz, $\Delta v = + 21.82$ Hz, 1H; ABdd, $J_{AB} = 11.5$ Hz, J =

6.3, 1.2 Hz, \otimes { = - 21.82 Hz, 1H), 4.37 (dd, *J* = 14.2, 1.9 Hz, 1H), 4.11 (dd, *J* = 6.7, 1.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 208.87, 150.01, 138.87, 133.82, 128.78, 127.90, 92.29, 90.42, 78.76, 77.64; IR (cm⁻¹) 1617.39, 1637.5, 1956.21, 2891.34, 2988.25, 3117.38; HRMS (EI⁺) calc'd for [C₁₂H₁₁OCl]⁺: m/z 206.04985, found 206.05019.

Synthesis of **1c** began with THP protection of propargylic alcohol **A** giving rise to the THPprotected alcohol **B** in 95% yield.³ Treatment of ether **B** with butyllithium and benzaldehyde led to the formation of the mono-protected diol **C** in 75% yield. Reduction of **C** using lithium aluminum hydride gave allenyl alcohol **D** in 75% yield.⁴ Allenyl alcohol **D** was then converted into vinyl ether **1c** using ethyl vinyl ether and mercuric acetate.

Synthesis of 1-phenyl-3-(1-((tetrahydro-2H-pyran-2-yl)oxy)cyclohexyl)prop-2-yn-1-ol, C. 1-phenyl-3-(1-((tetrahydro-2H-pyran-2-yl)oxy)cyclohexyl)prop-2-yn-1-ol C was prepared according to the procedure of Cheung.⁵ Treatment of **B** with butyllithium and benzaldehyde led to the formation of the mono-protected diol C in 75% yield. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 75 % yield as a yellow oil: ¹H NMR (500 MHz, C₆D₆) δ 7.62-7.57 (m, 2H), 7.19-7.14 (m, 2H), 7.09-7.04 (m, 1H), 5.48-5.41(m,2H), 3.96-3.88 (m, 1H), 3.44-3.36 (m, 1H), 2.2(s, 1H), 2.02-1.94 (m, 1H), 1.91-1.81 (m, 1H), 1.8-1.54 (m, 8H), 1.4-1.21 (m,4H), 1.195-1.10 (m, 1H); ¹³C NMR (126 MHz, C₆D₆) δ128.28, 127.98, 127.80, 126.65, 94.94, 74.61, 64.23, 62.09, 38.81, 31.92, 25.58, 25.37, 23.06, 19.64; HRMS (EI⁺) calc'd for $[C_{20}H_{25}O_3]^+$: m/z 313.18038, found 313.18201.

Synthesis of (3-cyclohexylidene-1-(vinyloxy)allyl)benzene (1c). (3-cyclohexylidene-1-(vinyloxy)allyl)benzene was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using an alumina column and hexane as an eluent and afforded the allenyl vinyl ether in 60% yield as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.34 (m, 2H), 7.17-7.13 (m, 2H), 7.08-7.04 (m, 1H), 6.44 (dd, J = 14.2, 6.7 Hz, 1H), 5.38 – 5.34 (m, 1H), 5.25 (d, J = 6.76 Hz, 1H), 4.5 (dd, J = 14.2, 1.6 Hz, 1H), 4.06 (dd, J = 6.6, 1.6 Hz, 1H), 2.06-1.9 (m, 4H), 1.44-1.35 (m, 2H), 1.3-1.17 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 199.71, 150.8, 141.6, 128.48, 127.71, 126.88, 105.2, 92, 89.7, 80.6, 31.5, 27.3, 26.2 ; IR (cm⁻¹) 1614.55, 1635.19, 1967.28, 2854.24, 2887.73, 2928.33, 3030.09, 3063.90, 3086.76, 3116.01; HRMS (EI⁺) calc'd for [C₁₇H₂₀O]⁺: m/z 240.15142, found 240.15116.

Synthesis of 4-(vinyloxy)nona-1,2-diene (1d). 4-(vinyloxy)nona-1,2-diene was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using an alumina column and hexane as an eluent and afforded the allenyl vinyl ether in 60% yield as a colorless oil: ¹H NMR (500 MHz, C₆D₆) δ 6.35 (dd, J = 14.2, 6.6 Hz, 1H), 5.13 (ddd, J = 6.7, 6.6, 6.6 Hz, 1H), 4.86 (δ_{obs}) (ABdd, $J_{AB}=11$, J = 6.7, 1.55 Hz, $\Delta \upsilon = +15.18$, 1H; ABdd, $J_{AB}=11$, J = 6.3, 1.55 Hz, $\Delta \upsilon = -15.18$, 1H), 4.3 (dd, J = 14.1, 1.5 Hz, 1H), 4.15 (ddd, J = 6.7, 1.5, 1.5 Hz, 1H), 4.05 (dd, J = 6.6, 1.5 Hz, 1H), 1.74 – 1.61 (m, 1H), 1.51 (tt, J = 10.5, 5.7 Hz, 1H), 1.44 – 1.01 (m, 6H), 0.84 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, C₆D₆) δ 208.72, 150.92, 92.06, 88.92, 77.77, 76.26, 35.70, 31.90, 25.23, 22.90, 14.18; IR (cm⁻¹) 1614.84, 1635.58, 1957.17, 2346.04, 2372.94, 2733.77, 2861.62, 2932.46, 3024.40, 3046.73, 3119.21; HRMS (EI⁺) calc'd for [C₁₁H₁₈O]⁺: m/z 166.13577, found 166.13540.

Synthesis of 1-(vinyloxy)buta-2,3-dien-1-yl)cyclohexane (1e). 1-(vinyloxy)buta-2,3-dien-1yl)cyclohexane was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using an alumina column and hexane as an eluent and afforded the allenyl vinyl ether in 65% yield as a colorless oil: ; ¹H NMR (500 MHz, C₆D₆) **δ** 6.37 (dd, J = 14.1, 6.0 Hz, 1H), 5.0 (ddd, J = 8.1, 6.8, 6.6 Hz, 1H), 4.57 (**δ**_{obs}) (ABdd, $J_{AB} = 11$ Hz, J = 6.8, 1.3 Hz, $\Delta \upsilon = +15.8$ Hz, 1H; ABdd, $J_{AB} = 11$ Hz, J =6.6, 1.4 Hz, $\Delta \upsilon = -15.8$ Hz, 1H), 4.47 (dd, J = 14.1, 1.4 Hz, 1H), 4.06 (ddd, J = 8.1, 1.4, 1.3, 0.75 Hz, 1H), 3.92 (dd, J = 7.9, 1.4 Hz, 1H), 1.94 – 1.80 (m, 1H), 1.74 – 1.44 (m, 5H), 1.19 – 0.91 (m, 5H); ¹³C NMR (126 MHz, C₆D₆) **δ** 209.21, 151.30, 90.39, 88.81, 82.63, 75.72, 43.05, 28.83, 26.76, 26.24; IR (cm⁻¹)1613.07, 1634.64, 1957.05, 2354.99, 2368.41, 2670.53, 2797.46, 2858.10, 2944.86, 3023.59, 3118.15; HRMS (EI⁺) calc'd for [C₁₂H₁₈O]⁺: m/z 178.13577, found 178.13610.

Synthesis of 5,5-dimethyl-4-(vinyloxy)octa-1,2,7-triene (1f). 5,5-dimethyl-4-(vinyloxy)octa-1,2,7-triene was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using alumina column and hexane as an eluent and afforded the allenyl vinyl ether in 60% yield as a colorless oil: ¹H NMR (500 MHz, C₆D₆) **δ** 6.33 (dd, J = 14.1, 6.6 Hz, 1H), 5.75 (ddt, J = 16.6, 10.5, 7.5 Hz, 1H), 5.01 (dd, J = 16.6, 2.8 Hz, 1H), 4.98 (dd, J = 10.5, 2.8 Hz, 1H), 4.95 (ddd, J = 8.5, 6.66, 6.6 Hz, 1H), 4.55 (**δ**_{obs}) (ABdd, $J_{AB} = 11$ Hz, J = 6.66, 1.2 Hz, $\Delta \upsilon = + 17.5$ Hz, 1H; ABdd, $J_{AB} = 11$ Hz, J = 6.6, 1.3 Hz, $\Delta \upsilon = - 15.8$ Hz, 1H), 4.46 (dd, J = 14.1, 1.4 Hz, 1H), 4.05 (dd, J = 6.6, 1.4 Hz, 1H), 3.91 (ddd, J = 8.6, 1.3, 1.1 Hz, 1H), 2.16 (dd, J = 13.5, 7.4 Hz, 1H), 1.99 (dd, J = 13.5, 7.4 Hz, 1H), 0.93 (s, 3H), 0.85 (s, 3H); ¹³C NMR (126 MHz, C₆D₆) **δ** 209.75, 151.27, 134.89, 117.85, 88.98, 88.60, 84.45, 75.51, 43.56, 38.45, 22.96, 22.72; IR (cm⁻¹)1614.41, 1636.51, 1957.44,

2345.85, 2366.55, 2876.89, 2933.43, 2965.27, 3005.78, 3077.76, 3119.69; HRMS (EI⁺) calc'd for $[C_{12}H_{18}O]^+$: m/z 178.13577, found 178.13556.

Synthesis of (1-(vinyloxy)buta-2,3-dien-1-yl)cyclopropane (1g). (1-(vinyloxy)buta-2,3-dien-1-yl)cyclopropane was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using an alumina column and hexane as an eluent and afforded the allenyl vinyl ether in 55% yield as a colorless oil: ¹H NMR (500 MHz, C₆D₆) δ 6.33 (dd, *J* = 14.1, 6.6 Hz, 1H), 5.14 (ddd, *J* = 6.8, 6.4, 6.3 Hz, 1H), 4.58 (δ_{obs}) (ABdd, *J*_{AB} = 11 Hz, *J* = 6.4, 1.8 Hz, $\Delta \upsilon$ = + 13.6 Hz, 1H; ABdd, *J*_{AB} = 11 Hz, *J* = 6.3, 1.6 Hz, $\Delta \upsilon$ = - 13.6 Hz, 1H), 4.46 (ddd, *J* = 14.1, 1.4 Hz, 1H) 4.47 (dd, *J* = 14.1, 1.4 Hz, 1H), 4.05 (dd, *J* = 6.6, 1.4 Hz, 1H), 3.64 (dddd, *J* = 7.3, 6.8, 1.8, 1.6 Hz, 1H), 1.05 – 0.94 (m, 1H), 0.41 – 0.24 (m, 3H), 0.23 – 0.13 (m, 1H); ¹³C NMR (126 MHz, C₆D₆) δ 208.82, 150.88, 91.31, 89.08, 81.18, 76.32, 16.10, 3.51, 2.14; IR (cm⁻¹)1614.82, 1635.95, 2345.89, 2367.53, 2888.82, 3010.67, 3084.60, 3118.1; HRMS (EI⁺) calc'd for [C₉H₁₂O]⁺: m/z136.08882, found 136.08901.

Synthesis of 4-(1-(vinyloxy)buta-2,3-dien-1-yl)benzonitrile (1h). 4-(1-(vinyloxy)buta-2,3dien-1-yl)benzonitrile was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using an alumina column (10:1 Hexane : EtOAc) and the allenyl vinyl ether was obtained in 65% yield as a colorless oil: ¹H NMR (600 MHz, C₆D₆) δ 7.05 – 7.02 (m, 2H), 6.94 – 6.92 (m, 2H), 6.21 (dd, *J* = 14.2, 6.7 Hz, 1H), 5.08 (d, *J* = 7.6, 1H), 4.96 (ddd, *J* = 7.6, 6.4, 6.3 Hz, 1H), 4.78 (δ_{obs}) (ABdd, *J*_{AB} = 11.6 Hz, *J* = 6.3, 1.3 Hz, Δυ = + 21.44 Hz, 1H; ABdd, *J*_{AB} = 11.6 Hz, *J* = 6.2, 1.5 Hz, Δυ= - 21.44 Hz, 1H), 4.33 (dd, *J* = 14.2, 1.9 Hz, 1H), 4.03 (dd, *J* = 6.7, 1.9 Hz, 1H); ¹³C NMR (151 MHz, C₆D₆) δ 208.88, 149.98, 145.12, 132.14, 126.98, 118.61, 112.19, 92.12, 90.51, 78.42, 77.48; IR (cm⁻¹) 1637.88, 1724.79, 1956.20, 2229.28, 2894.09, 2991.65, 3066.97, 3117.88; HRMS (EI⁺) calc'd for [C₁₃H₁₁ON]⁺: m/z 197.08407, found 197.08373.

Synthesis of 1-fluoro-4-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene (1i). 1-fluoro-4-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using an alumina column and hexane as an eluent and the allenyl vinyl ether was obtained in 71% yield as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.33 (m, 2H), 7.07 (ddd, J = 8.7, 5.8, 2.4 Hz, 2H), 6.44 (dd, J = 14.2, 6.7 Hz, 1H), 5.36 (ddd, J = 7.4, 6.5, 6.4 Hz, 2H), 5.29 (d, J = 7.4 Hz, 1H), 4.86 (δ_{obs}) (ABdd, $J_{AB} = 11.4$ Hz, J = 6.5, 1.6 Hz, $\Delta \upsilon = + 22.26$ Hz, 1H; ABdd, $J_{AB} = 11.4$ Hz, J = 6.5, 1.5 Hz, $\Delta \upsilon = -22.26$ Hz, 1H), 4.39 (dd, J = 14.2, 1.9 Hz, 1H), 4.13 (dd, J = 6.7, 1.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 208.85, 161.54, 150.08, 136.18, 128.24, 115.41, 92.45, 90.33, 78.85, 77.55; IR (cm⁻¹) 1510.51, 1606.39, 1618.31, 1637.62, 1956.48, 2894.16, 3048, 3118.28; HRMS (EI⁺) calc'd for [C₁₂H₁₁OF]⁺: m/z 190.07940., found 190.07965.

Synthesis of 1-methyl-2-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene (1j). 1-methyl-2-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using an alumina column and hexane as an eluent and afforded the allenyl vinyl ether in 60 % yield as a colorless oil: ¹H NMR (500 MHz, C₆D₆) δ 7.50 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.12 – 7.00 (m, 2H), 6.99 – 6.93 (m, 1H), 6.34 (dd, *J* = 14.3, 6.7 Hz, 1H), 5.41 (d, *J* = 7.4 Hz, 1H), 5.31 (ddd, *J* = 7.4, 6.6, 6.5 Hz, 1H), 4.87 (δ_{obs}) (ABdd, *J*_{AB} = 11.2 Hz, *J* = 6.6, 1.8 Hz, Δv = + 30 Hz, 2H; ABdd, *J*_{AB} = 11.2 Hz, *J* = 6.5, 1.8 Hz, Δv = - 30 Hz, 1H), 4.03 (dd, *J* = 6.7, 1.7 Hz, 1H), 2.14 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 209, 150.6, 138.8, 135.3, 130.91,127.92, 126.54, 126.49, 92.11, 89.79, 77.07, 76.95, 19.02; IR (cm⁻¹) 1615.32, 1653.94, 1956.40, 2929.25, 2955.59, 3026.13, 3067.66, 3116.93; HRMS (EI⁺) calc'd for [C₁₃H₁₄O]⁺: m/z 186.10447, found 186.10467.

Synthesis of 1-ethyl-2-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene (1k). 1-ethyl-2-(1-(vinyloxy) buta-2,3-dien-1-yl)benzene was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using an alumina column and hexane as an eluent and afforded the allenyl vinyl ether in 71 % yield as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.46 (m, 1H), 7.35 – 7.22 (m, 3H), 6.45 (dd, J = 14.2, 6.7 Hz, 1H), 5.41 (d, J = 7.5 Hz, 1H), 5.31 (ddd, J = 7.5, 6.6, 6.6 Hz, 1H), 4.87 (δ_{obs}) (ABdd, $J_{AB} = 11.2$ Hz, J = 6.6, 1.65 Hz, $\Delta v = + 30$ Hz, 1H; ABdd, $J_{AB} = 11.2$ Hz, J = 6.6, 1.55 Hz, $\Delta v = - 30$ Hz, 1H), 4.39 (dd, J = 14.2, 1.7 Hz, 1H), 4.12 (dd, J = 6.7, 1.7 Hz, 1H), 2.76 (qd, J = 7.6, 2.5 Hz, 2H), 1.29 (dd, J = 7.6, 7.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 208.78, 150.21, 141.22, 137.69, 128.80, 128.16, 126.49, 126.35, 92.29, 89.96, 77.25, 76.33, 25.39, 15.43; IR (cm⁻¹) 1615.33, 1726.11, 1956.35, 2876.3, 2934.98, 2968.81, 3024.77, 3066.05, 3117.54; HRMS (EI⁺) calc'd for [C₁₄H₁₆O]⁺: m/z 200.12012, found 200.12014.

Synthesis of 1-methyl-4-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene (11). 1-methyl-4-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using alumina column and hexane as an eluent and afforded the allenyl vinyl ether in 80% yield as a colorless oil: ¹H NMR (600 MHz, CDCl₃) δ 7.30 (d, J = 7.3 Hz, 2H), 7.22 (d, J = 7.6 Hz, 2H), 6.47 (dd, J = 14.1, 6.6 Hz, 1H), 5.41 (ddd, J = 7.6, 6.6, 6.6 Hz, 1H), 5.32 (d, J = 7.6 Hz, 1H), 4.9 (δ_{obs}) (ABdd, $J_{AB} = 11.2$ Hz, J = 6.7, 6.5 Hz, $\Delta v = 29$ Hz, 2H), 4.41 (dd, J = 14.2, 1.6 Hz, 1H), 4.13 (dd, J = 6.6, 1.6 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 208.77, 150.25, 137.84, 137.46, 129.32, 126.48, 92.62, 90.02, 79.50, 77.26, 21.30; IR (cm⁻¹) 1514.26, 1617.45, 1626.58, 1956.56, 3868.4, 2922.76, 3025.77, 2988.88, 3050.66, 3117.31; HRMS (EI⁺) calc'd for $[C_{13}H_{14}O]^+$: m/z 186.10447, found 186.10397.

Synthesis of 1,3-dimethyl-2-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene (1m). 1,3-dimethyl-2-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using an alumina column and hexane as an eluent and afforded the allenyl vinyl ether in 72% yield as a colorless oil : ¹H NMR (600 MHz, CDCl₃) δ 7.10 (dd, J = 7.9, 7.1 Hz, 1H), 7.01 (d, J = 7.5 Hz, 2H), 6.36 (dd, J = 15.0, 5.7 Hz, 1H), 5.78 (ddd, J = 6.6, 2.7, 2.5 Hz, 1H), 5.56 (ddd, J = 6.6, 6.6, 6.6 Hz, 1H), 4.83 (δ_{obs}) (ABdd, $J_{AB} = 11.3$ Hz, J = 6.5, 2.6 Hz, $\Delta \upsilon = + 28.5$ Hz, 1H; ABdd, $J_{AB} = 11.3$ Hz, J = 6.6, 2.6 Hz, $\Delta \upsilon = - 28.5$ Hz, 1H), 4.29 (dd, J = 14.1, 1.7 Hz, 1H), 4.01 (dd, J = 6.6, 1.7 Hz, 1H), 2.42 (s, 6H), ¹³C NMR (151 MHz, CDCl₃) δ 208.55, 149.95, 136.35, 135.91, 129.27, 127.82, 90.58, 89.42, 77.20, 76.33, 20.81; IR (cm⁻¹) 1614.78, 1956.28, 2345.78, 2871.97, 2928.72, 2968.74, 3024.22, 3067.55, 3118.08; HRMS (EI⁺) calc'd for [C₁₄H₁₆O]⁺: m/z 200.12012, found 200.12042.

Synthesis of 1,3,5-trimethyl-2-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene (1n). 1,3,5trimethyl-2-(1-(vinyloxy)buta-2,3-dien-1-yl)benzene was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers. The crude mixture was purified by flash chromatography using an alumina column and hexane as an eluent and afforded the allenyl vinyl ether in 70% yield as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 6.84 (s, 2H), 6.35 (dd, J =14.1, 6.6 Hz, 1H), 5.75 (ddd, , J = 6.7, 2.55, 2.55 Hz 1H), 5.54 (ddd, J = 6.7, 6.6, 6.6 Hz, 1H), 4.82 (δ_{obs}) (ABdd, $J_{AB} = 11.2$ Hz, J = 6.6, 2.55 Hz, $\Delta \upsilon = + 24.8$ Hz, 1H; ABdd, $J_{AB} = 11.2$ Hz, J =6.6, 2.55 Hz, $\Delta \upsilon = - 24.8$ Hz, 1H), 4.28 (dd, J = 14.1, 1.6 Hz, 1H), 4.00 (dd, J = 6.6, 1.6 Hz, 1H), 2.38 (s, 6H), 2.26 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 208.52, 149.96, 137.38, 136.24, 132.97, 130.08, 90.73, 89.36, 77.16, 76.25, 20.99, 20.70; IR (cm⁻¹) 1578.39, 1612.71, 1634.96, 1956.11, 2864.16, 2921, 2948.02, 2969.48, 3117.03, 3407.42; HRMS (EI⁺) calc'd for $[C_{15}H_{18}O]^+$: m/z 214.13577, found 214.13534.

Synthesis of 1-(4-methoxyphenyl)buta-2,3-dien-1-ol (10). 1-(4-methoxyphenyl)buta-2,3dien-1-ol was prepared according to the same procedure used for the synthesis of allenyl vinyl ethers The crude mixture was purified by flash chromatography using an alumina column (15:1 Hexane : EtOAc) as an eluent and afforded the allenyl vinyl ether in 65% yield as a colorless oil: ¹H NMR (500 MHz, C₆D₆) **δ** 7.25 – 7.19 (m, 2H), 6.79 – 6.73 (m, 2H), 6.39 (dd, J = 14.1, 6.6 Hz, 1H), 5.39 (ddd, J = 7.4, 6.6, 1.8, 1.6 Hz, 1H), 5.21 (ddd, J = 7.4, 1.9, 1.8 Hz, 1H), 4.58 (**δ**_{obs}) (ABdd, $J_{AB} = 11$ Hz, J = 6.6, 1.9 Hz, $\Delta \upsilon = + 20.4$ Hz, 1H; ABdd, $J_{AB} = 11$ Hz, J = 6.5, 1.8 Hz, $\Delta \upsilon = - 20.4$ Hz, 1H), 4.51 (dd, J = 14.2, 1.6 Hz, 1H), 4.07 (dd, J = 6.7, 1.6 Hz, 1H), 3.27 (s, 3H); ¹³C NMR (126 MHz, C₆D₆) **δ** 208.79, 159.83, 150.61, 132.87, 128.11, 114.11, 93.31, 89.87, 79.40, 77.06, 54.72; IR (cm⁻¹) 1513.54, 1586.29, 1613.18, 1956.25, 2836.92, 2908.12, 2957.61, 2935.63, 3001.14, 3037.71, 3116.36; HRMS (EI⁺) calc'd for [C₁₃H₁₄O₂]⁺: m/z 202.09938, found 202.10044.

C. General Procedure for the gold (I)-Catalyzed Claisen Rearrangement of Allenyl Vinyl Ethers

To a solution of AgSbF₆ in CH₂Cl₂ (0.01M) was added a solution of IPrAuCl in CH₂Cl₂ (0.01M). After stirring for 5 min at rt, the mixture was filtered through a cotton plug and added to a mixture of the allenyl vinyl ether in CH₂Cl₂ (0.05M). The reaction mixture was stirred at rt until complete consumption of the starting material was observed by TLC. The reaction mixture was then diluted with MeOH (2x CH₂Cl₂) and NaBH₄ (1 equiv.) was added. The resulting mixture was stirred for 30 min, concentrated and the product was purified using column chromatography.

Synthesis of (E)-3-methylene-5-phenylpent-4-en-1-ol (2a). (E)-3-methylene-5-phenylpent-4-en-1-ol was prepared according to the general procedure for the gold-catalyzed Claisen rearrangement of allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 86% yield as a white solid (m.p = 39 °C): ¹H NMR (500 MHz, C₆D₆) δ 7.31 – 7.25 (m, 2H), 7.22 – 7.05 (m, 3H), 6.76 (d, *J* = 16.3 Hz, 1H), 6.58 (d, *J* = 16.3 Hz, 1H), 5.12 (s, 1H), 5.05 (s, 1H), 3.66 (t, *J* = 6.5 Hz, 2H), 2.48 (t, *J* = 6.5 Hz, 2H); ¹³C NMR (126 MHz, C₆D₆) δ 143.05, 137.56, 130.95, 128.85, 128.83, 127.77, 126.87, 117.97, 61.32, 35.69; IR (cm⁻¹) 1602.95, 2345.91, 2368.8, 2883.25, 2947.87, 3026.55, 3081.97, 3343.85; HRMS (EI⁺) calc'd for [C₁₂H₁₄O]⁺: m/z 174.10447, found 174.10423.

Synthesis of (E)-5-(4-chlorophenyl)-3-methylenepent-4-en-1-ol (2b). (E)-5-(4-chloro phenyl)-3-methylenepent-4-en-1-ol was prepared according to the general procedure for the goldcatalyzed Claisen rearrangement of allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 80% yield as a white solid (m.p = 41 °C): ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.25 (m, 4H), 6.78 (d, *J* = 16.3 Hz, 1H), 6.55 (d, *J* = 16.3 Hz, 1H), 5.27 (s, 1H), 5.17 (s, 1H), 3.82 (td, *J* = 6.3, 5.8 Hz, 2H), 2.62 (t, *J* = 6.5 Hz, 2H), 1.51 (t, *J* = 5.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 142.31, 135.67, 133.38, 131.10, 128.95, 127.77, 127.55, 118.89, 61.31, 35.45; IR (cm⁻¹) 1603.93, 2345.78, 2366.84, 28

Synthesis of (E)-3-cyclohexylidene-5-phenylpent-4-en-1-ol (2c). (E)-3-cyclohexylidene-5-phenylpent-4-en-1-ol was prepared according to the same procedure used for the gold-catalyzed Claisen rearrangement of allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the propargylic alcohol in 65% yield as a white solid (m.p = 39 °C): ¹H NMR (500 MHz, C₆D₆) δ 7.37 – 7.30 (m, 3H), 7.20 – 7.11 (m, 2H), 7.10 – 7.02 (m, 1H), 6.67 (d, *J* = 16.1 Hz, 1H), 3.58 (t, *J* = 7.4 Hz, 2H), 2.65 (t, *J* = 7.4 Hz, 2H), 2.31 (d, *J* = 6.0 Hz, 2H), 2.24 – 2.16 (m, 2H), 1.45 (m, 6H), 1.17 (s, 1H); ¹³C NMR (126 MHz, C6D6) δ 143.32, 138.93, 128.85, 127.44, 127.16, 126.60, 124.89, 62.04, 32.14, 31.90, 30.78, 28.93, 28.71, 27.13; IR (cm⁻¹) 1447.18, 1494.11, 1594.96, 1619.05, 2852.61, 2926.53, 2969.02, 3022.30, 3045.51, 3078.32, 3335.03; HRMS (EI⁺) calc'd for $[C_{17}H_{22}O]^+$: m/z 242.16707, found 242.16668.

Synthesis of (E)-3-methylenehept-4-en-1-ol (2d). (E)-3-methylenehept-4-en-1-ol was prepared according to the general procedure for the gold-catalyzed Claisen rearrangement for allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 65% yield as a colorless oil: ¹H NMR (500 MHz, C₆D₆) δ 6.04 (d, J = 16.4 Hz, 1H), 5.62 (dt, J = 16.4, 7.0 Hz, 1H), 4.94 (d, J = 1.1 Hz, 1H), 4.86 (s, 1H), 3.57 (td, J = 6.7, 5.4 Hz, 2H), 2.35 (td, J = 6.7, 1.1 Hz, 2H), 1.97 (qd, J = 7.4, 1.3 Hz, 2H), 1.34 – 1.16 (m, 6H), 1.03 (t, J = 5.4 Hz, 1H), 0.87 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, C₆D₆) δ 143.15, 132.25, 130.85, 115.09, 61.34, 36.08, 33.11, 31.74, 29.37, 22.87, 14.22; IR (cm⁻¹) 1606.80, 1956.31, 2345.72, 2366.08, 2857.01, 2873.64, 2927.84, 2957.85, 3013.16, 3081.85, 3331.41; HRMS (EI⁺) calc'd for [C₁₁H₂₀O]⁺: m/z 168.15142, found 168.15099.

Synthesis of (E)-5-cyclohexyl-3-methylenepent-4-en-1-ol (2e). (E)-5-cyclohexyl-3methylene pent-4-en-1-ol was prepared according to the general procedure for the gold-catalyzed Claisen rearrangement of allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 75% yield as a colorless oil: ¹H NMR (500 MHz, C₆D₆) δ 6.03 (d, *J* = 16.8 Hz, 1H), 5.61 (dd, *J* = 16.0, 7.1 Hz, 1H), 4.96 (d, *J* = 2.0 Hz, 1H), 4.87 (d, *J* = 1 Hz, 1H), 3.58 (t, *J* = 6.7 Hz, 2H), 2.35 (td, *J* = 6.7, 1.0 Hz, 2H), 1.95 – 1.82 (m, 1H), 1.71 – 1.54 (m, 5H), 1.26 – 0.96 (m, 5H); ¹³C NMR (126 MHz, C₆D₆) δ 143.30, 136.42, 129.81, 115.21, 61.36, 41.22, 36.04, 33.13, 26.41, 26.30; IR (cm⁻¹) 1605.78, 1647.3, 2668.58, 2852.18, 2925.65, 3002.27, 3081.4, 3337.51; HRMS (EI⁺) calc'd for [C₁₂H₂₀O]⁺: m/z 180.15142, found 180.15135.

Synthesis of (E)-6,6-dimethyl-3-methylenenona-4,8-dien-1-ol (2f). (E)-6,6-dimethyl-3methylenenona-4,8-dien-1-ol was prepared according to the general procedure for the goldcatalyzed Claisen rearrangement of allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 60% yield as a colorless oil: ¹H NMR (500 MHz, C₆D₆) δ 6.01 (d, *J* = 16.2 Hz, 1H), 5.78 – 5.63 (m, 2H), 5.05 – 4.94 (m, 3H), 4.90 (s, 1H), 3.61 (s, 2H), 2.46 – 2.36 (m, 2H), 1.99 – 1.93 (m, 2H), 0.94 (s, 6H); ¹³C NMR (126 MHz, C₆D₆) δ 143.13, 139.79, 135.60, 128.25, 117.15, 115.61, 61.40, 47.70, 36.08, 26.98; IR (cm⁻¹) 1606.26, 1639.73, 2345.71, 2365.92, 2961.87, 3004.25, 3078.41, 3345.14; HRMS (EI⁺) calc'd for [C₁₂H₂₀O]⁺: m/z 180.15142, found 180.15143.

Synthesis of (E)-5-cyclopropyl-3-methylenepent-4-en-1-ol (2g). (E)-5-cyclopropyl-3-methylenepent-4-en-1-ol was prepared according to the general procedure for the gold-catalyzed

Claisen rearrangement of allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 77% yield as a colorless oil: ¹H NMR (500 MHz, C₆D₆) δ 6.13 (d, *J* = 15.7 Hz, 1H), 5.13 (dd, *J* = 15.7, 8.8 Hz, 1H), 4.92 (s, 1H), 4.82 (d, *J* = 0.9 Hz, 1H), 3.55 (t, *J* = 6.7 Hz, 2H), 2.32 (td, *J* = 6.7, 0.9 Hz, 2H), 1.27 – 1.16 (m, 1H), 0.57 – 0.48 (m, 2H), 0.28 – 0.21 (m, 2H); ¹³C NMR (126 MHz, C₆D₆) δ 142.88, 134.55, 129.95, 114.23, 61.22, 35.93, 14.56, 7.91, 7.37; IR (cm⁻¹) 1605.29, 1644.79, 2345.92, 2371.48, 2883.32, 2947.7, 3006.7, 3082.94, 3357.67; HRMS (EI⁺) calc'd for [C₉H₁₄O]⁺: m/z 138.10447, found 138.10417.

Synthesis of (E)-4-(5-hydroxy-3-methylenepent-1-en-1-yl)benzonitrile (2h). (E)-4-(5-hydroxy-3-methylenepent-1-en-1-yl)benzonitrile was prepared according to the general procedure for the gold-catalyzed Claisen rearrangement of allenyl vinyl ethers. The crude mixture was purified by flash chromatography (2:1 Hexane:EtOAc) and afforded the alcohol in 93% yield as a white solid (m.p = 42 °C): ¹H NMR (500 MHz, C₆D₆) δ 7.04 – 6.95 (m, 2H), 6.74 – 6.69 (m, 2H), 6.48 (d, J = 16.2 Hz, 1H), 6.19 (d, J = 16.3 Hz, 1H), 5.08 (s, 1H), 5.00 (d, J = 0.9 Hz, 1H), 3.50 (t, J = 6.7 Hz, 2H), 2.31 (td, J = 6.7, 0.9 Hz, 2H), 0.95 (s,1H); ¹³C NMR (126 MHz, C₆D₆) δ 142.68, 141.26, 134.05, 132.24, 126.01, 126.83, 119.00, 118.98, 111.11, 61.19, 35.36; IR (cm⁻¹) 1603.82, 2226.22, 2345.89, 2367.79, 2941.66, 3397.56; HRMS (EI⁺) calc'd for [C₁₃H₁₃ON]⁺: m/z 199.09972, found 199.09905.

Synthesis of (E)-5-(4-fluorophenyl)-3-methylenepent-4-en-1-ol (2i). (E)-5-(4-fluorophenyl)-3-methylenepent-4-en-1-ol was prepared according to the general procedure for the gold-catalyzed Claisen rearrangement of allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 75% yield as a white solid (m.p. = 42°C): ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.06 – 6.97 (m, 2H),

6.73 (d, J = 16.3 Hz, 1H), 6.57 (d, J = 16.3 Hz, 1H), 5.26 (s, 1H), 5.15 (d, J = 1.0 Hz, 1H), 3.85 – 3.78 (t, J = 6.5 Hz, 2H), 2.62 (td, J = 6.5, 1.0 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 142.34, 133.34, 130.28, 128.12, 127.61, 118.41, 115.82, 115.65, 61.30, 35.47; IR (cm⁻¹) 1508.59, 1558.72, 1865.46, 2344.28, 2363.14, 2879.65, 2958.65, 3301.65; HRMS (EI⁺) calc'd for $[C_{12}H_{13}OF]^+$: m/z 192.09505, found 192.09496.

Synthesis of (E)-3-methylene-5-(o-tolyl)pent-4-en-1-ol (2j). (E)-3-methylene-5-(o-tolyl)pent-4-en-1-ol was prepared according to the general procedure for the gold-catalyzed Claisen rearrangement of allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 84% yield as a colorless oil: ¹H NMR (500 MHz, C₆D₆) δ 7.41 (dd, J = 7.1, 1.9 Hz, 1H), 7.10 – 7.01 (m, 2H), 6.81 (d, J = 16.2 Hz, 1H), 6.63 (d, J = 15.7 Hz, 1H), 5.08 (s, 1H), 4.99 (d, J = 1.0 Hz, 1H), 3.62 (t, J = 6.7 Hz, 2H), 2.45 (td, J = 6.7, 1.0 Hz, 2H), 2.13 (s, 3H), 1.38 (s, 1H); ¹³C NMR (126 MHz, C₆D₆) δ 143.44, 136.63, 135.85, 132.23, 130.58, 127.78, 126.72, 126.48, 125.74, 117.76, 61.37, 35.88, 19.70; IR (cm⁻¹) 1601.21, 1627.82, 2345.89, 2369.46, 2773.87, 2882.59, 2947.51, 3020.38, 3056.53, 3346.93; HRMS (EI⁺) calc'd for [C₁₃H₁₆O]⁺: m/z 188.12012, found 188.11968.

Synthesis of (E)-5-(2-ethylphenyl)-3-methylenepent-4-en-1-ol (2k). (E)-5-(2-ethylphenyl)-3-methylenepent-4-en-1-ol was prepared according to the general procedure for the goldcatalyzed Claisen rearrangement of allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 79% yield as a colorless oil: ¹H NMR (500 MHz, C₆D₆) δ 7.46 – 7.41 (m, 1H), 7.11 – 7.01 (m, 3H), 6.91 (d, *J* = 16.1 Hz, 1H), 6.66 (d, *J* = 16.1 Hz, 1H), 5.09 (s, 1H), 5.01 (d, *J* = 1.0 Hz, 1H), 3.64 (t, *J* = 6.5 Hz, 2H), 2.55 (q, *J* = 7.6 Hz, 2H), 2.46 (t, *J* = 6.5 Hz, 2H), 1.59 (s, 1H), 1.11 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (126 MHz, C_6D_6) δ 143.39, 142.01, 135.88, 132.30, 129.02, 128.03, 126.51, 126.40, 126.03, 117.81, 61.37, 35.89, 26.73, 15.49; IR (cm⁻¹) 1601.01, 1794.25, 1809.59, 1918.68, 1945.30, 2345.93, 2372.53, 2729.93, 2875.15, 2934.22, 2966.18, 3027.44, 3062.01, 3081.55, 3347.44; HRMS (EI⁺) calc'd for [$C_{14}H_{18}O$]⁺: m/z 202.13577, found 202.13589.

Synthesis of (E)-3-methylene-5-(p-tolyl)pent-4-en-1-ol (2l). (E)-3-methylene-5-(p-tolyl) pent-4-en-1-ol was prepared according to the general procedure for the gold-catalyzed Claisen rearrangement for allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 70% yield as a white solid (m.p = 41 °C):: ¹H NMR (600 MHz, C₆D₆) **δ** 7.21 (d, J = 8.2 Hz, 2H), 6.97 (d, J = 7.9 Hz, 2H), 6.74 (d, J = 16.3 Hz, 1H), 6.57 (d, J = 16.3 Hz, 1H), 5.08 (s, 1H), 4.99 (s, 1H), 3.60 (t, J = 6.7 Hz, 2H), 2.44 (td, J = 6.7, 1.0 Hz, 2H), 2.12 (s, 3H), 1.32 (s, 1H); ¹³C NMR (151 MHz, C₆D₆) **δ** 143.24, 137.44, 134.93, 130.06, 129.59, 128.92, 126.89, 117.33, 61.39, 35.85, 21.15; IR (cm⁻¹) 1512.38, 1601.8, 2345.95, 2374.7, 2590.93, 2733.19, 2883.20, 2922.24, 2946.69, 3024.24, 3047.92, 3083.81, 3359.95; HRMS (EI⁺) calc'd for [C₁₃H₁₆O]⁺: m/z 188.12012, found 188.12032.

Synthesis of (E)-5-(2,6-dimethylphenyl)-3-methylenepent-4-en-1-ol (2m). (E)-5-(2,6-dimethyl phenyl)-3-methylenepent-4-en-1-ol was prepared according to the general procedure for the gold-catalyzed Claisen rearrangement of allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 82% yield as a white solid (m.p. = 42 °C): ¹H NMR (600 MHz, CDCl₃) δ 7.12 – 7.01 (m, 3H), 6.64 (d, *J* = 16.7 Hz, 1H), 6.31 (d, *J* = 16.7 Hz, 1H), 5.20 (s, 1H), 5.16 (d, *J* = 0.8 Hz, 1H), 3.89 (t, *J* = 6.5 Hz, 2H), 2.70 (td, *J* = 6.4, 0.8 Hz, 2H), 2.33 (s, 6H), 1.77 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 142.58, 136.86, 136.06, 135.65, 127.91, 127.13, 126.79, 117.54, 61.30, 35.47, 21.07; IR (cm⁻¹)

1605.48, 2345.96, 2370.39, 2734.37, 2948.56, 3019.26, 3064.46, 3361.28, HRMS (EI⁺) calc'd for $[C_{14}H_{18}O]^+$: m/z 202.13577, found 202.13586.

Synthesis of (E)-5-mesityl-3-methylenepent-4-en-1-ol (2n). (E)-5-mesityl-3-methylenepent-4-en-1-ol was prepared according to the general procedure for the gold-catalyzed Claisen rearrangement of allenyl vinyl ethers. The crude mixture was purified by flash chromatography (5:1 Hexane:EtOAc) and afforded the alcohol in 70% yield as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 6.89 (s, 2H), 6.61 (d, *J* = 16.7 Hz, 1H), 6.28 (d, *J* = 16.7 Hz, 1H), 5.17 (s, 1H), 5.13 (d, *J* = 0.9 Hz, 1H), 3.88 (td, *J* = 6.3, 5.9 Hz, 2H), 2.68 (td, *J* = 6.4, 0.9 Hz, 2H), 2.29 (s, 9H), 1.63 (t, *J* = 5.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 142.66, 136.44, 136.04, 135.33, 133.91, 128.79, 127.17, 117.38, 61.32, 35.51, 21.07, 21.06; IR (cm⁻¹) 1604.44, 2342.99, 2361.06, 2731.48, 2882.16, 2917.02, 2947.36; HRMS (EI⁺) calc'd for [C₁₅H₂₀O]⁺: m/z 216.15142 found 216.15185.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 ¹ H NMR of allenyl vinyl ether 1b. 3.5 4.0 (ppm) 1'03ζ**∓**−ε0∙τ 4.5 Έ-εο.ς 5.0 \overline{O} 501 E 5.5 6.0 T-00-T 6.5 7.0 (I−S0'₽ 7.5 8.0

¹H NMR of alcohol C.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

¹³C NMR of allenyl vinyl ether 1d.

27

₽1.S-12.5 11.01

0

ទ

20

ຂ

\$

¹³C NMR of allenyl vinyl ether 1i.
0.0 0.5 1.0 1.5 2.0 2.5 3.0 ¹H NMR of allenyl vinyl ether 1i. 3.5 4.0 (ppm) **=**-96'0 ≖-∠6'0 4.5 ∑-00.2 5.0 <u>Γ</u>-ε0.2 5.5 6.0 I-66'0 6.5 7.0 I-00.2 **1**−20.2 7.5 8.0 Γ

ш

¹H NMR of allenyl vinyl ether 1k

0.0 0.5 1.0 1.5 2.0 3.02--2.5 3.0 ¹H NMR of allenyl vinyl ether 1l. 3.5 4.0 (ppm) **--**₩0.1 **1**−20.1 4.5 515-I 🔁 5.0 ⊒--20.1 ⊒--20.1 5.5 6.0 6.5 **1-00.**1 7.0 2:03-= 2:03-= 7.5

¹³C NMR of allenyl vinyl ether 1m.

0.0 0.5 1.0 1.5 2.0 ₹-80.5 ₹-80.5 2.5 3.0 ¹H NMR of allenyl vinyl ether 1n. 3.5 4.0 (ppm) 1'04-1.03-4.5 Z-20.2 5.0 5.5 -96'0 1.03-6.0 ±_00.1 6.5 -10.2 7.0 7.5 8.0

¹³C NMR of allenyl vinyl ether 10.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 ¹H NMR of allenyl vinyl ether 10. 3.02-3.5 (ppm) 4.0 I-10.1 4.5 ₹-00-τ 5-03-₹ 5.0 I-66'0 MeO I-+6.0 5.5 6.0 € **I**-00 T 6.5 7'01-I 7.0 ₹**1**-00'Z 7.5

0 10 20 8 44°32'44 6 20 8 15.13-2 **Multimeters** (maa) hurka Arthon Maintena Arthon an Arthon HO 6 100 \overline{O} inelian winhaita 110 120 -118.89 +S'2ZT~ 130 222221 21'121 22'221 22'221 22'221 22'221 22'221 140 145.32 150 160

¹³C NMR of diene 2b.

¹H NMR of diene 2b.

¹³C NMR of diene 2c.

0

¹H NMR of diene 2f

¹H NMR of diene 2g.

69

НÒ

Щ

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2011

ਲ_∕

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2011

REFERENCES

- ¹- Crabbe´, P.; Nassim, B.; Robert-Lopes, M.-T. Org. Synth. **1985**, 63,203.
- ²- Nonoshita, K.; Banno, H.; Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. 1990, 112, 316.
- ³- Chang, Zhibin; B.; Widenhoefer, R.A.; Org. Lett. 2007, 9, 2887.
- ⁴- Kurono, N. S. K.; Tokuda, M.; *Tetrahedron* **2000**, *56*, 847.
- ⁵- Sim, S. H.; Park, H. J.; Lee, S. I.; Chung, Y. K.; Org. Lett. 2008, 10, 433.