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Total Synthesis of Dermostatin A**
Christopher J. Sinz and Scott D. Rychnovsky*

By virtue of their biological activity and structural com-
plexity, the polyene macrolides have attracted a great deal of
interest from the synthetic community.[1] We have been
engaged in the development of broadly applicable method-
ology for the stereochemical elucidation and the total syn-
thesis of highly oxygenated natural products. Pursuant to
these goals, a recent report from our group described a new
approach to the rapid stereochemical assignment of polyol-
containing natural products in which 2D-13C acetonide
analysis allowed for the stereochemical elucidation of der-
mostatin A (1) and B (2).[2] Herein, we disclose studies which
have culminated in the first total synthesis of dermostatin A
(1).

O

O OH

OH

OHOHOHOH OH OH OH

R

1: R = H 
2: R = Me

Dermostatin A (1) and B (2) are 36-membered macrolides
that were isolated from the mycelium of Streptomyces
viridogriseus Thirum.[3] Their flat structures were determined
by Rinehart and Pandey.[4] The dermostatins show potent
antifungal activity (comparable to amphotericin B) against a
large number of human pathogens,[5] and have been used
clinically as a treatment for deep vein mycoses.[6] Additionally,
in an evaluation of a variety of polyene macrolides as
potential HIV treatments, dermostatin A (1) and B (2)
showed the highest antiproliferative activity against HIV in
H9 cells.[7] Although the dermostatins have demonstrated a
broad range of biological activities, details of their mode of
action remain unknown.

We set out to develop a highly convergent synthetic
approach that would be sufficiently flexible to allow the
facile generation of analogues for studies of the mode of
action (Scheme 1). The central synthetic challenges posed by
dermostatin A (1) are the complex polyol region and the
conjugated hexaene. The acid- and light-sensitivity of the
polyene necessitates delaying its introduction until a late
stage. We intended to employ a palladium-mediated cross-
coupling with vinyl stannane 4 as the penultimate carbonÿ
carbon bond construction. Previous studies from our group
have demonstrated the utility of cyanohydrin acetonide
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alkylations in the construction of complex 1,3-
polyols.[8] In the context of dermostatin A, the
sequential connection of cyanohydrin acetonide
fragments 3 and 6 with the C2-symmetric dibro-
mide 5 would provide the C13 ± C38 polyol region.
Based on precedent from previous synthetic
efforts, we anticipated that an intramolecular
Horner ± Wadsworth ± Emmons macrolactoniza-
tion would generate the macrolide under suffi-
ciently mild conditions.[9]

The synthesis of cyanohydrin acetonide 3 com-
menced with the oxidation and Wittig homologa-
tion of alcohol 7,[10] to provide enoate 8 (82 %)
(Scheme 2). Reduction with DIBAL-H (88 %) and
oxidation with o-iodoxybenzoic acid[11] (99 %)
furnished enal 9. Nagao�s acetate aldol method[12]

has recently seen a resurgence in natural product
synthesis.[13] For our purposes, the addition of the
tin enolate derived from N-acetyl thiazolidine-
thione 10 to aldehyde 9 proceeded in excellent
yield with 28:1 diastereoselectivity. The resulting
compound 11 was converted into Weinreb amide
12 under mild conditions (90 %). A three-step
sequence (with no purification of intermediates
required) provided cyanohydrin acetonide 3 in
80 % yield.

The Noyori hydrogenation product 13[10, 14] pro-
vided a convenient starting material for the syn-
thesis of cyanohydrin acetonide 6 (Scheme 3). The
required C14ÿC15 anti stereoarray was secured by a
Frater ± Seebach alkylation,[15] to provide 14 in
78 % yield with 14:1 diastereoselectivity. Silyla-
tion (TBSOTf, 2,6-lutidine) of 14 gave 15 in 94 %
yield. b-Keto ester 16 was procured by DIBAL-H
reduction and Roskamp homologation[16] of the
intermediate aldehyde. Reduction with NaBH4 in
MeOH at ÿ50 8C provided b-hydroxy ester 17 in
84 % yield with 6.8:1 diastereoselectivity. Gener-
ation of the cyanohydrin acetonide proceeded
without incident, providing 6 in 75 % yield.

We recognized that carrying the C20 and C28

bromide substituents from the start of the syn-

thetic sequence would constitute the most efficient approach
to compound 5 (Scheme 4). To this end, a Mukaiyama aldol
coupling of enol silane 18 and aldehyde 19[17] proceeded in
74 % yield, with a modest preference[18] for the desired 1,3-anti
adduct 20 (3.3:1).[19] We investigated a variety of protecting
groups (e.g. the use of b-OBn- or b-OPMB-protected
aldehydes), the use of cationic Lewis acids (Me2AlCl) for
chelation control,[20] and reagent control with chiral Lewis
acids.[21] These modifications were not significantly more
diastereoselective, and were much less practical than the
original coupling. The conversion of 20 into anti 1,3-diol 21
was best accomplished by Evans ± Tischenko reduction[22]
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Scheme 2. Reagents and conditions: a) DMSO, (COCl)2, Et3N, CH2Cl2; b) methyl(tri-
phenylphosphoranylidene) acetate, CH3CN, 90 8C, 82 % over two steps; c) DIBAL-H,
88%; d) IBX, DMSO, 99%; e) 10, Sn(OTf)2, N-ethylpiperidine, CH2Cl2, ÿ50 8C, 88%,
28:1 dr; f) MeNHOMe ´ HCl, imidazole, 90%; g) TMSCl, Et3N; h) DIBAL-H; i) TMSCN,
KCN/[18]crown-6; acetone, 2,2-dimethoxypropane, cat. � -CSA, 80% over three steps.
DMSO�dimethyl sulfoxide, DIBAL-H� diisobutylaluminum hydride, IBX� o-iodoxy-
benzoic acid, CSA� camphorsulfonic acid.
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Scheme 3. Reagents and conditions: a) LDA, MeI, DMPU, THF, 78%, 14:1 dr;
b) TBSOTf, 2,6-lutidine, 94%; c) DIBAL-H; ethyl diazoacetate, SnCl2, 74 %; d) NaBH4,
MeOH, ÿ50 8C, 84%, 6.8:1 dr; e) TMSCl, Et3N; f) DIBAL-H; g) TMSCN, KCN/
[18]crown-6; acetone, 2,2-dimethoxypropane, cat. � -CSA, 75% over three steps.
LDA� lithium diisopropylamide, DMPU� 1,3-dimethyl-3,4,5,6-tetrahydro-2(1 H)-pyr-
imidinone, TBSOTf� tert-butyldimethylsilyl trifluoromethanesulfonate.
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Scheme 4. Reagents and conditions: a) BF3 ´ OEt2, CH2Cl2,ÿ78 8C, 74 %, 3.3:1 dr; b) cat.
SmI2, iPrCHO, THF, ÿ20 8C; c) DIBAL-H, 75% over two steps, >95 % de; d) Dowex-
H�, MeOH, 75 8C; acetone, 2,2-dimethoxypropane, cat. � -CSA, 50%.
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Scheme 1. Retrosynthesis of dermostatin A (1).
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followed by the reductive cleavage of the resultant ester
(75 %, >95 % de). Desilylation under acidic conditions fol-
lowed by protection of the crude tetraol gave bis-acetonide 5
in 50 % yield.

With the required fragments in hand, our attention turned
to the coupling procedure (Scheme 5). Addition of LDA to a
mixture of 5 (2.2 equivalents) and 6 in the presence of DMPU
(5 equivalents) gave the monoalkylated adduct 22 in 65 %
yield. Unreacted 5 could be readily recovered. Alkylation
with the C29 ± C38 fragment 3 under the same conditions
provided the protected polyol 23 in 70 % yield. Submission of
23 to a large excess of LiDBB (30 equivalents) at ÿ78 8C
effected reductive decyanation at C13 and C29 with concom-
itant deprotection of the C13 and C35 benzyl ethers, providing
24 in 75 % yield as a single diastereomer.[23] Chemoselective
oxidation with TEMPO under the conditions of Einhorn et al.
gave aldehyde 25, with no detectable oxidation of the C35

secondary hydroxy group.[24] Takai iodo-olefination of 25 gave
vinyl iodide 26 in 88 % yield, with 11:1 E/Z selectivity.[25] At

this point, the stage was set for installation of the polyene and
subsequent macrocyclization.

In anticipation of the Horner ± Wadsworth ± Emmons mac-
rocyclization, BOP/DMAP-promoted phosphonoesterifica-
tion of 26 at C35 gave 27 in quantitative yield (Scheme 6).
The choice of a Stille coupling for the convergent introduction
of the polyene[26] was predicated on the belief that this
transformation could be accomplished with highly function-
alized substrates containing polar functional groups.[27] In the
event, palladium-mediated coupling of 27 with vinyl stannane
4[28] gave polyene 28 in 77 % yield, with no evidence of
dimerization. Oxidation with the Dess-Martin periodinane to
aldehyde 29 and submission to Masamune ± Roush condi-
tions[9] provided macrolide 30 in 50 % yield over two steps.
Deprotection proved to be surprisingly facile. Treatment of 30
with Dowex acidic resin in MeOH at ambient temperature
effected the removal of the acetonide protecting groups and
the partial deprotection of the C15-TBS ether which could be
driven to completion by gentle heating. Purification by HPLC

(high-pressure liquid chromatography) provided 1,
which was indistinguishable from natural dermosta-
tin A by a variety of analytical methods (1H NMR
spectroscopic analysis in two solvents, high-resolu-
tion mass spectrometry, circular dichroism, HPLC).

An efficient, convergent total synthesis of der-
mostatin A (1) has been achieved, thus confirming
the reported stereostructure. The 1,3-polyol region
was rapidly assembled by using the cyanohydrin
acetonide method. The Stille cross coupling has been
applied for the first time to the total synthesis of an
oxo-polyene macrolide. The strategy and tactics
described above should prove useful for the syn-
thesis of analogues of dermostatin A as well as other
polyene macrolides.
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